SN74LVC1G126 SCES224R - APRIL 1999-REVISED JANUARY 2015 ## SN74LVC1G126 Single Bus Buffer Gate With 3-State Output #### **Features** - Available in the Texas Instruments NanoFree™ Package - Supports 5-V V_{CC} Operation - Inputs Accept Voltages to 5.5 V - Provides Down Translation to V_{CC} - Max t_{pd} of 3.7 ns at 3.3 V - Low Power Consumption, 10-µA Max I_{CC} - ±24-mA Output Drive at 3.3 V - Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back Drive Protection - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model - 200-V Machine Model - 1000-V Charged-Device Model ## 2 Applications - Cable Modem Termination Systems - High-Speed Data Acquisition and Generation - Military: Radars and Sonars - Motor Controls: High-Voltage - **Power Line Communication Modems** - SSDs: Internal or External - Video Broadcasting and Infrastructure: Scalable - Video Broadcasting: IP-Based Multi-Format Transcoders - Video Communication Systems ### 3 Description This single buffer is designed for 1.65-V to 3.6-V V_{CC} operation. The LVC1G126 device is a single line driver with 3-state output. The output is disabled when the output-enable input is low. ## Device Information⁽¹⁾ | PART NUMBER | PACKAGE (PIN) | BODY SIZE | |--------------|---------------|-------------------| | | SOT-23 (5) | 2.90 mm × 1.60 mm | | | SC70 (5) | 2.00 mm × 1.25 mm | | SN74LVC1G126 | SOT (5) | 1.60 mm × 1.20 mm | | | SON (6) | 1.00 mm × 1.00 mm | | | XBGA (5) | 1.40 mm × 0.90 mm | (1) For all available packages, see the orderable addendum at the end of the data sheet. ## Simplified Schematic ## **Table of Contents** | 1 | Features 1 | 9 | Detailed Description | 10 | |---|---|----|--------------------------------------|----| | 2 | Applications 1 | | 9.1 Overview | | | 3 | Description 1 | | 9.2 Functional Block Diagram | 10 | | 4 | Simplified Schematic1 | | 9.3 Feature Description | 10 | | 5 | Revision History2 | | 9.4 Device Functional Modes | 10 | | 6 | Pin Configuration and Functions | 10 | Application and Implementation | 11 | | 7 | <u> </u> | | 10.1 Application Information | 11 | | ′ | Specifications | | 10.2 Typical Application | 11 | | | 7.1 Absolute Maximum Ratings | 11 | Power Supply Recommendations | | | | 7.3 Recommended Operating Conditions | | Layout | | | | 7.4 Thermal Information | | 12.1 Layout Guidelines | | | | 7.5 Electrical Characteristics | | 12.2 Layout Example | | | | 7.6 Switching Characteristics, C ₁ = 15 pF | 13 | Device and Documentation Support | | | | 7.7 Switching Characteristics, –40°C to 85°C | | 13.1 Trademarks | | | | 7.8 Switching Characteristics, –40°C to 125°C | | 13.2 Electrostatic Discharge Caution | | | | 7.9 Operating Characteristics | | 13.3 Glossary | | | | 7.10 Typical Characteristics | | Mechanical, Packaging, and Orderable | | | 8 | Parameter Measurement Information 8 | | Information | 13 | | | | | | | ## Revision History ### Changes from Revision Q (December 2013) to Revision R Page Added Applications, Device Information table, Handling Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section...... 1 | С | Changes from Revision P (November 2012) to Revision Q | Page | |---|--|------| | • | Updated document to new TI data sheet format Changed MAX operating temperature to 125°C in Recommended Operating Conditions table | | | • | Added ESD warning. | 13 | | C | Changes from Revision O (March 2011) to Revision P | Page | # Removed Ordering Information table. | Changes from Revision N (February 2007) to Revision O | Page | |---|------| | | | Added DSF package option to the data sheet. ## 6 Pin Configuration and Functions See mechanical drawings for dimensions. #### **Pin Functions** | | | | | i iii i uiiotiolis | | |-----------------|-----------------------|----------|------|--------------------|--| | | PIN | | | | | | | SN74LVC1G126 | | TYPE | DESCRIPTION | | | NAME | DBV, DCK,
DRL, YZP | DRY, DSF | | DESCRIF HOW | | | Α | 2 | 2 | I | A Input | | | GND | 3 | 3 | _ | Ground Pin | | | NC | _ | 5 | _ | Do not connect | | | OE | 1 | 1 | I | OE Enable/Input | | | V _{CC} | 5 | 6 | _ | Power Pin | | | Υ | 4 | 4 | 0 | Y Output | | Product Folder Links: SN74LVC1G126 ## 7 Specifications ### 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)⁽¹⁾ | | | | MIN | MAX | UNIT | |------------------|--|--------------------|-----------------------|------|------| | V_{CC} | Supply voltage range | | -0.5 | 6.5 | V | | VI | Input voltage range ⁽²⁾ | | | 6.5 | V | | Vo | Voltage range applied to any output in the high-imp | -0.5 | 6.5 | V | | | Vo | Voltage range applied to any output in the high or l | -0.5 | V _{CC} + 0.5 | V | | | I _{IK} | Input clamp current | V _I < 0 | | -50 | mA | | I_{OK} | Output clamp current | V _O < 0 | | -50 | mA | | Io | Continuous output current | | | ±50 | mA | | | Continuous current through V _{CC} or GND | | | ±100 | mA | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 7.2 ESD Ratings | | PARAMETER | DEFINITION | VALUE | UNIT | |--------|---------------|---|-------|------| | ., | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ | 2000 | \/ | | V(ESD) | discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) | 1000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated ⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions* table. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |-----------------|------------------------------------|---|------------------------|------------------------|------| | ., | Complexications | Operating | 1.65 | 5.5 | V | | V _{CC} | Supply voltage | Data retention only | 1.5 | | V | | | | V _{CC} = 1.65 V to 1.95 V | 0.65 × V _{CC} | | | | | LP also level Construction | V _{CC} = 2.3 V to 2.7 V | 1.7 | | | | V _{IH} | High-level input voltage | V _{CC} = 3 V to 3.6 V | 2 | | V | | | | V _{CC} = 4.5 V to 5.5 V | 0.7 × V _{CC} | | | | | | V _{CC} = 1.65 V to 1.95 V | | 0.35 × V _{CC} | | | . , | Lavorte and Computer after the | V _{CC} = 2.3 V to 2.7 V | | 0.7 | | | V_{IL} | Low-level input voltage | V _{CC} = 3 V to 3.6 V | | 0.8 | V | | | | V _{CC} = 4.5 V to 5.5 V | | 0.3 × V _{CC} | | | V _I | Input voltage | | 0 | 5.5 | V | | Vo | Output voltage | | 0 | V _{CC} | ٧ | | | | V _{CC} = 1.65 V | | -4 | | | | | V _{CC} = 2.3 V | | -8 | | | I _{OH} | High-level output current | | | -16 | mA | | | | $V_{CC} = 3 V$ | | -24 | | | | | V _{CC} = 4.5 V | | -32 | | | | | V _{CC} = 1.65 V | | 4 | | | | | V _{CC} = 2.3 V | | 8 | | | l _{OL} | Low-level output current | | | 16 | mA | | | | V _{CC} = 3 V | | 24 | | | | | V _{CC} = 4.5 V | | 32 | | | | | V _{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V | | 20 | | | Δt/Δν | Input transition rise or fall rate | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | 10 | ns/V | | | | V _{CC} = 5 V ± 0.5 V | | 5 | - | | T _A | Operating free-air temperature | · | -40 | 125 | °C | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ## 7.4 Thermal Information | | | | S | N74LVC1G12 | 26 | | | |-------------------------------|--|--------|--------|------------|--------|--------|------| | THERMAL METRIC ⁽¹⁾ | | DBV | DCK | DRL | DRY | YZP | UNIT | | | | 5 PINS | 5 PINS | 5 PINS | 6 PINS | 5 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 206 | 252 | 142 | 234 | 132 | °C/W | (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Product Folder Links: SN74LVC1G126 #### 7.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) | | 4 D 4 METED | TEGT COMPLETIONS | ,, | -40°(| C to 85°C | | -40° | C to 125°C | | | |------------------|--|---|-----------------|-----------------------|--------------------|------|-----------------------|--------------------|------|------| | P | ARAMETER | TEST CONDITIONS | V _{cc} | MIN | TYP ⁽¹⁾ | MAX | MIN | TYP ⁽¹⁾ | MAX | UNIT | | | | I _{OH} = -100 μA | 1.65 V to 5.5 V | V _{CC} - 0.1 | | | V _{CC} – 0.1 | | | | | | | $I_{OH} = -4 \text{ mA}$ | 1.65 V | 1.2 | | | 1.2 | | | | | V _{OH} | | $I_{OH} = -8 \text{ mA}$ | 2.3 V | 1.9 | | | 1.9 | | | V | | | | $I_{OH} = -16 \text{ mA}$ | 2.1/ | 2.4 | | | 2.4 | | | | | | | $I_{OH} = -24 \text{ mA}$ | 3 V | 2.3 | | | 2.3 | | | | | | $I_{OH} = -24 \text{ mA} $ 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | | | | | | | | | | | | | I _{OL} = 100 μA | 1.65 V to 5.5 V | | | 0.1 | | | 0.1 | | | | V _{OL} | I _{OL} = 4 mA | 1.65 V | | | 0.45 | | | 0.45 | | | | | I _{OL} = 8 mA | 2.3 V | | | 0.3 | | | 0.3 | ٧ | | VOL | | I _{OL} = 16 mA | 3 V | | | 0.4 | | | 0.4 | V | | | | I _{OL} = 24 mA | 3 V | | | 0.55 | | | 0.55 | | | | | I _{OL} = 32 mA | 4.5 V | | | 0.55 | | | 0.55 | | | I | A or OE inputs | V _I = 5.5 V or GND | 0 to 5.5 V | | | ±5 | | | ±5 | μA | | I _{off} | | V _I or V _O = 5.5 V | 0 | | | ±10 | | | ±10 | μA | | I _{OZ} | | V _O = 0 to 5.5 V | 3.6 V | | | 10 | | | 10 | μA | | I _{CC} | | $V_I = 5.5 \text{ V or GND}$ $I_O = 0$ | 1.65 V to 5.5 V | | | 10 | | | 10 | μA | | ΔI_{CC} | | One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND | 3 V to 5.5 V | | | 500 | | | 500 | μA | | C_{i} | · | $V_I = V_{CC}$ or GND | 3.3 V | | 4 | | | 4 | | pF | ⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ## 7.6 Switching Characteristics, $C_L = 15 pF$ over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3) | | | | | | | −40°C to | 85°C | | | | | | | |-----------------|-----------------|----------------|-----|-------------------------------------|-----|------------------------------------|------|-----|-----|-----|----------------------------------|--|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | | V _{CC} = 1.8 V
± 0.15 V | | V _{CC} = 2.5 V
± 0.2 V | | | | | V _{CC} = 5 V
± 0.5 V | | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | | t _{pd} | А | Υ | 1.7 | 6.9 | 0.6 | 4.6 | 0.6 | 3.7 | 0.5 | 3.4 | ns | | | ## 7.7 Switching Characteristics, -40°C to 85°C over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 4) | | | | | | | -40°C t | o 85°C | | | | | |------------------|-----------------|----------------|-------------------------|-----|------------------------------|---------|------------------------|-----|------------------------|--------------|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = ± 0.1 | | V _{CC} = 2
± 0.2 | | V _{CC} = ± 0. | | V _{CC} = ± 0. | : 5 V
5 V | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{pd} | A | Υ | 2.6 | 8 | 1.1 | 5.5 | 1 | 4.5 | 1 | 4 | ns | | t _{en} | OE | Υ | 2.8 | 9.4 | 1.3 | 6.6 | 1.2 | 5.3 | 1 | 5 | ns | | t _{dis} | OE | Y | 1.6 | 9.8 | 1 | 5.5 | 1 | 5.5 | 1 | 4.2 | ns | Product Folder Links: SN74LVC1G126 ## 7.8 Switching Characteristics, -40°C to 125°C over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 4) | PARAMETER | | TO
(OUTPUT) | -40°C to 125°C | | | | | | | | | | |------------------|-----------------|----------------|-------------------------------------|-----|------------------------------------|-----|------------------------------------|-----|----------------------------------|-----|------|--| | | FROM
(INPUT) | | V _{CC} = 1.8 V
± 0.15 V | | V _{CC} = 2.5 V
± 0.2 V | | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 5 V
± 0.5 V | | UNIT | | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | i | | | t _{pd} | A | Υ | 2.6 | 9 | 1.1 | 5.7 | 1 | 4.7 | 1 | 4.2 | ns | | | t _{en} | OE | Υ | 2.8 | 9.6 | 1.3 | 6.8 | 1.2 | 5.5 | 1 | 5.2 | ns | | | t _{dis} | OE | Υ | 1.6 | 10 | 1 | 5.7 | 1 | 5.7 | 1 | 4.4 | ns | | ## 7.9 Operating Characteristics $T_A = 25^{\circ}C$ | PARAMETER | | | TEST | V _{CC} = 1.8 V | V _{CC} = 2.5 V | V _{CC} = 3.3 V | V _{CC} = 5 V | UNIT | | |-----------------|-------------------|------------------|------------|-------------------------|-------------------------|-------------------------|-----------------------|------|--| | | FARAMETE | X | CONDITIONS | TYP | TYP | TYP | TYP | UNII | | | _ | Power dissipation | Outputs enabled | f = 10 MHz | 19 | 19 | 19 | 21 | pF | | | C _{pd} | capacitance | Outputs disabled | I = IU MHZ | 2 | 2 | 3 | 4 | | | ## 7.10 Typical Characteristics ### 8 Parameter Measurement Information | TEST | S1 | |------------------------------------|-------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t _{PHZ} /t _{PZH} | GND | | ., | INF | INPUTS | | ., | | - | ., | |-----------------|-----------------|--------------------------------|--------------------|---------------------|-------|----------------|---------------------------| | V _{CC} | V_{l} | t _r /t _f | V _M | V _{LOAD} | CL | R _L | $oldsymbol{V}_{\!\Delta}$ | | 1.8 V ± 0.15 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2 × V _{CC} | 15 pF | 1 Μ Ω | 0.15 V | | 2.5 V ± 0.2 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2 × V _{CC} | 15 pF | 1 Μ Ω | 0.15 V | | 3.3 V ± 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 15 pF | 1 Μ Ω | 0.3 V | | 5 V ± 0.5 V | V _{CC} | ≤2.5 ns | V _{CC} /2 | 2 × V _{CC} | 15 pF | 1 Μ Ω | 0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, Z_O = 50 Ω. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en}. - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated ## **Parameter Measurement Information (continued)** | TEST | S1 | |------------------------------------|-------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t _{PHZ} /t _{PZH} | GND | LOAD CIRCUIT | | INI | PUTS | ., | ., | | _ | .,, | |-----------------|-----------------|--------------------------------|--------------------|---------------------|-------|----------------|-------------------------| | V _{CC} | VI | t _r /t _f | V _M | V _{LOAD} | CL | R _L | $oldsymbol{V}_{\Delta}$ | | 1.8 V ± 0.15 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2 × V _{CC} | 30 pF | 1 k Ω | 0.15 V | | 2.5 V ± 0.2 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2 × V _{CC} | 30 pF | 500 Ω | 0.15 V | | 3.3 V ± 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | 5 V ± 0.5 V | V _{CC} | ≤2.5 ns | V _{CC} /2 | 2 × V _{CC} | 50 pF | 500 Ω | 0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, Z_O = 50 Ω. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. All parameters and waveforms are not applicable to all devices. Figure 4. Load Circuit and Voltage Waveforms Submit Documentation Feedback ## 9 Detailed Description #### 9.1 Overview The SN74LVC1G126 device contains a dual buffer gate with output enable control and performs the Boolean function Y = A. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver. ## 9.2 Functional Block Diagram ### 9.3 Feature Description - 1.65 V to 5.5 V operating voltage range - Allows down voltage translation - 5 V to 3.3 V - 5 V or 3.3 V to 1.8 V - Inputs accept voltages to 5.5 V - 5.5-V tolerance on input pin when $V_{CC} = 0$ V - I_{off} feature - Allows voltage on the inputs and outputs when V_{CC} is 0 V - Able to reduce leakage when V_{CC} is 0 V ### 9.4 Device Functional Modes **Table 1. Function Table** | INP | JTS | OUTPUT | |-----|-----|--------| | OE | Α | Y | | Н | Н | Н | | Н | L | L | | L | Χ | Z | Submit Documentation Feedback ## 10 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 10.1 Application Information The SN74LVC1G126 device is a high-drive CMOS device that can be used as an output enabled buffer with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V, making it ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5-V tolerant allowing it to translate down to $V_{\rm CC}$. ## 10.2 Typical Application Figure 5. Application Schematic #### 10.2.1 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads, so routing and load conditions should be considered to prevent ringing. #### 10.2.2 Detailed Design Procedure - 1. Recommended Input Conditions: - For rise time and fall time specifications, see $\Delta t/\Delta V$ in the *Recommended Operating Conditions* table. - For specified high and low levels, see V_{IH} and V_{IL} in the Recommended Operating Conditions table. - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}. - 2. Recommend Output Conditions: - Load currents should not exceed 50 mA per output and 100 mA total for the part. Product Folder Links: SN74LVC1G126 ## TEXAS INSTRUMENTS ### Typical Application (continued) #### 10.2.3 Application Curves ## 11 Power Supply Recommendations The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended. If there are multiple V_{CC} terminals, then 0.01- μ F or 0.022- μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results. #### 12 Layout #### 12.1 Layout Guidelines When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled. #### 12.2 Layout Example Figure 7. Layout Diagram 2 Submit Documentation Feedback ## 13 Device and Documentation Support #### 13.1 Trademarks NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. ### 13.2 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ## 13.3 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms and definitions. ## 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. Product Folder Links: SN74LVC1G126 28-Jul-2018 ## **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|-------------------|--------------------|--------------|-----------------------------------|---------| | 74LVC1G126DBVRE4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C26F | Samples | | 74LVC1G126DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C26F | Samples | | 74LVC1G126DBVTE4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C26F | Samples | | 74LVC1G126DBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | C26F | Samples | | 74LVC1G126DCKRE4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CN5, CNF, CNK, CN
R, CNT) | Samples | | 74LVC1G126DCKRG4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CN5, CNF, CNK, CN
R, CNT) | Sample | | 74LVC1G126DCKTG4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CN5, CNF, CNK, CN
R) | Sample | | 74LVC1G126DRLRG4 | ACTIVE | SOT-5X3 | DRL | 5 | 4000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CN7, CNR) | Sample | | SN74LVC1G126DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 125 | (C265, C26F, C26K,
C26R, C26T) | Sample | | SN74LVC1G126DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 125 | (C265, C26F, C26K,
C26R) | Sample | | SN74LVC1G126DCKR | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 125 | (CN5, CNF, CNK, CN
R, CNT) | Samples | | SN74LVC1G126DCKT | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -40 to 125 | (CN5, CNF, CNK, CN
R) | Samples | | SN74LVC1G126DRLR | ACTIVE | SOT-5X3 | DRL | 5 | 4000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CN7, CNR) | Sample | | SN74LVC1G126DRYR | ACTIVE | SON | DRY | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | CN | Sample | | SN74LVC1G126DSFR | ACTIVE | SON | DSF | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | CN | Sample | | SN74LVC1G126YZPR | ACTIVE | DSBGA | YZP | 5 | 3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | (CN7, CNN) | Sample | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. ## PACKAGE OPTION ADDENDUM 28-Jul-2018 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. www.ti.com (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN74LVC1G126: Automotive: SN74LVC1G126-Q1 Enhanced Product: SN74LVC1G126-EP NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects ## **PACKAGE OPTION ADDENDUM** 28-Jul-2018 • Enhanced Product - Supports Defense, Aerospace and Medical Applications **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Aug-2017 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE *All dimensions are nominal | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | 74LVC1G126DBVRG4 | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | 74LVC1G126DBVTG4 | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.2 | 3.3 | 3.23 | 1.55 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.2 | 3.3 | 3.23 | 1.55 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 8.4 | 2.47 | 2.3 | 1.25 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DCKT | SC70 | DCK | 5 | 250 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DRLR | SOT-5X3 | DRL | 5 | 4000 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DRLR | SOT-5X3 | DRL | 5 | 4000 | 180.0 | 9.5 | 1.78 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | SN74LVC1G126DRYR | SON | DRY | 6 | 5000 | 179.0 | 8.4 | 1.2 | 1.65 | 0.7 | 4.0 | 8.0 | Q1 | | SN74LVC1G126DSFR | SON | DSF | 6 | 5000 | 180.0 | 9.5 | 1.16 | 1.16 | 0.5 | 4.0 | 8.0 | Q2 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Aug-2017 | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74LVC1G126YZPR | DSBGA | YZP | 5 | 3000 | 178.0 | 9.2 | 1.02 | 1.52 | 0.63 | 4.0 | 8.0 | Q1 | *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------------|--------------|-----------------|------|------|-------------|------------|-------------| | 74LVC1G126DBVRG4 | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | 74LVC1G126DBVTG4 | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DBVR | SOT-23 | DBV | 5 | 3000 | 202.0 | 201.0 | 28.0 | | SN74LVC1G126DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 202.0 | 201.0 | 28.0 | | SN74LVC1G126DCKR | SC70 | DCK | 5 | 3000 | 205.0 | 200.0 | 33.0 | | SN74LVC1G126DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DCKT | SC70 | DCK | 5 | 250 | 205.0 | 200.0 | 33.0 | | SN74LVC1G126DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G126DRLR | SOT-5X3 | DRL | 5 | 4000 | 202.0 | 201.0 | 28.0 | | SN74LVC1G126DRLR | SOT-5X3 | DRL | 5 | 4000 | 184.0 | 184.0 | 19.0 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Aug-2017 | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74LVC1G126DRYR | SON | DRY | 6 | 5000 | 203.0 | 203.0 | 35.0 | | SN74LVC1G126DSFR | SON | DSF | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC1G126YZPR | DSBGA | YZP | 5 | 3000 | 220.0 | 220.0 | 35.0 | DIE SIZE BALL GRID ARRAY - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. DIE SIZE BALL GRID ARRAY NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009). DIE SIZE BALL GRID ARRAY NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4073253/P - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-178. NOTES: (continued) - 4. Publication IPC-7351 may have alternate designs. - 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 7. Board assembly site may have different recommendations for stencil design. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-178. NOTES: (continued) - 4. Publication IPC-7351 may have alternate designs. - 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 7. Board assembly site may have different recommendations for stencil design. # DRL (R-PDSO-N5) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side. - D. JEDEC package registration is pending. ## DRL (R-PDSO-N5) ## PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC registration MO-287, variation X2AAF. DSF (S-PX2SON-N6) PLASTIC SMALL OUTLINE NO-LEAD - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask. - E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy. - H. Component placement force should be minimized to prevent excessive paste block deformation. # DCK (R-PDSO-G5) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AA. # DCK (R-PDSO-G5) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC SMALL OUTLINE - NO LEAD - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) 3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271). PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. #### **IMPORTANT NOTICE** Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.