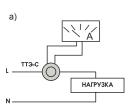
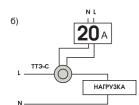
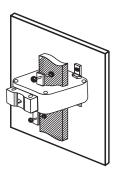
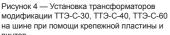


Рисунок 4 — Установка трансформаторов модификации ТТЭ-C-30, ТТЭ-C-40, ТТЭ-C-60 на шине при помощи крепежной пластины и

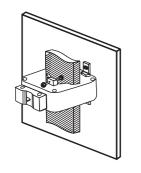

Рисунок 5 — Установка трансформато ров модификации ТТЭ-С-85, ТТЭ-С-100, ТТЭ-С-125 на шине при помощи крепежной пластины и винтов

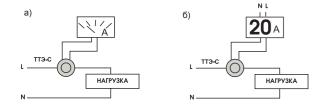

5.3 Требования безопасности при эксплуатации трансформаторов

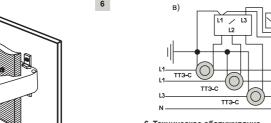

- 5.3.1. По способу защиты от поражения электрическим током трансформаторы соответствуют классу О по ГОСТ 12.2.007.0-75 и должны устанавливаться в распределительные щиты, имеющие класс защиты не ниже 1.
- 5. 3. 2. Сопротивление изоляции обмоток трансформаторов не менее:
- 40 МОм для первичных обмоток:
- 50 МОм для вторичных обмоток;
- 5.3.3. Корпус трансформаторов выполнен из пластмассы и не имеет подлежащих заземлению металлических частей

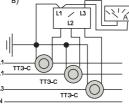

Вывод И вторичной обмотки трансформаторов должен быть заземлен.

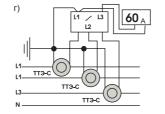
- 5.3.4 Во время эксплуатации вторичная обмотка трансформаторов должна быть подключена к нагрузке, т. к. при разомкнутой вторичной цепи на выводах вторичной обмотки возникает напряже ние, опасное для изоляции вторичной обмотки, допускается только после отключения первичной обмотки трансформатора.
- 5.3.5 Запрещается эксплуатация трансформаторов при повреждениях корпуса и изоляции присоединяемых проводников электросети.
- 5.4 Схемы подключения амперметров через трансформаторы тока на Рис. 6.




Рисунок 5 — Установка трансформаторов модификации ТТЭ-С-85, ТТЭ-С-100, ТТЭ-С-125 на шине при помощи крепежной


5.3 Требования безопасности при эксплуатации трансформаторов


- 5.3.1. По способу защиты от поражения электрическим током трансформаторы соответствуют классу О по ГОСТ 12.2.007.0-75 и должны устанавливаться в распределительные щиты, имеющие класс защиты не ниже 1.
- 5. 3. 2. Сопротивление изоляции обмоток трансформаторов не менее:
- 40 МОм для первичных обмоток;
- 50 МОм для вторичных обмоток;
- 5.3.3. Корпус трансформаторов выполнен из пластмассы и не имеет подлежащих заземлению


Вывод И вторичной обмотки трансформаторов должен быть заземлен.

- 5.3.4 Во время эксплуатации вторичная обмотка трансформаторов должна быть подключена к нагрузке, т. к. при разомкнутой вторичной цепи на выводах вторичной обмотки возникает напряже ние, опасное для изоляции вторичной обмотки, допускается только после отключения первичной обмотки трансформатора.
- 5.3.5 Запрещается эксплуатация трансформаторов при повреждениях корпуса и изоляции присоемых проводников электросети.
- 5.4 Схемы подключения амперметров через трансформаторы тока на Рис. 6.

6. Техническое обслуживание

- 6.1 Трансформаторы не подлежат ремонту эксплуатирующими организациями и не требуют специального обслуживания при эксплуатации.
- 6.2 Рекомендуется проводить профилактические осмотры с периодичностью, определяемой графиком осмотра всей электроустановки. При профилактических осмотрах проверяется состояние поверхности изоляции контактных соединений, надежность болтовых соединений, крепление трансформатора к конструкции распределительного щита и очистка корпуса трансформатора от пыли

- 7.1 Первична и периодическая поверка трансформаторов осуществляется по ГОСТ 8.217-2003.
- 7.2 Межповерочный интервал 8 лет

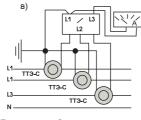
8. Условия транспортирования и хранения

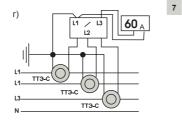
- 8.1 Транспортирование и хранение трансформаторов должны оответствовать ГОСТ23216 и ГОСТ 15150.
- 8.2 Транспортирование трансформаторов допускается любым видом крытого транспорта, обеспечивающим предохранение упакованных трансформаторов от механических повреждений, загрязнения и попадания влаги.
- 8.3 Хранение трансформаторов осуществляется в упаковке изготовителя в помещениях с естественной вентиляцией при температуре окружающего воздуха от - 45°C до +50 °C и относительной влажности 98% при 25 °C.
- 8.4 Срок хранения трансформаторов у потребителя в упаковке изготовителя 1 год.

9. Гарантийные обязательства

- 9.1 Гарантийный срок эксплуатации трансформаторов 5 лет со дня продажи при соблюдении потребителем правил эксплуатации, транспортирования и хранения
- 9.2 Средний срок службы трансформаторов 25 лет.

10. Сведения о рекламациях


10.1 При обнаружении неисправностей трансформатора в период гарантийных обязательств следует сообщить по адресу:


> ООО «ЭКФ Электротехника» 111141, Москва, Перова Поля, 8 т./ф. (495)788-1947, 788-8815, 540-7246

- 1) заводской номер, дату выпуска и ввода в эксплуатацию трансформатора
- 2) характер дефекта:

6

3) номер контактного телефона и свой адрес

6. Техническое обслуживание

- 6.1 Трансформаторы не подлежат ремонту эксплуатирующими организациями и не требуют специального обслуживания при эксплуатации.
- 6.2 Рекомендуется проводить профилактические осмотры с периодичностью, определяемой графиком осмотра всей электроустановки. При профилактических осмотрах проверяется состояние поверхности изоляции контактных соединений, надежность болтовых соединений, крепление трансформатора к конструкции распределительного щита и очистка корпуса трансформатора от пыли

- 7.1 Первична и периодическая поверка трансформаторов осуществляется по ГОСТ 8.217-2003.
- 7.2 Межповерочный интервал 8 лет.

8. Условия транспортирования и хранения

- 8.1 Транспортирование и хранение трансформаторов должны оответствовать ГОСТ23216
- 8.2 Транспортирование трансформаторов допускается любым видом крытого транспорта, обеспечивающим предохранение упакованных трансформаторов от механических повреждений. загрязнения и попадания влаги.
- 8.3 Хранение трансформаторов осуществляется в упаковке изготовителя в помещениях с естественной вентиляцией при температуре окружающего воздуха от - 45°C до +50 °C и относительной влажности 98% при 25 °C.
- 8.4 Срок хранения трансформаторов у потребителя в упаковке изготовителя 1 год.

9. Гарантийные обязательства

- 9.1 Гарантийный срок эксплуатации трансформаторов 5 лет со дня продажи при соблюдении потребителем правил эксплуатации, транспортирования и хранения
- 9.2 Средний срок службы трансформаторов 25 лет.

10. Сведения о рекламациях

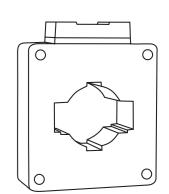
10.1 При обнаружении неисправностей трансформатора в период гарантийных обязательств следует сообщить по адресу:

> ООО «ЭКФ Электротехника» 111141, Москва, Перова Поля, 8 т./ф. (495)788-1947, 788-8815, 540-7246

- 1) заводской номер, дату выпуска и ввода в эксплуатацию трансформатора;
- 2) характер дефекта;
- 3) номер контактного телефона и свой адрес

Свидетельство	0	приемке и	1 ПС	верк	Э	
4 T						

0,66 кВ типа ТТЭ-С модификации	
заводской номер с	соответствует требованиям
ГОСТ7746 и признан годным для эксплуа	тации.
Дата изготовления «»	20r.
Штамп технического контроля изготовите	пя
Поверитель	
»»	
Дата продажи «»	20r.
Штамп магазина	


11. Свидетельство о приемке и поверке

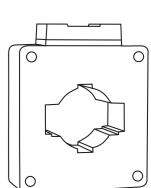
Штамп магазина

0,66 кВ типа ТТЭ-С модификации									
заводской номер соот	ветствует требованиям								
ГОСТ7746 и признан годным для эксплуатации.									
Дата изготовления «»	20r.								
Штамп технического контроля изготовителя									
Поверитель									
«»									
Дата продажи «»	_ 20r.								

ТРАНСФОРМАТОРЫ ТОКА **ИЗМЕРИТЕЛЬНЫЕ** на напряжение 0,66 кВ типа ТТЭ-C

Руководство по эксплуатации

Настоящее руководство по эксплуатации предназначено для ознакомления с устройством принципом действия и правилами эксплуатации трансформаторов тока на номинальное


напряжение 0,66 кВ типа ТТЭ-С (далее трансформаторы), отражения значений их параметров и характеристик, сведениях о гарантиях изготовителя, приемке и поверке трансформаторов.

- 1.1 Трансформаторы предназначены для контроля и передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в сетях переменного тока на номинальное напряжение 0,66 кВ частотой 50Гц.
- 1.2 Трансформаторы класса точности 0.2 и 0.5 применяются для измерения в схемах учета для расчета с потребителями; класса

точности 0,5S применяются для коммерческого учета электроэнергии; класса точности 1 при-меняются в схемах защиты, сигнализации управления.

2. Технические характеристики

- 2.1 Трансформаторы подразделяются по следующим основным признакам
- по принципу конструкции: шинные (модификация ТТЭ-А-С изготовлен со встроенной шиной)
- по виду изоляции: в пластмассовом корпусе;
- по числу ступеней трансформации: одноступенчатые;
- по числу вторичных обмоток: для измерения и учета;
- по числу коэффициентов трансформации: с одним коэффициентом трансформации 2.2 Основные параметры трансформаторов приведены в таблице №1

1

ТРАНСФОРМАТОРЫ ТОКА измерительные на напряжение 0,66 кВ типа ТТЭ-C

Руководство по эксплуатации

Настоящее руководство по эксплуатации предназначено для ознакомления с устройством, принципом действия и правилами эксплуатации трансформаторов тока на номинальное напряжение 0,66 кВ типа ТТЭ-С (далее трансформаторы), отражения значений их параме-

тров и характеристик, сведениях о гарантиях изготовителя, приемке и поверке трансформаторов.

1.1 Трансформаторы предназначены для контроля и передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в сетях переменного тока на номинальное напряжение 0,66 кВ частотой 50Гц. 1.2 Трансформаторы класса точности 0,2 и 0,5 применяются для измерения в схемах учета

для расчета с потребителями; класса

точности 0,5S применяются для коммерческого учета электроэнергии; класса точности 1 применяются в схемах защиты, сигнализации управления

2. Технические характеристики

- 2.1 Трансформаторы подразделяются по следующим основным признакам:
- по принципу конструкции: шинные (модификация ТТЭ-А-С изготовлен со встроенной
- по виду изоляции: в пластмассовом корпусе;
- по числу ступеней трансформации: одноступенчатые;
- по числу вторичных обмоток: для измерения и учета: по числу коэффициентов трансформации: с одним коэффициентом трансформации.
- 2.2 Основные параметры трансформаторов приведены в таблице №1

Ном. напряжение U

Ном. частота сети f , Гц

трансформатора 11...., А

мощности cos=0.8 BA Класс точности

вторичной обмотки, К Испытательное одноминутное

напряжение, кВ

Масса не более, кг

Наименование параметра

Наибольшее раб. напряжение, кВ

Номинальный первичный ток

Номинальный вторичный ток 12 . .

Ном. вторич. нагрузка S_{2ном} с коэф.

Ном. коэффициент трансформации n_{ном}, определяемый по формуле

Ном. коэф. трансформации безопасн

качестве первичной обмотки указаны в таблице 2.

	_
--	---

Рисунок 1 — Габаритные и установочные размеры модификации ТТЭ-А-С

Таблица №3

1500.

2000, 2500,

3000,

4000, 5000

15

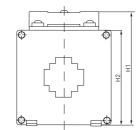
1.45

1,60 1,90 2,20

1200, 1500, 1600, 2000, 2250,

2500.

3000


15

0.85

0,94 1,10

1,16

Наименование	Размеры, мм									
Паименование	В	B1	Н	H1	L1	L2				
TT9-C-30	75	62	98	82	42	34				
TT9-C-60	101	62	127	111	42	34				
TT9-C-85	128	62	157	145	42	34				
TT9-C-100	144	62	154	138	42	34				
TT9-C-125	191	62	220	205	42	34				

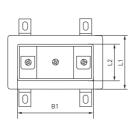


Рисунок 2 — Габаритные и установочные размеры модификации TT9-C-30, TT9-C-60, TT9-C-100, TT9-C-125, Таблица №3.1

						Разме	ры, мі	4						
Наименование	В	B1	B2	Н	H1	H2	L	L1	L2	D	D1			
ТТЭ-А-С от 5/5А до 300/5А	87	62	25	103	87	3	120	48	34	8	M8 x 16			
ТТЭ-А-С от 400/5А до 500/5А	87	62	26	103	87	6	118	48	34	13	M12 x 27			
ТТЭ-А-С от 600/5А до 1000/5А	87	62	26	103	87	12	118	48	34	13	M12 x 36			

Таблица №2

Модификация	TT9-A-C	TT9-C-30	TT3-C-60	TT9-C-85	TT9-C-100	TT9-C-125
Максимальный размер шины	-	30x10	60x20	82x30	100x10 80x30	125x10 125x57
Максимальный диаметр кабеля	-	20	45	80	60	125

Модификация трансформаторов

TT9-A-C TT9-C-30 TT9-C-60 TT9-C-85 TT9-C-100 TT9-C-125

0.66

0,72

50

750, 800.

200, 1500

15

0,85

0,89

1,02

500, 600, 750, 800, 1000

10, 15

0,60

0,25; 0,5; 0,59

I2n_{HOL}

5

3

20, 25, 30, 40, 50, 60,

100 120

125, 150,

200, 250,

300, 400,

500, 600

800, 1000

0,60

5, 10

100,

150,

200,

250.

300

5, 10

0,60

2.3 Размеры шины и кабеля, устанавливаемые в окне магнитопровода трансформаторов в

Таблица №1

Наименование параметра		Модификация трансформаторов							
наименование параметра	TT9-C-A	TT3-C-30	TT3-C-60	TT9-C-85	TT9-C-100	TT9-C-125			
Ном. напряжение U _{ном} , кВ	0,66								
Наибольшее раб. напряжение, кВ			0,	72					
Ном. частота сети f _{ном} , Гц		50							
Номинальный. первичный ток трансформатора I1 _{язы} , А	5,10, 15 20, 25, 30, 40, 50, 60, 75, 80, 100,120, 125, 150, 200, 250. 300, 400, 500, 600, 800, 1000	100, 150, 200, 250, 300	400, 500, 600, 750, 800, 1000	750, 800, 1000, 1200, 1500	800, 1000. 1200, 1500, 1600, 2000, 2250, 2500, 3000	1500, 2000, 2500, 3000, 4000, 5000			
Номинальный вторичный ток I2 _{ном} , А			!	5					
Ном. вторич. нагрузка $S_{2_{HoM}}$ с коэф. мощности соs=0,8 BA	5, 10	5, 10	10, 15	15	15	15			
Класс точности				,5; 0,5S					
Ном. коэффициент трансформации п _{ном} , определяемый по формуле			$n_{HOM} = \frac{I}{I}$	1n _{ном} 2n _{ном}					
Ном. коэф. трансформации безопасн. вторичной обмотки, К _{ном}				5					
Испытательное одноминутное напряжение, кВ			;	3					
Масса не более, кг	0,60	0,60	0,60	0,75 0,85 0,89 0,99 1,02	0,80 0.85 0,94 1,10 1,16	1,00 1,15 1,45 1,60 1,90 2,20			

2.3 Размеры шины и кабеля, устанавливаемые в окне магнитопровода трансформаторов в качестве первичной обмотки указаны в таблице 2.

Таблица №2

Модификация	TT9-A-C	TT9-C-30	TT9-C-60	TT9-C-85	TT9-C-100	TT9-C-125
Максимальный размер шины	-	30x10	60x20	82x30	100x10 80x30	125x10 125x57
Максимальный диаметр кабеля	-	20	45	80	60	125

2.4 Габаритные, установочные размеры приведены на рисунках 1 и 2 в таблице №3: 3.1

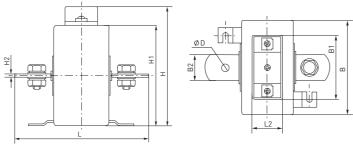
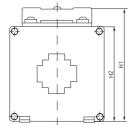



Рисунок 1 — Габаритные и установочные размеры модификации ТТЭ-А-С

Табпина №3

Наименование			Разме	ры, мм		
паименование	В	B1	Н	H1	L1	L2
TT9-C-30	75	62	98	82	42	34
TT3-C-60	101	62	127	111	42	34
TT9-C-85	128	62	157	145	42	34
TT9-C-100	144	62	154	138	42	34
TT9-C-125	191	62	220	205	42	34

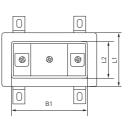


Рисунок 2 — Габаритные и установочные размеры модификации ТТЭ-С-30, ТТЭ-С-60, ТТЭ-С-100, ТТЭ-С-125. Табпина №3 1

		Размеры, мм									
Наименование	В	B1	B2	Н	H1	Н2	L	L1	L2	D	D1
ТТЭ-А-С от 5/5А до 300/5А	87	62	25	103	87	3	120	48	34	8	M8 x 16
ТТЭ-А-С от 400/5А до 500/5А	87	62	26	103	87	6	118	48	34	13	M12 x 27
ТТЭ-А-С от 600/5А до 1000/5А	87	62	26	103	87	12	118	48	34	13	M12 x 36

2.5 Метрологические характеристики

- 2.5.1 Метрологические характеристики установлены для следующих
- рабочих условий применения трансформаторов
- а) частота переменного тока (50 + 0,5) Гц;
- б) первичный ток в соответствии с таблицей!1 в) значение вторичной нагрузки в соответствии с таблицей 1;
- г) трансформаторы должны сохранять работоспособность при воздействии следующих факторов
- диапазон температуры окружающей среды от 45 С до + 50 С;
 максимальная относительная влажность воздуха при 25 С не более 98%.
- высота над уровнем моря, не более 2000м. 2.5.2 Пределы допускаемых погрешностей вторичных обмоток для измерений и учета в рабо-
- чих условиях применения по 2.5.1 при установившемся режиме должны соответствовать значениям. указанным в таблице 4.

Погрешности не должны выходить за пределы допускаемых областей. Для трансформаторов с номинальными вторичными нагрузками 5 и 10 ВА нижний предел вторичных нагрузок 3.75 ВА.

Таблица №4

Класс точности	Первичный	Предел до	опустимой по	Предел нагрузки,		
MIDUL TOUROUTE	ток, %	Токовой, % Угловой, мин		ой, мин	% ном. значения	
	5	±0,75	±30'	±0,9 срад		
0,2S	20	±0,35	±15'	±0,45 срад		
	100-120	±0,2	±10'	±0,3 срад		
	5	±1,5	±90'	±2,7 срад	25—100	
0,5	20	±0,75	±45'	±1,35 срад	25100	
	100-200	±0,5	±30'	±0,9 срад	23-100	
	1	±1,5	±90'	±2,7 срад		
0.55	0,5S 5 ±0,75 ±45' ±1,35 срад 20 ±0,5 ±30' ±0,9 срад	±45'	±1,35 срад			
0,05						
	100-200	±0,5	±30'	±0,9 срад		

3. Комплектность

- 3.1В комплект поставки входят:
- Трансформатортока-1шт.:
- Держатели для крепления на шине (кроме модификации ТТЭ-А-С) 2шт.;
- Винты для крепления на шине (кроме модификации ТТЭ-А-С) 2 шт.:
- Руководство по эксплуатации и паспорт 1 экз.

4. Устройство и принцип действия

- 4.1 Конструкцуия трансформаторов представляет собой кольцевой магнитопровод с первичной и вторичной обмотками, заключенный в пластмассовый изолирующий корпус. В качестве первичной обмотки используют шину или кабель, устанавливаемые в окне магнитопровода трансформатора.
- 4.2 Трансформаторы обеспечивают преобразование переменного тока первичной обмотки в переменный ток для измерения с помощью стандартных измерительных приборов от цепи высокого напряжения.

4

2.5 Метрологические характеристики

- 2.5.1 Метрологические характеристики установлены для следующих
- рабочих условий применения трансфор
- а) частота переменного тока (50 + 0.5) Гц:
- б) первичный ток в соответствии с таблицей!1
- в) значение вторичной нагрузки в соответствии с таблицей 1:
- г) трансформаторы должны сохранять работоспособность при воздействии следующих факторов:
- диапазон температуры окружающей среды от 45 C до + 50 C; - максимальная относительная влажность воздуха при 25 С не более 98%
- высота над уровнем моря, не более 2000м.
- 2.5.2 Пределы допускаемых погрешностей вторичных обмоток для измерений и учета в рабочих условиях применения по 2.5.1 при установившемся режиме должны соответствовать значениям. указанным в таблице 4.

Погрешности не должны выходить за пределы допускаемых областей. Для трансформаторов с номинальными вторичными нагрузками 5 и 10 ВА нижний предел вторичных нагрузок 3.75 ВА.

Таблица №4

3

Класс точности	Первичный ток, %	Предел допустимой погрешности			Предел нагрузки,
		Токовой, %	Углов	ой, мин	% ном. значения
0,25	5	±0,75	±30'	±0,9 срад	25—100
	20	±0,35	±15'	±0,45 срад	
	100—120	±0,2	±10'	±0,3 срад	
0,5	5	±1,5	±90'	±2,7 срад	
	20	±0,75	±45'	±1,35 срад	
	100-200	±0,5	±30'	±0,9 срад	
0,5S	1	±1,5	±90'	±2,7 срад	
	5	±0,75	±45'	±1,35 срад	
	20	±0,5	±30'	±0,9 срад	
	100-200	±0,5	±30'	±0,9 срад	

3. Комплектность

- 3.1В комплект поставки входят:
- Трансформатортока-1шт.;
- Держатели для крепления на шине (кроме модификации ТТЭ-A-C) 2шт.;
- Винты для крепления на шине (кроме модификации ТТЭ-А-С) 2 шт.;
 Руководство по эксплуатации и паспорт 1 экз.

4. Устройство и принцип лействия

- 4.1 Конструкцуия трансформаторов представляет собой кольцевой магнитопровод с первич ной и вторичной обмотками, заключенный в пластмассовый изолирующий корпус. В качестве первичной обмотки используют шину или кабель. устанавливаемые в окне магнитопровода транс-
- 4.2 Трансформаторы обеспечивают преобразование переменного тока первичной обмотки в ный ток для измерения с помощью стандартных измерительных приборов от цепи высокого напряжения.

5. Монтаж и эксплуатация

- 5.1 Подготовка трансформатора к использованию
- 5.1.1 Трансформаторы не требуют специальной подготовки к эксплуатации кроме внешнего осмотра, подтверждающего отсутствие видимых повреждений корпуса и коррозии контактных выводов вторичной обмотки, загрязнения его поверхности, наличие четкой маркировки и свидетельства о поверке. Пригодность трансформатора к эксплуатации в данной сети должна быть установлена посредством сравнения с техническими данными трансформатора
- 5.1.2 Монтажтрансформаторов.
- 5.1.2.1 При монтаже и эксплуатации трансформаторов необходимо
- соблюдать "Правила техники безопасности при эксплуатации электроустановок до 1000В". а также указания данного руководства по
- 5.1.2.2 Монтаж, подключение и пуск в эксплуатацию трансформатора должен осуществлять только квалифицированный персонал
- 5.1.2.3 Установка трансформаторов осуществляется:
- -на монтажной панели в щитовом оборудовании при помощи держателей (рис.3);
- -с помощью винтов на шине, относительно которой будут производиться измерения
- 5.1.2.4 Шина или кабель, проходящие через окно трансформатора, должны быть закреплены
- таким образом, чтобы ось шины или кабеля совпадала с осью окна трансформатора тока. 5.1.2.5 Стороны трансформаторов, соответствующие входу и выходу первичной обмотки обозначаются Л1 и Л2, выводы вторичной обмотки обозначаются И1 и И2.

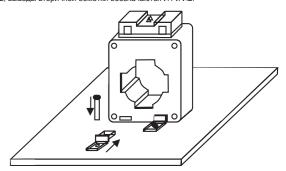


Рисунок 3 — Установка трансформаторов на монтажной панели в щитовом оборудовании при

- 5.2 Условия эксплуатации:
- высота над уровнем моря не более 2000м;
- рабочее положение любое:
- в части стойкости к внешним воздействующим факторам при нормальных условиях эксплутации трансформаторы соответствуют группе М4 по ГОСТ 17516.1.

5. Монтаж и эксплуатация

- 5.1 Подготовка трансформатора к использованию
- 5.1.1 Трансформаторы не требуют специальной подготовки к эксплуатации кроме внешнего осмотра, подтверждающего отсутствие видимых повреждений корпуса и коррозии контактных выводов вторичной обмотки, загрязнения его поверхности, наличие четкой маркировки и свидетельства о поверке. Пригодность трансформатора к эксплуатации в данной сети должна быть установлена посредством сравнения с техническими данными трансформатора.
- 5.1.2 Монтажтрансформаторов.
- 5.1.2.1 При монтаже и эксплуатации трансформаторов необходимо
- соблюдать "Правила техники безопасности при эксплуатации
- электроустановок до 1000В", а также указания данного руководства по эксплуатации.
- 5.1.2.2 Монтаж, подключение и пуск в эксплуатацию трансформатора должен осуществлять только квалифицированный персонал.
- 5.1.2.3 Установка трансформаторов осуществляется:
- -на монтажной панели в щитовом оборудовании при помощи держателей (рис.3);
- с помощью винтов на шине, относительно которой будут производиться измере 5.1.2.4 Шина или кабель, проходящие через окно трансформатора, должны быть закреплены
- гаким образом, чтобы ось шины или кабеля совпадала с осью окна трансформатора тока. 5.1.2.5 Стороны трансформаторов, соответствующие входу и выходу первичной обмотки обо-

Рисунок 3 — Установка трансформаторов на монтажной панели в щитовом оборудовании при помощи держателей.

5.2 Условия эксплуатации:

- высота над уровнем моря не более 2000м:
- рабочее положение любое;
- в части стойкости к внешним воздействующим факторам при нормальных условиях эксплутации трансформаторы соответствуют группе М4 по ГОСТ 17516.1.