LCD / LCM SPECIFICATION

WINSTAR Display Co.,Ltd. 華凌光電股份有限公司

Winstar Display Co., LTD 華凌光電股份有限公司

WEB: https://www.winstar.com.tw E-mail: sales@winstar.com.tw

SPECIFICATION

CUSTOMER :	
MODULE NO.:	WG128128A-TFH-VZ#

APPROVED	BY:
----------	-----

(FOR CUSTOMER USE ONLY)

PCB VERSION:

DATA:

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
15			

VERSION	DATE	REVISED PAGE NO.		SUMMARY	
K	2019/12/17		_	Precautions CD Modules	in

MODLE NO:

華凌光電股份有限公司

RECORDS OF REVISION

DOC. FIRST ISSUE

VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2007/07/12		First issue
A	2008/09/23		Modify backlight
			information.
В	2010/01/13		Modify RA6963 IC
С	2013/06/25		Remove IC information
		_	Modify B/L information
D	2014/05/22	(C	Modify B/L information
Е	2016/01/27		Modify Precautions in use
			of LCD Modules
			& Static electricity test
F	2016/03/29		Modify Response Time
G	2017/02/27		Modify Backlight
			Information
H	2017/03/01		Modify VIL
T	2018/07/03		Modify PCB
J	2019/08/27		Modify Material List of
			Components for RoHs
K	2019/12/17		Modify Precautions in use
			of LCD Modules

Contents

- 1.Module Classification Information
- 2. Precautions in use of LCD Modules
- 3.General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7.Interface Pin Function
- 8. Contour Drawing & Block Diagram
- 9. Reliability
- 10.Backlight Information
- 11.Inspection specification
- 12. Material List of Components for RoHs
- 13.Recommendable Storage

1. Module Classification Information

① Brand: WINSTAR DISPLAY CORPORATION

② Display Type: H→Character Type, G→Graphic Type, X→TAB Type, O→COG Type

③ Display Font: 128 * 128 dot

Model serials no.

 \bigcirc Backlight Type: N \rightarrow Without backlight T \rightarrow LED, White L \rightarrow LED, Full color

 $B\rightarrow EL$, Blue green $A\rightarrow LED$, Amber $J\rightarrow DIP$ LED, Blue $D\rightarrow EL$, Green $R\rightarrow LED$, Red $K\rightarrow DIP$ LED, White

W→EL, White O→LED, Orange E→DIP LED, Yellow Green

 $M\rightarrow$ EL, Yellow Green $G\rightarrow$ LED, Green $H\rightarrow$ DIP LED, Amber $F\rightarrow$ CCFL, White $P\rightarrow$ LED, Blue $I\rightarrow$ DIP LED, Red

 $Y\rightarrow$ LED, Yellow Green $X\rightarrow$ LED, Dual color $G\rightarrow$ LED, Green $C\rightarrow$ LED, Full color

© LCD Mode : B→TN Positive, Gray V→FSTN Negative, Blue

N→TN Negative, T→FSTN Negative, Black

L→VA Negative D→FSTN Negative (Double film)

 $H \rightarrow HTN$ Positive, Gray $F \rightarrow FSTN$ Positive $I \rightarrow HTN$ Negative, Black $K \rightarrow FSC$ Negative $U \rightarrow HTN$ Negative, Blue $S \rightarrow FSC$ Positive

M→STN Negative, Blue E→ISTN Negative, Black
G→STN Positive, Gray C→CSTN Negative, Black
Y→STN Positive, Yellow Green A→ASTN Negative, Black

② LCD Polarize A→Reflective, N.T, 6:00 H→Transflective, W.T,6:00

Type/ Temperature D→Reflective, N.T, 12:00 K→Transflective, W.T,12:00

range/ View G→Reflective, W. T, 6:00 C→Transmissive, N.T,6:00

direction J→Reflective, W. T, 12:00 F→Transmissive, N.T,12:00

B→Transflective, N.T,6:00 I→Transmissive, W. T, 6:00 E→Transflective, N.T.12:00 L→Transmissive, W.T,12:00

Special Code
V: Build in Negative Voltage

Z:ICNT7086

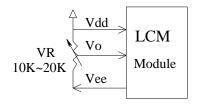
#:Fit in with the ROHS Directions and regulations

2.Precautions in use of LCD Modules

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.
- (8) Winstar have the right to change the passive components, including R3,R6 & backlight adjust resistors. (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.)
- (9) Winstar have the right to change the PCB Rev. (In order to satisfy the supplying stability, management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Winstar have the right to modify the version.)
- (10) To ensure the stability of the display screen, please apply screen saver after showing 30 mins of fixed display content.
- (11)Please heat up a little the tape sticking on the components when removing it; otherwise the components might be damaged.

3.General Specification

Item	Dimension	Unit
Number of dots	128 x 128	_
Module dimension	85.0 x 100.0 x 14.5 (MAX)	mm
View area	62.0 x 62.0	mm
Active area	55.01 x 55.01	mm
Dot size	0.40 x 0.40	mm
Dot pitch	0.43 x 0.43	mm
LCD type	FSTN Positive Transflective (In LCD production, It will occur slightly color of can only guarantee the same color in the same be	
Duty	1/128	
View direction	6 o'clock	
Backlight Type	LED, White	
IC	RA6963	

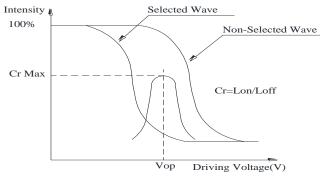

4.Absolute Maximum Ratings

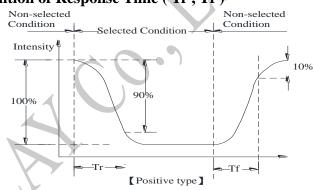
Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	Тор	-20	_	+70	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tst	-30	_	+80	$^{\circ}\!\mathbb{C}$
Input Voltage	V _{IN}	-0.3	_	V _{DD} +0.3	V
Supply Voltage For Logic	$ m V_{DD} ext{-}V_{SS}$	-0.3	_	+7.0	V

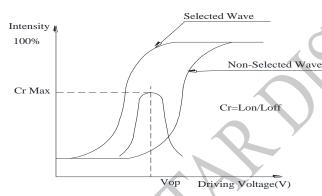
5.Electrical Characteristics

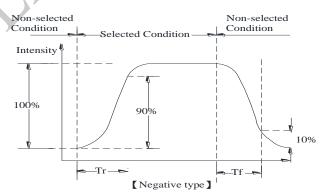
Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	_	3.0	_	5.5	V
		Ta=-20°C	_	_	18.6	V
Supply Voltage For LCD	V_{DD} - V_{0}	Ta=25°℃	16.2	16.35	16.5	V
*Note		Ta=70°C	15.2	_	<- X	V
Input High Volt.	$V_{ m IH}$	_	0.8V _{DD}	_	V_{DD}	V
Input Low Volt.	V_{IL}	_	0	^− C	$0.15~\mathrm{V_{DD}}$	V
Output High Volt.	V_{OH}	_	V _{DD} -0.3		$V_{ m DD}$	V
Output Low Volt.	V_{OL}	-	0	_	0.3	V
Supply Current	I_{DD}	T		45	50	mA

^{*} Note: Please design the VOP adjustment circuit on customer's main board

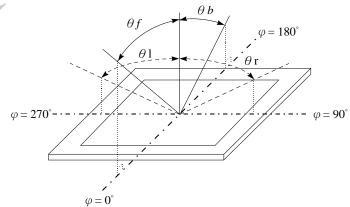

6.Optical Characteristics


Item	Symbol	Condition	Min	Тур	Max	Unit
	θ	CR≧2	0	_	30	$\phi = 180^{\circ}$
View Angle	θ	CR≧2	0	_	60	$\phi = 0^{\circ}$
	θ	CR≧2	0	_	45	$\phi = 90^{\circ}$
	θ	CR≧2	0	_	45	$\phi = 270^{\circ}$
Contrast Ratio	CR	_	_	5	_	_
Response Time	T rise	_	_	200	300	ms
	T fall	_	_	250	350	ms


Definition of Operation Voltage (Vop)



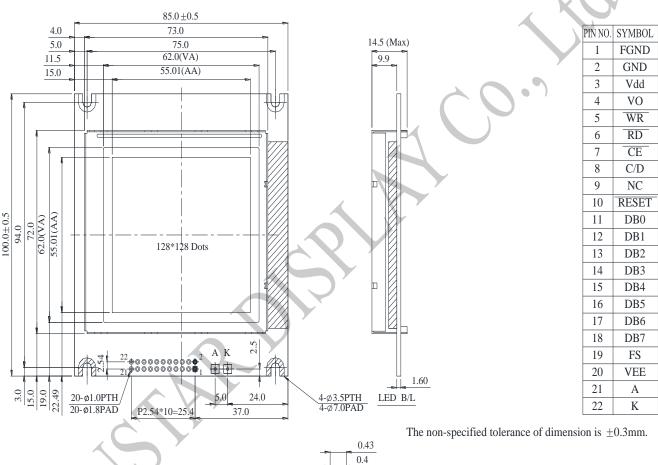
Definition of Response Time (Tr, Tf)

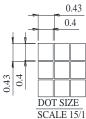

Conditions:

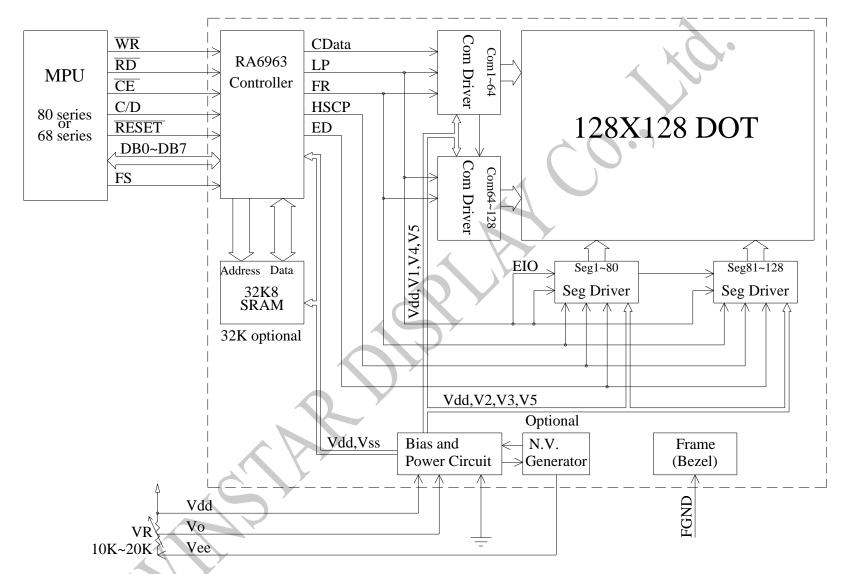
Operating Voltage: Vop

Viewing Angle(θ , φ): 0° , 0°

Frame Frequency : 64 HZ Driving Waveform : 1/N duty , 1/a bias


Definition of viewing angle ($CR \ge 2$)




7.Interface Pin Function

Pin No.	Symbol	Level	Description		
1	FGND	_	Frame ground		
2	GND	0V	Ground		
3	Vdd	_	Power supply for logic		
4	Vo		Power supply for LCD driver		
5	/WR	L	Data write. Write data into RA6963 when /WR = L		
6	/RD	L	Data read. Read data from RA6963 when RD = L		
7	/CE	L	Chip enable the controller RA6963		
8	C/D	H/L	WR=L, C/D=H: Command Write		
9	NC	_	No connection		
10	/RESET	L	Reset signal		
11	DB0	H/L	Data bus line		
12	DB1	H/L	Data bus line		
13	DB2	H/L	Data bus line		
14	DB3	H/L	Data bus line		
15	DB4	H/L	Data bus line		
16	DB5	H/L	Data bus line		
17	DB6	H/L	Data bus line		
18	DB7	H/L	Data bus line		
19	FS	H/L	Pins for selection of font; H: 6 * 8, L: 8 * 8		
20	Vee	_	Negative Voltage Output		
21	A	_	Power supply for B/L +		
22	K		Power supply for B/L—		

8.Contour Drawing & Block Diagram

External contrast adjustment.

9.Reliability

Content of Reliability Test (Wide temperature, -20°C~70°C)

Environmental Test						
Test Item	Content of Test	Test Condition	Not e			
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2			
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C 200hrs	1,2			
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 200hrs				
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1			
High Temperature/ Humidity storage	The module should be allowed to stand at 60 °C,90% RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60°C,90%RH 96hrs	1,2			
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles				
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3			
Static electricity test	Endurance test applying the electric stress to the terminal.	VS= ± 600 V(contact), ± 800 v(air), RS= 330Ω CS= 150 pF 10 times				

Note1: No dew condensation to be observed.

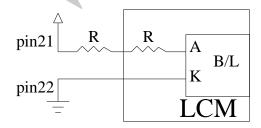
Note 2: The function test shall be conducted after 4 hours storage at the normal ${\bf r}$

Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

10.Backlight Information

Specification


PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITION
Supply Current	ILED	30	96	120	mA	V=3.5V(Note 1)
Supply Voltage	V	3.4	3.5	3.6	V	- x
Reverse Voltage	VR	_	_	5	V	-
Luminance	IV	880	1100	_	CD/M ²	ILED=96mA
(Without LCD)						
LED Life Time			-077			ILED=96mA
(For Reference		_	50K		Hr.	25°C,50-60%RH,
only)						(Note 2)
Color	White		. (

Note: The LED of B/L is drive by current only, drive voltage is for reference only. drive voltage can make driving current under safety area (current between minimum and maximum).

Note 1: Supply current minimum value is only for reference since LED brightness efficiency keeps enhancing. Current consumption becomes less and less to achieve the same luminance.

Note 2:50K hours is only an estimate for reference.

2.Drive from pin21,pin22

11.Inspection specification

NO	Item	Criterion				AQL			
	Missing vertical, horizontal segment, segment contrast defect.								
		Missing character, dot or icon.							
		Display malfunction.							
01	Electrical	No function or no display.							
01	Testing	fications.	0.65						
		LCD viewing angle defect.							
		Mixed product t	ypes.			,			
		Contrast defect.							
	Black or	2.1 White and h	laak a n ota	on display < 0.25	mm, no more than				
02	white spots on		-		min, no more man	2.5			
02	LCD (display	three white or bl	-	-	s or lines within 3mm	2.3			
	only)	2.2 Delisely space	ced. No III	ore man two spots	of times within 5iiiii				
		3.1 Round type : As following drawing							
		$\Phi = (x + y) / 2$		SIZE	Acceptable Q TY				
				Ф≦0.10	Accept no dense				
				$0.10 < \Phi \le 0.20$	2				
		4		$0.20 < \Phi \le 0.25$	1	2.5			
				0.25 < Ф	0	2.3			
	LCD black	X							
	spots, white	₩_₩	<u>↓</u>						
03	spots, winte	• .	¥ Y						
03	contamination		T						
	(non-display)	3.2 Line type : (As follow	ing drawing)					
	(Length	Width	Acceptable Q TY				
		- /¥ w		W≦0.02	Accept no dense				
1		→ i i H←	L≦3.0	$0.02 < W \le 0.03$		2.5			
		i.e.	L≦2.5	$0.03 < W \le 0.05$		2.5			
				0.05 < W	As round type				
			L	1					

04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.	Size Φ $Φ \le 0.20$ $0.20 < Φ \le 0.50$ $0.50 < Φ \le 1.00$ $1.00 < Φ$ Total Q TY	Acceptable Q TY Accept no dense 3 2 0 3	2.5
----	----------------------	---	---	---	-----

NO	Item	Criterion					
05	Scratches	Follow NO.3 LCD black spots, white spots, contamination					
		Symbols Define: x: Chip length y	· Chip width	in thickness			
			: Chip width z: Ch Glass thickness a: LC	ip thickness			
		L: Electrode pad length		D side length			
		L. Electrode pad length					
		6.1 General glass chip:	:				
		6.1.1 Chip on panel sur	face and crack between	panels:			
		z: Chip thickness	y: Chip width	x: Chip length			
06	Chipped	Z≦1/2t	Not over viewing area	x ≤ 1/8a	2.5		
	glass	$1/2t < z \le 2t$	Not exceed 1/3k	x ≤ 1/8a			
		⊙ If there are 2 or more 6.1.2 Corner crack:	e chips, x is total length	of each chip.			
		z: Chip thickness	y: Chip width	x: Chip length			
		Z≦1/2t	Not over viewing area	$x \le 1/8a$			
		$1/2t < z \le 2t$	Not exceed 1/3k	x ≤ 1/8a			
		⊙ If there are 2 or more	e chips, x is the total len	gth of each chip.			

NO	Item	Criterion			AQL			
		Symbols:						
		•	ip width z: Chip	thickness				
			-	side length				
		L: Electrode pad length		•				
		6.2 Protrusion over termina	1:					
		6.2.1 Chip on electrode pad	:					
06	Glass		≦ 1/8a	z : Chip thickness $z \le t$	2.5			
		y: Chip width	x: Chip length	z: Chip thickness				
		y≦ L	x ≤ 1/8a	$0 < z \le t$				
		⊙ If the chipped area touch						
		remain and be inspected acc						
	~	-	_	<u>-</u>				
		⊙ If the product will be heat sealed by the customer, the alignment mark not be damaged.						
		6.2.3 Substrate protuberance and internal crack.						
		X X	y: width	v. langth				
			$y \le 1/3L$	x : length $x \le a$				
	-		<i>y</i> = 1/312	Λ = u				

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extensive crack is not acceptable.	2.5
		8.1 Illumination source flickers when lit.	0.65
00	Backlight	8.2 Spots or scratched that appear when lit must be judged.	2.5
08	elements	Using LCD spot, lines and contamination standards.	
		8.3 Backlight doesn't light or color wrong.	0.65
		9.1 Bezel may not have rust, be deformed or have fingerprints,	2.5
09	Bezel	stains or other contamination.	
		9.2 Bezel must comply with job specifications.	0.65
		10.1 COB seal may not have pinholes larger than 0.2mm or	2.5
		contamination.	
		10.2 COB seal surface may not have pinholes through to the IC.	2.5
		10.3 The height of the COB should not exceed the height	0.65
		indicated in the assembly diagram.	
		10.4 There may not be more than 2mm of sealant outside the	2.5
		seal area on the PCB. And there should be no more than three	
		places.	
		10.5 No oxidation or contamination PCB terminals.	2.5
10	PCB、COB	10.6 Parts on PCB must be the same as on the production	0.65
		characteristic chart. There should be no wrong parts, missing	
		parts or excess parts.	
		10.7 The jumper on the PCB should conform to the product	0.65
		characteristic chart.	_
		10.8 If solder gets on bezel tab pads, LED pad, zebra pad or	2.5
		screw hold pad, make sure it is smoothed down.	
		10.9 The Scraping testing standard for Copper Coating of PCB	2.5
	~ ()	X	
	1	\mathbf{Y} $\mathbf{X} * \mathbf{Y} \leq 2\mathbf{m}\mathbf{m}^2$	
		11.1 No un-melted solder paste may be present on the PCB.	2.5
1		11.2 No cold solder joints, missing solder connections,	2.5
11	Soldering	oxidation or icicle.	2.3
Н	Soldering	11.3 No residue or solder balls on PCB.	2.5
		11.4 No short circuits in components on PCB.	0.65
		11.7 110 short chedits in components on I CD.	0.05

NO	Item	Criterion	AQL
		12.1 No oxidation, contamination, curves or, bends on interface	2.5
		Pin (OLB) of TCP.	
		12.2 No cracks on interface pin (OLB) of TCP.	0.65
		12.3 No contamination, solder residue or solder balls on product.	2.5
		12.4 The IC on the TCP may not be damaged, circuits.	2.5
		12.5 The uppermost edge of the protective strip on the interface	2.5
		pin must be present or look as if it cause the interface pin to sever.	
	General	12.6 The residual rosin or tin oil of soldering (component or chip	2.5
12		component) is not burned into brown or black color.	
	appearance	12.7 Sealant on top of the ITO circuit has not hardened.	2.5
		12.8 Pin type must match type in specification sheet.	0.65
		12.9 LCD pin loose or missing pins.	0.65
		12.10 Product packaging must the same as specified on packaging	0.65
		specification sheet.	
		12.11 Product dimension and structure must conform to product	0.65
		specification sheet.	
		12.12 Visual defect outside of VA is not considered to be rejection.	0.65

12.Material List of Components for

RoHs

1. WINSTAR Display Co., Ltd hereby declares that all of or part of products (with the mark "#"in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

Material	Cd	Pb	Hg	Cr6+	PBB	PBDE	DEHP	BBP	DBP	DIBP
Limited	100	1000	1000	1000	1000	1000	1000	1000	1000	1000
Value ppm ppm ppm ppm ppm ppm ppm ppm ppm pp										
Above limited value is set up according to RoHS.										

- 2.Process for RoHS requirement : (only for RoHS inspection)
 - (1) Use the Sn/Ag/Cu soldering surface; the surface of Pb-free solder is rougher than we used before.
 - (2) Heat-resistance temp. :

Reflow: 250°C,30 seconds Max.;

Connector soldering wave or hand soldering : 320°C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : 235 ± 5 °C;

Recommended customer's soldering temp. of connector: 280°C, 3 seconds.

13. Recommendable Storage

- 1. Place the panel or module in the temperature 25°C±5°C and the humidity below 65% RH
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.

winstar <u>LCM Samp</u> Todule Number:		Feedback Sheet Page: 1
1 · Panel Specification :		Tuge. I
1. Panel Type:	Pass	□ NG,
2. View Direction:	Pass	□ NG ,
3. Numbers of Dots:	☐ Pass	□ NG ,
4. View Area:	☐ Pass	□ NG ,
5. Active Area:	☐ Pass	□ NG ,
6. Operating Temperature :	Pass	□ NG ,
7. Storage Temperature :	☐ Pass	□ NG,
8. Others:		
2 · Mechanical Specification :		
1. PCB Size:	☐ Pass	□ NG,
2. Frame Size:	☐ Pass	□ NG,
3. Materal of Frame:	☐ Pass	□ NG,
4. Connector Position:	☐ Pass	□ NG,
5. Fix Hole Position:	☐ Pass	□ NG,
6. Backlight Position:	☐ Pass	□ NG,
7. Thickness of PCB:	☐ Pass	□ NG ,
8. Height of Frame to PCB:	☐ Pass	□ NG ,
9. Height of Module:	Pass	□ NG,
10. Others:	☐ Pass	□ NG ,
3 · Relative Hole Size :		
1. Pitch of Connector :	☐ Pass	□ NG ,
2. Hole size of Connector:	Pass	□ NG ,
3. Mounting Hole size:	Pass	□ NG ,
4. Mounting Hole Type:	Pass	□ NG ,
5. Others:	Pass	□ NG ,
4 · Backlight Specification :		
1. B/L Type:	☐ Pass	☐ NG ,
2. B/L Color:	Pass	□ NG ,
3. B/L Driving Voltage (Refere	ence for LED	Гуре):
4. B/L Driving Current:	Pass	□ NG ,
5. Brightness of B/L:	Pass	□ NG ,
6. B/L Solder Method:	Pass	□ NG ,
7. Others:	Pass	☐ NG ,
	>> Go to	page 2 <<

winstar Module Number :		Page: 2
5 · Electronic Characteristics of		
1. Input Voltage:	Pass	□ NG ,
2. Supply Current:	Pass	□ NG ,
3. Driving Voltage for LCD:	Pass	□ NG ,
4. Contrast for LCD:	Pass	□ NG ,
5. B/L Driving Method:	Pass	□ NG ,
6. Negative Voltage Output:	Pass	□ NG ,
7. Interface Function:	Pass	□ NG ,
8. LCD Uniformity:	Pass	□ NG ,
9. ESD test:	Pass	□ NG ,
10. Others:	Pass	□ NG ,
6 · <u>Summary</u> :		
	40	
		\mathcal{A}
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
4,1		
15,		
A Property of the second of th		
Sales signature :		
Customer Signature:		Date : / /