

Colophon
© 2022 Raspberry Pi Ltd

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).

build-date: 2022-09-09

build-version: ad0bb46-clean

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties

expressed in them.

The Picamera2 Library

Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Table of contents
Colophon . 1

Legal disclaimer notice . 1

1. Introduction. 4

2. Getting started . 5

2.1. Requirements. 5

2.2. Installation and updating . 5

2.3. A first example . 6

2.4. Picamera2’s high-level API. 7

2.5. Additional software. 7

2.5.1. OpenCV . 8

2.5.2. TensorFlow Lite . 8

2.5.3. FFmpeg . 8

2.6. Further examples . 8

3. Preview windows . 9

3.1. Preview window parameters . 9

3.2. Preview window implementations . 9

3.2.1. QtGL preview . 9

3.2.2. DRM/KMS preview. 10

3.2.3. Qt preview . 10

3.2.4. NULL preview . 11

3.3. Starting and stopping previews. 11

3.4. Remote preview windows . 12

3.5. Further preview topics . 12

3.6. Further examples . 13

4. Configuring the camera. 14

4.1. Generating and using a camera configuration . 14

4.2. Configurations in more detail . 14

4.2.1. General configuration parameters. 15

4.2.2. Stream configuration parameters . 18

4.2.3. Configurations and runtime camera controls. 20

4.3. Configuration objects . 21

4.4. Further examples . 23

5. Camera controls and properties. 24

5.1. Camera controls . 24

5.1.1. How to set camera controls . 24

5.1.2. Object syntax for camera controls. 25

5.2. Camera properties . 26

5.3. Further examples . 26

6. Capturing images and requests . 28

6.1. Capturing images . 28

6.1.1. Capturing arrays. 28

6.1.2. Capturing PIL images . 29

6.1.3. Switching camera mode and capturing . 29

6.1.4. Capturing straight to files and file-like objects. 30

6.2. Capturing metadata . 30

6.3. Capturing multiple images at once . 31

6.4. Capturing requests . 32

6.5. Asynchronous capture . 33

6.6. High-level capture API . 35

6.6.1. start_and_capture_file . 35

6.6.2. start_and_capture_files . 35

6.7. Further examples . 36

7. Capturing videos . 37

7.1. Encoders . 37

7.1.1. H264Encoder . 38

The Picamera2 Library

Table of contents 2

7.1.2. MJPEGEncoder . 39

7.2. Outputs. 39

7.2.1. FileOutput . 39

7.2.2. FfmpegOutput . 40

7.2.3. CircularOutput . 40

7.3. High-level video recording API. 41

7.4. Further examples . 42

8. Advanced topics. 43

8.1. Display overlays . 43

8.2. The event loop. 44

8.2.1. Using the event loop callbacks. 44

8.2.2. Dispatching tasks into the event loop . 45

8.3. Pixel formats and memory considerations . 47

8.4. Buffer allocations and queues. 48

8.5. Using the camera in Qt applications. 49

9. Application notes . 54

9.1. Streaming to a network . 54

9.2. Output using FFmpeg . 54

9.2.1. HLS live stream . 54

9.2.2. MPEG-DASH live stream . 54

9.2.3. Sending an MPEG-2 transport stream to a socket. 55

9.3. Multiple outputs . 55

9.4. Manipulate camera buffers in place . 56

Appendix A: Pixel and image formats . 57

Appendix B: Camera configuration parameters . 59

Appendix C: Camera controls . 61

Appendix D: Camera properties . 65

The Picamera2 Library

Table of contents 3

Chapter 1. Introduction
Picamera2 is a Python library that gives convenient access to the camera system of the Raspberry Pi. It is designed for

cameras connected with the flat ribbon cable directly to the connector on the Raspberry Pi itself, and does not support

any other kinds of camera, such as those connected via USB or over networks.

Figure 1. A Raspberry

Pi with a supported

camera

Picamera2 is built on top of the open source libcamera project, which provides support for complex camera systems in

Linux. Picamera2 directly uses the Python bindings supplied by libcamera, although the Picamera2 API provides access

at a higher level. Most users will find it significantly easier to use for Raspberry Pi applications than libcamera’s own

bindings, and Picamera2 is tuned specifically to address the capabilities of the Raspberry Pi’s built-in camera and

imaging hardware.

Picamera2 is the replacement for the legacy PiCamera Python library. It provides broadly the same facilities, although

many of these capabilities are exposed differently. Picamera2 provides a very direct and more accurate view of the Pi’s

camera system, and makes it easy for Python applications to make use of them.

Those still using Raspberry Pi OS Legacy, or using the legacy camera stack, should continue to use the old PiCamera

library.

 NOTE

This document assumes general familiarity with Raspberry Pis and Python programming. A working understanding

of images and how they can be represented as a two-dimensional array of pixels will also be highly beneficial. For a

deeper understanding of Picamera2, some basic knowledge of Python’s numpy library will be helpful. For some

more advanced use-cases, an awareness of OpenCV (the Python cv2 module) will also be useful.

Software version

This manual describes Picamera2 version 0.3.3 which is at the time of writing the most up-to-date release.

The Picamera2 Library

Chapter 1. Introduction 4

Chapter 2. Getting started

2.1. Requirements

Picamera2 is designed for systems running either Raspberry Pi OS version or Raspberry Pi OS Lite, using a Bullseye or

later image. It is pre-installed in current images downloaded from the Raspberry Pi website, or can be installed using the

Raspberry Pi Imager tool. Users with older images should consider updating them or proceed to the installation

instructions.

Picamera2 can operate in a headless manner, not requiring an attached screen or keyboard. When first setting up such

a system we would recommend attaching a keyboard and screen if possible, as it can make trouble-shooting easier.

Raspberry Pi OS Bullseye and later images by default run the libcamera camera stack, which is required for Picamera2.

You can check that libcamera is working by opening a command window and typing:

libcamera-hello

You should see a camera preview window for about five seconds. If you do not, please refer to the Raspberry Pi camera

documentation.

Using lower-powered devices

Some lower-powered devices, such as the Raspberry Pi Zero, are generally much slower at running software like X

Windows. Correspondingly, performance may be poor trying to run the camera system with a preview window that has

to display images through the X Windows display stack.

On such devices we would recommend either not displaying the images, or displaying them without X Windows. The Pi

can be configured to boot to the console (and not X Windows) using the raspi-config tool, or if you are running X

Windows it can temporarily be suspended by holding the Ctrl+Alt+F1 keys (and use Ctrl+Alt+F7 to return again).

2.2. Installation and updating

As of mid-September 2022, Picamera2 is pre-installed in all Raspberry Pi OS images. You can update it with a full

system update, or via the terminal with:

sudo apt install -y python3-picamera2

For Raspberry Pi OS users this will contain all the X Windows and GUI dependencies, but these will be omitted in

Raspberry Pi OS Lite. If OS Lite users wish to use these features, they should run:

sudo apt install -y python3-pyqt5 python3-opengl

If you encounter a system without Picamera2 pre-installed, please use:

sudo apt install -y python3-picamera2

to install it with all the X-Windows and GUI dependencies, or:

The Picamera2 Library

2.1. Requirements 5

https://www.raspberrypi.com/documentation/accessories/camera.html#installing-a-raspberry-pi-camera
https://www.raspberrypi.com/documentation/accessories/camera.html#installing-a-raspberry-pi-camera
https://www.raspberrypi.com/documentation/computers/configuration.html
https://www.raspberrypi.com/documentation/computers/configuration.html

sudo apt install -y python3-picamera2 --no-install-recommends

to install without them.

Picamera2 can also be installed using pip. First ensure you have the necessary dependencies:

sudo apt install -y python3-libcamera python3-kms++
sudo apt install -y python3-prctl libatlas-base-dev ffmpeg python3-pip
sudo apt install -y python3-pyqt5 python3-opengl # only if you want GUI features
pip3 install numpy --upgrade

and then run:

pip3 install picamera2

Configuring the /boot/config.txt file

Normally no changes should be required to the /boot/config.txt file from the one supplied when the operating system

was installed.

Some users, for some applications, may find themselves needing to allocate more memory to the camera system. In

this case, please consider increasing the amount of available CMA memory.

In the past, legacy camera stack users may have increased the amount of gpu_mem to enable the old camera system to

run. Picamera2 does not use this type of memory, so any such lines should be deleted from your /boot/config.txt file as

they will simply cause system memory to be wasted.

2.3. A first example

The following script will:

1. Open the camera system

2. Generate a camera configuration suitable for preview

3. Configure the camera system with that preview configuration

4. Start the preview window

5. Start the camera running

6. Wait for two seconds and capture a JPEG file (still in the preview resolution)

 NOTE

Users of Raspberry Pi 3 or earlier devices will need to enable Glamor in order for this example script using X

Windows to work. To do this, run sudo raspi-config in a command window, choose Advanced Options and then

enable Glamor graphic acceleration. Finally reboot your device.

X-Windows users should enter:

from picamera2 import Picamera2, Preview
import time

The Picamera2 Library

2.3. A first example 6

picam2 = Picamera2()
camera_config = picam2.create_preview_configuration()
picam2.configure(camera_config)
picam2.start_preview(Preview.QTGL)
picam2.start()
time.sleep(2)
picam2.capture_file("test.jpg")

Non X Windows users should use the same script, but replacing Preview.QTGL by Preview.DRM, so as to use the non X

Windows preview implementation:

from picamera2 import Picamera2, Preview
import time

picam2 = Picamera2()
camera_config = picam2.create_preview_configuration()
picam2.configure(camera_config)
picam2.start_preview(Preview.DRM)
picam2.start()
time.sleep(2)
picam2.capture_file("test.jpg")

2.4. Picamera2’s high-level API

Picamera2 has some high-level and very convenient functions for capturing images and video recordings. These are

ideal for those who do not want to know too much about the details of how Picamera2 works, though more advanced

users will want a deeper understanding of what happens under the hood, as we saw above.

If you simply want to capture an image, the following is sufficient:

from picamera2 import Picamera2

picam2 = Picamera2()

picam2.start_and_capture_file("test.jpg")

You can capture multiple images with the start_and_capture_files function. Or, to record a five second video:

from picamera2 import Picamera2

picam2 = Picamera2()

picam2.start_and_record_video("test.mp4", duration=5)

We will learn more about these functions later on, for both still images and video.

2.5. Additional software

When using Picamera2, it’s often useful to install other packages. For convenience we list some common ones here.

The Picamera2 Library

2.4. Picamera2’s high-level API 7

2.5.1. OpenCV

OpenCV is not a requirement for Picamera2, though a number of examples use it. It can by installed from apt very easily,

avoiding the long build times involved in some other methods:

sudo apt install -y python3-opencv
sudo apt install -y opencv-data

2.5.2. TensorFlow Lite

TensorFlow Lite can be installed with:

pip3 install tflite-runtime

2.5.3. FFmpeg

Some features of Picamera2 make use of the FFmpeg library. Normally this should be installed by default on a

Raspberry Pi, but in case it isn’t the following should fetch it:

sudo apt install -y ffmpeg

2.6. Further examples

Throughout this guide we’ll give lots of examples, but we’ll also highlight some of those in Picamera2’s GitHub

repository.

The examples folder in the repository can be found here. There are some additional examples framed as Qt applications

which can be found here.

The Picamera2 Library

2.6. Further examples 8

https://github.com/raspberrypi/picamera2
https://github.com/raspberrypi/picamera2
https://github.com/raspberrypi/picamera2/tree/main/examples
https://github.com/raspberrypi/picamera2/tree/main/apps

Chapter 3. Preview windows

3.1. Preview window parameters

In the previous section we have already seen two different types of preview window. There are in fact four different

versions, which we shall discuss below.

All four preview implementations accept exactly the same parameters so that they are interchangeable:

• x - the x-offset of the preview window

• y - the y-offset of the preview window

• width - the width of the preview window

• height - the height of the preview window

• transform - a transform that allows the camera image to be horizontally and/or vertically flipped on the display

All the parameters are optional, and default values will be chosen if omitted. The following example will place an

800x600 pixel preview window at (100, 200) on the display, and will horizontally mirror the camera preview image:

from picamera2 import Picamera2, Preview
from libcamera import Transform

picam2 = Picamera2()
picam2.start_preview(Preview.QTGL, x=100, y=200, width=800, height=600,
transform=Transform(hflip=1))
picam2.start()

The supported transforms are:

• Transform() - the identity transform, which is the default

• Transform(hflip=1) - horizontal flip

• Transform(vflip=1) - vertical flip

• Transform(hflip=1, vflip=1) - horizontal and vertical flip (equivalent to a 180 degree rotation)

It’s important to realise that the display transform discussed here does not have any effect on the actual images

received from the camera. It only applies the requested transform as it renders the pixels onto the screen. We’ll

encounter camera transforms again when it comes actually to transforming the images as the camera delivers them.

Please also note that in the example above, the start_preview() function must be called before the call to picam2.start().

Finally, if the camera images have a different aspect ratio to the preview window, they will be letter- or pillar-boxed to fit,

preserving the image’s proper aspect ratio.

3.2. Preview window implementations

3.2.1. QtGL preview

This preview window is implemented using the Qt GUI toolkit and uses GLES hardware graphics acceleration. It is the

most efficient way to display images on the screen when using X Windows and we would recommend it in nearly all

The Picamera2 Library

3.1. Preview window parameters 9

circumstances when X Windows is required.

The QtGL preview window can be started with:

from picamera2 import Picamera2, Preview

picam2 = Picamera2()
picam2.start_preview(Preview.QTGL)

The QtGL preview window is not recommended when the image needs to be shown on a remote display (not connected

to the Pi). Please refer to the Qt preview window below.

Users of Pi 3 or earlier devices will need to enable Glamor graphic acceleration to use the QtGL preview window.

 NOTE

There is a limit to the size of image that the 3D graphics hardware on the Pi can handle. For Raspberry Pi 4 this limit

is 4096 pixels in either dimension. For Pi 3 and earlier devices this limit is 2048 pixels. If you try to feed a larger

image to the QtGL preview window it will report an error and the program will terminate.

3.2.2. DRM/KMS preview

The DRM/KMS preview window is for use when X Windows is not running and camera system can lease a "layer" on the

display for displaying graphics. It can be started with:

from picamera2 import Picamera2, Preview

picam2 = Picamera2()
picam2.start_preview(Preview.DRM)

Because X Windows is not running, it is not possible to move or resize this window with the mouse.

The DRM/KMS preview will be the natural choice for Raspberry Pi OS Lite users. It is also strongly recommended for

lower-powered Raspberry Pis that would find it expensive to pass a preview (for example at 30 frames per second)

through the X Windows display stack.

3.2.3. Qt preview

Like the QtGL preview, this window is also implemented using the Qt framework, but this time using software rendering

rather than 3D hardware acceleration. As such, it is computationally costly and should be avoided where possible. Even

a Raspberry Pi 4 will start to struggle once the preview window size increases.

The Qt preview can be started with:

from picamera2 import Picamera2, Preview

picam2 = Picamera2()
picam2.start_preview(Preview.QT)

The main use case for the Qt preview is displaying the preview window on another networked computer using X

forwarding, or using the VNC remote desktop software. Under these conditions the 3D-hardware-accelerated

implementation either does not work at all, or does not work very well.

The Picamera2 Library

3.2. Preview window implementations 10

Users of Raspberry Pi 3 or earlier devices will need to enable Glamor graphic acceleration to use the Qt preview window.

3.2.4. NULL preview

Normally it is the preview window that actually drives the libcamera system by receiving camera images, passing them

to the application, and then recycling those buffers back to libcamera once the user no longer needs them. The

consequence is then that even when no preview images are being displayed, something still has to run in order to

receive and then return those camera images.

This is exactly what the NULL preview does. It displays nothing; it merely drives the camera system.

The NULL preview is in fact started automatically whenever the camera system is started (picam2.start()) if no preview

is yet running, which is why alternative preview windows must be started earlier. You can start the NULL preview

explicitly like this:

from picamera2 import Picamera2, Preview

picam2 = Picamera2()
picam2.start_preview(Preview.NULL)

though in fact the call to start_preview is redundant for the NULL preview and can be omitted.

The NULL preview accepts the same parameters as the other preview implementations, but ignores them completely.

3.3. Starting and stopping previews

We have seen how to start preview windows, including the NULL preview which actually displays nothing. In fact, the

first parameter to the start_preview function can take the following values:

• None - No preview of any kind is started. The application would have to supply its own code to drive the camera

system.

• False - The NULL preview is started.

• True - One of the three other previews is started. Picamera2 will attempt to auto-detect which one it should start,

though this is purely on a "best efforts" basis.

• Any of the four Preview enum values.

Preview windows can be stopped; an alternative one should then be started. We do not recommend starting and

stopping preview windows because it can be quite expensive to open and close windows, during which time camera

frames are likely to be dropped.

The Picamera2.start function accepts a show_preview parameter which can take on any one of these same values. This is

just a convenient shorthand that allows the amount of boilerplate code to be reduced. Note that stopping the camera

(Picamera2.stop) does not stop the preview window, so the stop_preview function would have to be called explicitly before

starting another.

For example, the following script would start the camera system running, run for a short while, and then attempt to auto-

detect which preview window to use in order actually to start displaying the images:

from picamera2 import Picamera2, Preview
import time

picam2 = Picamera2()
config = picam2.create_preview_configuration()
picam2.configure(config)
picam2.start()

The Picamera2 Library

3.3. Starting and stopping previews 11

time.sleep(2)

picam2.stop_preview()
picam2.start_preview(True)

time.sleep(2)

In this example:

1. The NULL preview will start automatically with the picam2.start() call and will run for 2 seconds

2. It will then be stopped and a preview that displays an actual window will be started

3. This will then run for 2 more seconds

It’s worth noting that nothing particularly bad happens if you stop the preview and then fail to restart another, or do not

start another immediately. All the buffers that are available will be filled with camera images by libcamera. But with no

preview running, nothing will read out these images and recycle the buffers, so libcamera will simply stall. When a

preview is restarted, normal operation will resume, starting with those slightly old camera images that are still queued

up waiting to be read out.

 NOTE

Many programmers will be familiar with the notion of an event loop. Each type of preview window implements an

event loop to dequeue frames from the camera, so the NULL preview performs this function when no other event

loop (such as the one provided by Qt) is running.

3.4. Remote preview windows

The preview window can be displayed on a remote display, for example when you have logged in to your Pi over ssh or

through VNC. When using ssh:

• You should use the -X parameter (or equivalent) to set up X-forwarding.

• The QtGL (hardware accelerated) preview will not work and will result in an error message. The Qt preview must be

used instead, though being software rendered (and presumably travelling over a network), framerates can be

expected to be significantly poorer.

When using VNC:

• The QtGL (hardware accelerated) window works adequately if you also have a display connected directly to your

Raspberry Pi

• If you do not have a display connected directly to the Pi, the QtGL preview will work very poorly, and the Qt preview

window should be used instead

If you are not running, or have suspended, X-Windows on the Pi but still have a display attached, you can log into the Pi

without X-forwarding and use the DRM/KMS preview implementation. This will appear on the display that is attached

directly to the Pi.

3.5. Further preview topics

Further preview features are covered in the Advanced topics section.

• Overlays (transparent images overlaid on the live camera feed) are discussed among the Advanced Topics.

• For Qt applications, displaying a preview window doesn’t make sense as the Qt framework will run the event loop.

However, the underlying widgets are still useful and are discussed further here.

The Picamera2 Library

3.4. Remote preview windows 12

3.6. Further examples

Most of the GitHub examples will create and start preview windows of some kind, for example:

• preview.py - starts a QtGL preview window

• preview_drm.py - starts a DRM preview window

• preview_x_forwarding.py - starts a Qt preview window

The Picamera2 Library

3.6. Further examples 13

https://github.com/raspberrypi/picamera2/tree/main/examples
https://github.com/raspberrypi/picamera2/blob/main/examples/preview.py
https://github.com/raspberrypi/picamera2/blob/main/examples/preview_drm.py
https://github.com/raspberrypi/picamera2/blob/main/examples/preview_x_forwarding.py

Chapter 4. Configuring the camera

4.1. Generating and using a camera configuration

Once a Picamera2 object has been created, the general pattern is that a configuration must be generated for the camera,

that the configuration must be applied to the camera system (using the Picamera2.configure method), and that then the

camera system can be started.

Picamera2 provides a number of configuration-generating methods that can be used to provide suitable configurations

for common use cases:

• Picamera2.create_preview_configuration will generate a configuration suitable for displaying camera preview images

on the display, or prior to capturing a still image

• Picamera2.create_still_configuration will generate a configuration suitable for capturing a high-resolution still image

• Picamera2.create_video_configuration will generate a configuration suitable for recording video files

So, for example, to set up the camera to start delivering a stream of preview images you might use:

from picamera2 import Picamera

picam2 = Picamera2()
config = picam2.create_preview_configuration()
picam2.configure(config)
picam2.start()

This is fairly typical, though the configuration-generating methods allow numerous optional parameters to adjust the

resulting configuration precisely for different situations. Additionaly, once a configuration object has been created,

applications are free to alter the object’s recommendations before calling picam2.configure.

One thing we shall learn is that configurations are just Python dictionaries, and it’s easy for us to inspect them and see

what they are saying.

4.2. Configurations in more detail

Picamera2 is easier to configure with some basic knowledge of the camera system on the Raspberry Pi. This will make

it clearer why particular image streams are available and why they have some of the features and properties that they

do.

The diagram below shows how the camera hardware on the Raspberry Pi works.

The Picamera2 Library

4.1. Generating and using a camera configuration 14

Figure 2. The

Raspberry Pi’s camera

system

The sequence of events is as follows:

1. On the left we have the camera module, which delivers images through the flat ribbon cable to the Pi. The images

delivered by the camera are not human-viewable images, but need lots of work to clean them up and produce a

realistic picture.

2. A hardware block called a CSI-2 Receiver on the Pi transfers the incoming camera image into memory.

3. The Pi has an Image Signal Processor (ISP) which reads this image from memory. It performs all these cleaning

and processing steps on the pixels that were received from the camera.

4. The ISP can produce up to two output images for every input frame from the camera. We designate one of them as

the main image, and it can be in either RGB or YUV formats.

5. The second image is a lower resolution image, referred to often as the lores image; it must be in a YUV format. It

must also be no larger than the main image.

6. Finally, the image data that was received from the sensor and written directly to memory can also be delivered to

applications. This is called the raw image.

The configuration of Picamera2 therefore divides into:

• General parameters that apply globally to the Picamera2 system and across the whole of the ISP.

• And per-stream configuration within the ISP that determines the output formats and sizes of the main and lores

streams. We note that the main stream is always defined and delivered to the application, using default values if

the application did not explicitly request one.

• Furthermore, the raw stream is rather different from the other streams in that it affects the mode in which the

image sensor is driven more directly, so there is some separate discussion of this.

• Mostly, a configuration does not include camera settings that can be changed at runtime (such as brightness or

contrast). However, certain use cases do sometimes have particular preferences about certain of these control

values, and they can be stored as part of a configuration so that applying the configuration will apply the runtime

controls automatically too.

4.2.1. General configuration parameters

The configuration parameters that affect all the output streams are:

• transform - whether camera images are horizontally or vertically mirrored, or both (giving a 180 degree rotation).

All three streams (if present) share the same transform.

• colour_space - the colour space of the output images. The main and lores streams must always share the same

colour space. The raw stream is always in a camera-specific colour space.

• buffer_count - the number of sets of buffers to allocate for the camera system. A single set of buffers represents

one buffer for each of the streams that have been requested.

The Picamera2 Library

4.2. Configurations in more detail 15

• display - this names which (if any) of the streams are to be shown in the preview window. It does not actually

affect the camera images in any way, only what Picamera2 does with them.

• encode - this names which (if any) of the streams are to be encoded if a video recording is started. This too does

not affect the camera images in any way, only what Picamera2 does with them.

4.2.1.1. More on transforms

Transforms can be constructed as shown below:

>>> from libcamera import Transform

>>> Transform()
<libcamera.Transform 'identity'>
>>> Transform(hflip=True)
<libcamera.Transform 'hflip'>
>>> Transform(vflip=True)
<libcamera.Transform 'vflip'>
>>> Transform(hflip=True, vflip=True)
<libcamera.Transform 'hvflip'>

Transforms can be passed to all the configuration-generating methods using the transform keyword parameter. For

example:

from picamera2 import Picamera2
from libcamera import Transform

picam2 = Picamera2()
preview_config = picam2.create_preview_configuration(transform=libcamera.Transform(hflip=True))

Picamera2 only supports the four transforms shown above. Other transforms (involving image transposition) exist but

are not supported. If unspecified, the transform always defaults to the identity transform.

4.2.1.2. More on colour spaces

The implementation of colour spaces in libcamera follows that of the Linux V4L2 API quite closely. Specific choices are

provided for each of colour primaries, the transfer function, the YCbCr encoding matrix and the quantisation (or range).

In addition, libcamera provides convenient shorthand forms for commonly used colour spaces:

>>> from libcamera import ColorSpace
>>> ColorSpace.Sycc()
<libcamera.ColorSpace 'sYCC'>
>>> ColorSpace.Rec709()
<libcamera.ColorSpace 'Rec709'>

These are in fact the only colour spaces supported by the Pi’s camera system. The required choice can be passed to all

the configuration-generating methods using the colour_space keyword parameter:

from picamera2 import Picamera2
from libcamera import ColorSpace

picam2 = Picamera2()

The Picamera2 Library

4.2. Configurations in more detail 16

https://docs.kernel.org/userspace-api/media/v4l/colorspaces-defs.html

preview_config = picam2.create_preview_configuration(colour_space=ColorSpace.Sycc())

When omitted, Picamera2 will choose a default according to the use case:

• create_preview_configuration and create_still_configuration will use the sYCC colour space by default (by which we

mean sRGB primaries and transfer function and full-range BT.601 YCbCr encoding).

• create_video_configuration will choose sYCC if the main stream is requesting an RGB format. For YUV formats it will

choose SMPTE 170M if the resolution is less than 1280x720, otherwise Rec.709.

4.2.1.3. More on the buffer_count

This number defines how many sets of buffers (one for each requested stream) are allocated for the camera system to

use. Allocating more buffers can mean that the camera will run more smoothly and drop fewer frames, though the

downside is that particularly at high resolutions, there may not be enough memory available.

The configuration-generating methods all choose an appropriate number of buffers for their use cases:

• create_preview_configuration requests four sets of buffers

• create_still_configuration requests just one set of buffers (as these are normally large full resolution buffers)

• create_video_configuration requests six buffers, as the extra work involved in encoding and outputting the video

streams makes it more susceptible to jitter or delays, which is alleviated by the longer queue of buffers.

The number of buffers can be overridden in all the configuration-generating methods using the buffer_count keyword

parameter:

from picamera2 import Picamera2

picam2 = Picamera2()
preview_config = picam2.create_still_configuration(buffer_count=2)

4.2.1.4. More on the display stream

Normally we would display the main stream in the preview window. In some circumstances it may be preferable to

display a lower resolution image (from the lores stream) instead. We could use:

from picamera2 import Picamera2

picam2 = Picamera2()
config = picam2.create_still_configuration(lores={"size": (320, 240)}, display="lores")

This would reqest a full resolution main stream, but then also a QVGA lores stream which would be displayed (recall

that the main stream is always defined even when the application does not explicitly request it).

The display parameter may take the value None which means that no images will be rendered to the preview window. In

fact this is the default choice of the create_still_configuration method.

4.2.1.5. More on the encode stream

This is similar to the display parameter, in that it names the stream (main or lores) that will be encoded if a video

recording is started. By default we would normally encode the main stream, but a user might have an application where

they want to record a low resolution video stream instead:

The Picamera2 Library

4.2. Configurations in more detail 17

from picamera2 import Picamera2

picam2 = Picamera2()
config = picam2.create_video_configuration(main={"size": (2048, 1536)}, lores={"size": (320,
240)}, encode="lores")

This would enable a QVGA stream to be recorded, while allowing 2048x1536 still images to be captured simultaneously.

The encode parameter may also take the value None, which is again the default choice of the create_still_configuration

method.

4.2.2. Stream configuration parameters

All the three streams can be requested from the configuration-generating methods using the main, lores and raw keyword

parameters, though as we have noted, a main stream will always be defined. The main stream is also the first argument

to these functions, so the main= syntax can normally be omitted. By default the lores and raw streams are not delivered

to applications.

To request one of these streams, a dictionary should be supplied. The dictionary may be an empty dictionary, at which

point that stream will be generated for the application but populated by default values:

from picamera2 import Picamera2

picam2 = Picamera2()
config = picam2.create_preview_configuration(lores={})

Here, the main stream will be produced as usual, but a lores stream will be produced as well. By default it will have the

same resolution as the main stream, but using the YUV420 image format.

The keys that may be specified are:

• "size" - a tuple of two values giving the width and height of the image

• "format" - a string defining one of libcamera's allowable image formats

Image sizes

The configuration-generating functions can make minimal changes to the configuration where they detect something is

invalid. But they will attempt to observe whatever values they are given even where others may be more efficient. The

most obvious case of this is in relation to the image sizes.

Here, hardware restrictions means that images can be processed more efficiently if they are particular sizes. Other

sizes will have to be copied more frequently in the Python world, but these special image alignment rules are somewhat

arcane. They are covered in detail in the appendices.

If a user wants to request these optimal image sizes, they should use the align_configuration method. For example:

>>> from picamera2 import Picamera2
>>> picam2 = Picamera2()
>>> config = picam2.create_preview_configuration({"size": (808, 606)})
>>> config["main"]
{'format': 'XBGR8888', 'size': (808, 606)}
>>> picam2.align_configuration(config)
Picamera2 has decided an 800x606 image will be more efficient.
>>> config["main"]
{'format': 'XBGR8888', 'size': (800, 606)}
>>> picam2.configure(config)
{'format': 'XBGR8888', 'size': (800, 606), 'stride': 3200, 'framesize': 1939200}

The Picamera2 Library

4.2. Configurations in more detail 18

At the end we have an 800x606 image, which will result in less data copying. Observe also how, once a configuration

has been applied, Picamera2 knows some extra things: the length of each row of the image in bytes (the stride), and the

total amount of memory every such image will occupy.

Image formats

A wide variety of image formats are supported by libcamera, as described in the appendices. For our purposes,

however, these are some of the most common ones. For the main stream:

• XBGR8888 - every pixel is packed into 32-bits, with a dummy 255 value at the end, so a pixel would look like [R, G, B,

255] when captured in Python. (These format descriptions can seem counter-intuitive, but the underlying

infrastructure tends to take machine endianness into account, which can mix things up!)

• XRGB8888 - as above, with a pixel looking like [B, G, R, 255].

• RGB888 - 24 bits per pixel, ordered [B, G, R].

• BGR888 - as above, but ordered [R, G, B].

• YUV420 - YUV images with a plane of Y values followed by a quarter plane of U values and then a quarter plane of V

values.

For the lores stream, only 'YUV420' is really used.

Raw streams

Raw streams are handled differently. We can specify the format (that includes the bit depth) and size, but only a limited

selection is normally available from the sensor. They cannot generally be scaled to relatively arbitrary sizes (as the main

and lores streams can, by virtue of the ISP).

Picamera2 will attempt to choose the best match for whatever you supply, but you can check for yourself what is

actually available by querying the sensor_modes property of the Picamera2 object. The first time you request this property

it will reconfigure the sensor (several times) to determine all the sensor modes, so it is usually something you may want

to do as soon as you open the camera.

For the HQ camera we obtain:

>>> from pprint import *
>>> from picamera2 import Picamera2
>>> picam2 = Picamera2()
output omitted
>>> pprint(picam2.sensor_modes)
output omitted
[{'bit_depth': 10,
 'crop_limits': (696, 528, 2664, 1980),
 'exposure_limits': (31, 66512892),
 'format': SRGGB10_CSI2P,
 'fps': 120.05,
 'size': (1332, 990),
 'unpacked': 'SRGGB10'},
 {'bit_depth': 12,
 'crop_limits': (0, 440, 4056, 2160),
 'exposure_limits': (60, 127156999),
 'format': SRGGB12_CSI2P,
 'fps': 50.03,
 'size': (2028, 1080),
 'unpacked': 'SRGGB12'},
 {'bit_depth': 12,
 'crop_limits': (0, 0, 4056, 3040),
 'exposure_limits': (60, 127156999),
 'format': SRGGB12_CSI2P,
 'fps': 40.01,
 'size': (2028, 1520),
 'unpacked': 'SRGGB12'},

The Picamera2 Library

4.2. Configurations in more detail 19

 {'bit_depth': 12,
 'crop_limits': (0, 0, 4056, 3040),
 'exposure_limits': (114, 239542228),
 'format': SRGGB12_CSI2P,
 'fps': 10.0,
 'size': (4056, 3040),
 'unpacked': 'SRGGB12'}]

This gives us the exact sensor modes that we can request, with the following information for each mode:

• bit_depth - the number of bits in each pixel sample.

• crop_limits - this tells us the exact field of view of this mode within the full resolution sensor output. In the example

above, only the final two modes will give us the full field of view.

• exposure_limits - the maximum and minimum exposure values (in microseconds) permitted in this mode.

• format - the packed sensor format. This can be passed as the "format" when requesting the raw stream.

• fps - the maximum framerate supported by this mode.

• size - the resolution of the sensor output. This value can be passed as the "size" when requesting the raw stream.

• unpacked - use this in place of the earlier format in the raw stream request if unpacked raw images are required (see

below).

In this example there are three 12-bit modes (one at the full resolution) and one 10-bit mode useful for higher framerate

applications (but with a heavily cropped field of view). If you want to choose the raw mode yourself, only the "format"

and "size" fields have any effect but the other fields will be ignored, meaning you can use statements like:

config = picam2.create_preview_configuration({"size": (640, 480)}, raw=picam2.sensor_modes[2])

 NOTE

For a raw stream, the format normally begins with an S, followed by four characters that indicate the Bayer order of

the sensor (the only exception to this is for raw monochrome sensors, which use the single letter R instead). Next is

a number, 10 or 12 here, which is the number of bits in each pixel sample sent by the sensor (some sensors may

have eight-bit modes too). Finally there may be the characters _CSI2P. This would mean that the pixel data will be

packed tightly in memory, so that four ten-bit pixel values will be stored in every five bytes, or two twelve-bit pixel

values in every three bytes. When _CSI2P is absent, it means the pixels will each be unpacked into a 16-bit word (or

eight-bit pixels into a single byte). This uses more memory but can be useful for applications that want easy access

to the raw pixel data.

4.2.3. Configurations and runtime camera controls

The final element in a Picamera2 configuration is runtime camera controls. As the description suggests, we normally

apply these at runtime, and they are not really part of the camera configuration. However, there are some occasions

when it can be helpful to associate them directly with a "configuration".

One such example is in video recording. Normally the camera can run at a variety of framerates, and this can be

changed by an application while the camera is running. When recording a video, however, people commonly prefer to

record at a fixed 30 frames per second, even if the camera was set to something else previously.

The configuration-generating methods therefore supply some recommended runtime control values corresponding to

the use case. These can be overridden or changed, but as the the optimal or usual values are sometimes a bit technical,

it’s helpful to supply them automatically:

The Picamera2 Library

4.2. Configurations in more detail 20

https://en.wikipedia.org/wiki/Bayer_filter

>>> from picamera2 import Picamera2
>>> picam2 = Picamera2()
>>> picam2.create_video_configuration()["controls"]
{'NoiseReductionMode': <NoiseReductionMode.Fast: 1>, 'FrameDurationLimits': (33333, 33333)}

We see here that for a video use-case, we’re recommended to set the NoiseReductionMode to Fast (because when

encoding video it’s important to get the frames quickly), and the FrameDurationLimits are set to (33333, 33333). This

means that every camera frame may not take less than the first value (33333 microseconds), and may not take longer

than the second (also 33333 microseconds). Therefore the framerate is fixed to 30 frames per second.

New control values, or ones to override the default ones, can be specified with the controls keyword parameter. If you

wanted a 25 frames-per-second video you could use:

from picamera2 import Picamera2

picam2 = Picamera2()
config = picam2.create_video_configuration(controls={"FrameDurationLimits": (40000, 40000)})

When controls have been set into the returned configuration object, we can think of them as being part of that

configuration. If we hold on to the configuration object and apply it again later, then those control values will be

restored.

We are of course always free to set runtime controls later using the Picamera2.set_controls method, but these will not

become part of any configuration that we can recover later.

For a full list of all the available runtime camera controls, please refer to the relevant appendix.

4.3. Configuration objects

We have seen numerous examples of creating camera configurations using the create_xxx_configuration methods which

return regular Python dictionaries. Some users may prefer the "object" style of syntax, so we provide this as an

alternative. Neither style is particularly recommended over the other.

Camera configurations can be represented by the CameraConfiguration class. This class contains the exact same things

we have seen previously, namely:

• the buffer_count

• a Transform object

• a ColorSpace object

• the name of the stream to display (if any)

• the name of the stream to encode (if any)

• a controls object which represents camera controls through a Controls class

• a main stream

• and optionally a lores and/or a raw stream

When a Picamera2 object is created, it contains three embedded configurations, in the following fields:

• preview_configuration - the same configuration as is returned by the create_preview_configuration method

• still_configuration - the same configuration as is returned by the create_still_configuration method

• video_configuration - the same configuration as is returned by the create_video_configuration method

Finally, CameraConfiguration objects can also be passed to the configure method. Alternatively, the strings "preview",

The Picamera2 Library

4.3. Configuration objects 21

"still" and "video" may be passed as shorthand for the three embedded configurations listed above.

We conclude with some examples.

Changing the size of the main stream

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.preview_configuration.main.size = (800, 600)
picam2.configure("preview")

Here, the configuration is equivalent to that generated by picam2.create_preview_configuration({"size": (800, 600)}). As

another piece of shorthand, the main field can be elided, so picam2.preview_configuration.size = (800, 600) would have

been identical.

Configuring a lores or raw stream

Before setting the size or format of the optional streams, they must first be enabled with:

configuration_object.enable_lores()

or

configuration_object.enable_raw()

as appropriate. This would normally be advised after the main stream size has been set up so that they can pick up

more appropriate defaults. After that, the size and the format fields can be set in the usual way:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.preview_configuration.enable_lores()
picam2.preview_configuration.lores.size = (320, 240)
picam2.configure("preview")

Setting the format field is optional as defaults will be chosen - "YUV420" for the lores stream. In the case of the raw

stream format, this can be left at its default value (None) and the system will use the sensor’s native format.

Stream alignment

Just as with the dictionary method, stream sizes are not forced to optimal alignment by default. This can easily be

accomplished using the configuration object’s align method:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.preview_configuration.main.size = (808, 600)
picam2.preview_configuration.main.format = "YUV420"
picam2.preview_configuration.align()
picam2.configure("preview")

Supplying control values

The Picamera2 Library

4.3. Configuration objects 22

We saw earlier how control values can be associated with a configuration. Using the object style of configuration, the

equivalent to that example would be:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.video_configuration.controls.FrameDurationLimits = (40000, 40000)
picam2.configure("video")

For convenience, the "controls" object lets you set the FrameRate instead of the FrameDurationLimits in case this is easier.

You can give it either a range (as FrameDurationLimits) or a single value, where framerate = 1000000 / frameduration, and

frameduration is given in microseconds (as we did above):

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.video_configuration.controls.FrameRate = 25.0
picam2.configure("video")

We discuss setting control values at runtime in the following section.

4.4. Further examples

Most of the GitHub examples will configure the camera, for example:

• capture_dng_and_jpeg.py - shows how you can configure a still capture for a full resolution main stream and also

obtain the raw image buffer.

• capture_motion.py - shows how you can capture both a main and a lores stream.

• rotation.py - shows a 180 degree rotation being applied to the camera images. In this example the rotation is

applied after the configuration has been generated, though we could have passed the transform in to the

create_preview_configuration function with transform=libcamera.Transform(hflip=1, vflip=1) too.

• still_capture_with_config.py - shows how to configure a still capture using the configuration object method. In this

example we also request a raw stream.

The Picamera2 Library

4.4. Further examples 23

https://github.com/raspberrypi/picamera2/tree/main/examples
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_dng_and_jpeg.py
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_motion.py
https://github.com/raspberrypi/picamera2/blob/main/examples/rotation.py
https://github.com/raspberrypi/picamera2/blob/main/examples/still_capture_with_config.py

Chapter 5. Camera controls and
properties

5.1. Camera controls

Camera controls represent parameters that the camera exposes, and which we can alter to change the nature of the

images it outputs in various ways.

In Picamera2, all camera controls can be changed at runtime. Anything that cannot be changed at runtime is regarded

not as a control but as configuration. We do, however, allow the camera’s configuration to include controls in case there

are particular standard control values that could be conveniently applied along with the rest of the configuration.

For example, some obvious controls that we might want to set while the camera is delivering images are:

• Exposure time

• Gain

• White balance

• Colour saturation

• Sharpness

…and there are many more. A complete list of all the available camera controls can be found in the appendices, and also

by inspecting the camera_controls property of the Picamera2 object:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.camera_controls

This returns a dictionary with the control names as keys, and each value being a tuple of (min, max, default) values for

that control. The default value should be interpreted with some caution as in many cases libcamera’s default value will

long since have been overwritten by the camera tuning once the camera is started.

Things that are not controls include:

• The image resolution

• The format of the pixels

as these can only be set up when the camera is configured.

One example of a control that might be assoicated with a configuration might be the camera’s framerate (or

equivalently, the frame duration). Normally we might let a camera operate at whatever framerate is appropriate to the

exposure time requested. For video recording, however, it’s quite common to fix the framerate to (for example) 30

frames per second, and so this might be included by default along with the rest of the video configuration.

5.1.1. How to set camera controls

There a three distinct times when camera controls can be set:

1. Into the camera configuration. These will be stored with the configuration so that they will be re-applied whenever

that configuration is requested. They will be enacted before the camera starts.

The Picamera2 Library

5.1. Camera controls 24

2. After configuration but before the camera starts. The controls will again take effect before the camera starts, but

will not be stored with the configuration and so would not be re-applied again automatically.

3. After the camera has started. The camera system will apply the controls as soon as it can, but typically there will

be some number of frames of delay.

Camera controls can be set by passing a dictionary of updates to the set_controls method, but there is also an object

style syntax for accomplishing the same thing.

5.1.1.1. Setting controls as part of the configuration

We have seen an example of this when discussing camera configurations. One important feature of this is that the

controls are applied before the camera even starts, meaning the the very first camera frame will have the controls set as

requested.

5.1.1.2. Setting controls before the camera starts

This time we set the controls after configuring the camera, but before starting it. For example:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())
picam2.set_controls({"ExposureTime": 10000, "AnalogueGain": 1.0})
picam2.start()

Here too the controls will have already been applied on the very first frame that we receive from the camera.

5.1.1.3. Setting controls after the camera has started

This time, there will be a delay of several frames before the controls take effect. This is because there is perhaps quite a

large number of requests for camera frames already in flight, and for some controls (exposure time and analogue gain

specifically), the camera may actually take several frames to apply the updates.

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())
picam2.start()
picam2.set_controls({"ExposureTime": 10000, "AnalogueGain": 1.0})

This time we cannot rely on any specific frame having the value we want, so would have to check the frame’s metadata.

5.1.2. Object syntax for camera controls

We saw previously how control values can be associated with a particular camera configuration.

There is also an embedded instance of the Controls class inside the Picamera2 object that allows controls to be set

subsequently. For example, to set controls after configuration but before starting the camera:

from picamera2 import Picamera2

The Picamera2 Library

5.1. Camera controls 25

picam2 = Picamera2()
picam2.configure("preview")
picam2.controls.ExposureTime = 10000
picam2.controls.AnalogueGain = 1.0
picam2.start()

To set these controls after the camera has started we should use:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure("preview")
picam2.start()
with picam2.controls as controls:
 controls.ExposureTime = 10000
 controls.AnalogueGain = 1.0

In this final case we note the use of the with construct. Although you would normally get by without it (just set the

picam2.controls directly), that would not absolutely guarantee that both controls would be applied on the same frame.

You could technically find the analogue gain being set on the frame after the exposure time.

In all cases, the same rules apply as to whether the controls take effect immediately or incur several frames of delay.

5.2. Camera properties

Camera properties represent information about the sensor that applications may want to know. They cannot be

changed by the application at any time, neither at runtime nor while configuring the camera, although the value of these

properties may change whenever the camera is configured.

Camera properties may be inspected through the camera_properties property of the Picamera2 object:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.camera_properties

Some examples of camera properties include the model of sensor and the size of the pixel array. After configuring the

camera into a particular mode it will also report the field of view from the pixel array that the mode represents, and the

sensitivity of this mode relative to other camera modes.

A complete list and explanation of each property can be found in the appendices.

5.3. Further examples

The following examples demonstrate setting controls:

• controls.py - shows how to set controls while the camera is running. In this example we query the ExposureTime,

AnalogueGain and ColourGains and then fix them so that they can no longer vary.

• opencv_mertens_merge.py - demonstrates how to stop and restart the camera with multiple new exposure values.

• zoom.py - shows how to implement a smooth digital zoom. We use capture_metadata to synchronise the control

value updates with frames coming from the camera.

The Picamera2 Library

5.2. Camera properties 26

https://github.com/raspberrypi/picamera2/blob/main/examples/controls.py
https://github.com/raspberrypi/picamera2/blob/main/examples/opencv_mertens_merge.py
https://github.com/raspberrypi/picamera2/blob/main/examples/zoom.py

• controls_3.py - illustrates the use of the Controls class, rather than dictionaries, to update control values.

The Picamera2 Library

5.3. Further examples 27

https://github.com/raspberrypi/picamera2/blob/main/examples/controls_3.py

Chapter 6. Capturing images and
requests
Once the camera has been configured and started, Picamera2 automatically starts submitting requests to the camera

system. Each request will be completed and returned to Picamera2 once the camera system has filled in an image

buffer for each of the streams that were configured.

The process of requests being submitted, returned and then sent back to the camera system is transparent to the user.

In fact, the process of sending the images for display (when a preview window has been set up) or forwarding them to a

video encoder (when one is running) is all entirely automatic too, and the application does not have to do anything.

The user application only needs to say when it wants to receive any of these images for its own use, and Picamera2 will

deliver them. The application can request a single image belonging to any of the streams, or it can ask for the entire

request, giving access to all the images and the associated metadata.

 NOTE

In this section we make use of some convenient default behaviour of the start function. If the camera is completely

unconfigured, it will apply the usual default preview configuration before starting the camera.

6.1. Capturing images

Camera images are normally represented as numpy arrays, so some familiarity with numpy will be helpful. This is also

the representation used by OpenCV so that Picamera2, numpy and OpenCV all work together seamlessly.

When capturing images, the Picamera2 functions use the following nomenclature in its capture functions:

• arrays - these are two-dimensional arrays of pixels and are usually the most convenient way to manipulate images.

They are often three-dimensional numpy arrays because every pixel has several colour components, adding

another dimension.

• images - this refers to Python Image Library (PIL) images and can be useful when interfacing to other modules that

expect this format

• buffers - by buffer we simply mean the entire block of memory where the image is stored as a one-dimensional

numpy array, but the two- (or three-) dimensional array form is generally more useful.

There are also capture functions for saving images directly to files, and for switching between camera modes so as to

combine fast framerate previews with high resolution captures.

6.1.1. Capturing arrays

The capture_array function will capture the next camera image from the stream named as its first argument (and which

defaults to "main" if omitted). The following example starts the camera with a typical preview configuration, waits for

one second (during which time the camera is running), and then capture a three-dimensional numpy array:

from picamera2 import Picamera2
import time

picam2 = Picamera2()
picam2.start()

time.sleep(1)

The Picamera2 Library

6.1. Capturing images 28

array = picam2.capture_array("main")

Although we regard this as a two-dimensional image, numpy will often report a third dimension of size three or four

depending on whether every pixel is represented by three channels (RGB) or four channels (RGBA, that is RGB with an

alpha channel). Remember also that numpy lists the height as the first dimension.

• shape will report (height, width, 3) for 3 channel RGB type formats

• shape will report (height, width, 4) for 4 channel RGBA (alpha) type formats

• shape will report (height × 3 / 2, width) for YUV420 formats

YUv420 is a slightly special case because the first height rows give the Y channel, the next height/4 rows contain the U

channel and the final height/4 rows contain the V channel. For the other formats, where there is an "alpha" value it will

take the fixed value 255.

6.1.2. Capturing PIL images

PIL images are captured identically, but using the capture_image function.

from picamera2 import Picamera2
import time

picam2 = Picamera2()
picam2.start()

time.sleep(1)
image = picam2.capture_image("main")

6.1.3. Switching camera mode and capturing

A common use case is to run the camera in a mode where it can achieve a fast framerate for display in a preview

window, but can also switch to a (slower framerate) high-resolution capture mode for the best quality images. There are

special switch_mode_and_capture_array and switch_mode_and_capture_image functions for this.

from picamera2 import Picamera2
import time

picam2 = Picamera2()
capture_config = picam2.create_still_configuration()
picam2.start(show_preview=True)

time.sleep(1)
array = picam2.switch_mode_and_capture_array(capture_config, "main")

This will switch to the high resolution capture mode and return the numpy array, and will then switch automatically back

to the preview mode without any user intervention.

We note that the process of switching camera modes can be performed "manually", if preferred:

from picamera2 import Picamera2
import time

picam2 = Picamera2()

The Picamera2 Library

6.1. Capturing images 29

preview_config = picam2.create_preview_configuration()
capture_config = picam2.create_still_configuration()
picam2 = picam2.configure(preview_config)
picam2.start(show_preview=True)

time.sleep(1)
picam2.switch_mode(capture_config)
array = picam2.capture_array("main")
picam2.switch_mode(preview_config)

6.1.4. Capturing straight to files and file-like objects

For convenience, the capture functions all have counterparts that save an image straight to file:

from picamera2 import Picamera2
import time

picam2 = Picamera2()
capture_config = picam2.create_still_configuration()
picam2.start(show_preview=True)

time.sleep(1)
picam2.switch_mode_and_capture_file(capture_config, "image.jpg")

The file format is deduced automatically from the filename. Picamera2 uses PIL to save the images, and so this

supports JPEG, BMP, PNG and GIF files.

But applications can also capture to file-like objects. A typical example would be memory buffers from Python’s io

library. In this case there is no filename so the format of the "file" must be given by the format parameter:

from picamera2 import Picamera2
import io
import time

picam2 = Picamera2()
picam2.start()

time.sleep(1)
data = io.BytesIO()
picam2.capture_file(data, format='jpeg')

The format parameter may take the values 'jpeg', 'png', 'bmp' or 'gif'.

6.2. Capturing metadata

Every image that is output by the camera system comes with metadata that describes the conditions of the image

capture. Specifically, the metadata describes the camera controls that were used to capture that image, including, for

example, the exposure time and analogue gain of the image.

Metadata is returned as a Python dictionary and is easily captured by:

The Picamera2 Library

6.2. Capturing metadata 30

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.start()

metadata = picam2.capture_metadata()
print(metadata["ExposureTime"], metadata["AnalogueGain"])

Capturing metadata is a good way to synchronise an application with camera frames (if you have no actual need of the

frames). The first call to capture_metadata (or indeed any capture function) will often return immediately because

Picamera2 usually holds on to the last camera image internally. But after that, every capture call will wait for a new

frame to arrive (unless the application has waited so long to make the request that the image is once again already

there). For example:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.start()

for i in range(30):
 metadata = picam2.capture_metadata()
 print("Frame", i, "has arrived")

The process of obtaining the metadata that belongs to a specific image is explained through the use of requests.

Object-style access to metadata

For those who prefer the object-style syntax over Python dictionaries, the metadata can be wrapped in the Metadata

class:

from picamera2 import Picamera2, Metadata

picam2 = Picamera2()
picam2.start()

metadata = Metadata(picam2.capture_metadata())
print(metadata.ExposureTime, metadata.AnalogueGain)

6.3. Capturing multiple images at once

A good way to do this is by capturing an entire request, but sometimes it is conveient to be able to obtain copies of

multiple numpy arrays in much the same way as we were able to capture a single one.

For this reason some of the functions we saw earlier have "pluralised" versions. To list them explicitly:

Capture single array Capture multiple arrays

Picamera2.capture_buffer Picamera2.capture_buffers

Picamera2.switch_mode_and_capture_buffer Picamera2.switch_mode_and_capture_buffers

Picamera2.capture_array Picamera2.capture_arrays

Picamera2.switch_mode_and_capture_array Picamera2.switch_mode_and_capture_arrays

The Picamera2 Library

6.3. Capturing multiple images at once 31

All these functions work in the same way as their single-capture counterparts except that:

• Instead of providing a single stream name, a list of stream names must be provided.

• The return value is a tuple of two values, the first being the list of arrays (in the order the names were given), and

the second being the image metadata.

For example we could use:

from picamera2 import Picamera2

picam2 = Picamera2()
config = picam2.create_preview_configuration(lores={})
picam2.configure(config)
picam2.start()

(main, lores), metadata = picam2.capture_arrays(["main", "lores"])

In this case we configure both a main and a lores stream. We then ask to capture an image from each and these are

returned to us along with the metadata for that single capture from the camera.

Finally, to faciliate using these images, Picamera2 has a small Helpers library that can convert arrays to PIL images,

save them to a file, and so on. The table below lists all the available functions:

Helper name Description

picam2.helpers.make_array Make a 2d (or 3d, allowing for multiple colour channels) array from a flat 1d array (as

returned by, for example, capture_buffer)

picam2.helpers.make_image Make a PIL image from a flat 1d array (as returned by, for example, capture_buffer)

picam2.helpers.save Save a PIL image to file

picam2.helpers.save_dng Save PIL image to a DNG file

These helpers can be accessed directly from the Picamera2 object. If we wanted to capture a single buffer and use one

of these helpers to save the file, we could use:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())
picam2.start()

(buffer,), metadata = picam2.capture_buffers(["main"])
img = picam2.helpers.make_image(buffer, picam2.camera_configuration()["main"])
picam2.helpers.save(img, metadata, "file.jpg")

Further examples are highlighted at the end of this chapter.

6.4. Capturing requests

Besides capturing images from just one of the configured streams, or the image metadata, Picamera2 makes it

possible to capture an entire request. This includes the image from every stream that has been configured, and also the

metadata, so that they can be used together.

Normally, when we capture arrays or images, the image data is copied so that the camera system can keep hold of all

the memory buffers it was using and carry on running in just the same manner. When we capture a request, however, we

The Picamera2 Library

6.4. Capturing requests 32

have only borrowed it and all the memory buffers from the camera system, and nothing has yet been copied. When we

are finished with the request it must be returned back to the camera system using the request’s release method.

 IMPORTANT

If an application fails to release captured requests back to the camera system, the camera system will gradually run

out of buffers. It is likely to start dropping ever more camera frames, and eventually the camera system will stall

completely.

Here is the basic use pattern:

from picamera2 import Picamera

picam2 = Picamera2()
picam2.start()

request = picam2.capture_request()
request.save("main", "image.jpg")
print(request.get_metadata()) # this is the metadata for this image
request.release()

As soon as we have finished with the request, it is released back to the camera system. This example also shows how

we are able to obtain the exact metadata for the captured image using the request’s get_metadata function.

Notice how we saved the image from the main stream to the file. All Picamera2’s capture methods are implemented

through methods in the CompletedRequest class, and once we have the request we can call them directly. The

correspondence is illustrated in the table below.

Picamera2 function CompletedRequest equivalent

Picamera2.capture_file CompletedRequest.save (or CompletedRequest.save_dng for raw files)

Picamera2.capture_buffer CompletedRequest.make_buffer

Picamera2.capture_array CompletedRequest.make_array

Picamera2.capture_image CompletedRequest.make_image

Moving processing out of the camera thread

Normally when we use a function like Picamera2.capture_file, the processing to capture the image, compress it as (for

example) a JPEG, and save it to file happens in the usual camera processing loop. While this happens, the handling of

camera events is blocked and the camera system is likely to drop some frames. In many cases this is not terribly

important, but there are occasions when we might prefer all the processing to happen somewhere else.

Just as an example, if we were recording a video and wanted to capture a JPEG simultaneously whilst minimising the

risk of dropping any video frames, then it would be beneficial to move that processing out of the camera loop.

This is easily accomplished simply by capturing a request and calling request.save as we saw above. Camera events can

still be handled in parallel (though this is somewhat at the mercy of Python’s multi-tasking abilities), and the only

downside is that camera system has to make do with one less set of buffers until that request is finally released.

However, this can in turn always be mitigated by allocating one or more extra sets of buffers via the camera

configuration’s buffer_count parameter.

6.5. Asynchronous capture

Sometimes it’s convenient to be able to ask Picamera2 to capture an image (for example), but not to block your thread

while this takes place. Among the advanced use cases later on we’ll see some particular examples of this, although it’s

The Picamera2 Library

6.5. Asynchronous capture 33

a feature that might be helpful in other circumstances too.

All the capture and switch_mode_and_capture methods take two additional arguments:

• wait - whether to block while the operation completes

• signal_function - a function that will be called when the operation completes.

Both take the default value None, but can be changed resulting in the following behaviour:

• If wait and signal_function are both None, then the function will block until the operation is complete. This is what we

would probably term the "usual" behaviour.

• If wait is None but a signal_function is supplied, then the function will not block, but return immediately even though

the operation is not complete. The caller should use the supplied signal_function to notify the application when the

operation is complete.

• If a signal_function is supplied, and wait is not None, then the given value of wait determines whether the function

blocks (it blocks if wait is true). The signal_function is still called, however.

• You can also set wait to False and not supply a signal_function. In this case the function returns immediately, and

you can block later for the operation to complete (see below).

 WARNING

The signal_function should not initiate any Picamera2 activity (by calling Picamera2 methods, for example) itself, as

this is likely to result in a deadlock. Instead, it should be setting events or variables for threads to respond to.

Completing an asynchronous request

After launching an asynchronous operation as described above, an application must always call Picamera2.wait() to

complete the process, for example:

result = picam2.wait()

The wait function returns the result that would have been returned if the operation had blocked initially. It is mandatory

to call wait before another Picamera2 capture request can be made, so there can only be one asynchronous request in

flight at once.

Here’s a short example. The switch_mode_and_capture_file method captures an image to file and returns the image

metadata. So we can do the following:

from picamera2 import Picamera2
import time

picam2 = Picamera2()
still_config = picam2.create_still_configuration()
picam2.configure(picam2.create_preview_configuration())
picam2.start()
time.sleep(1)
picam2.switch_mode_and_capture_file(still_config, "test.jpg", wait=False)

now we can do some other stuff...
for i in range(20):
 time.sleep(0.1)
 print(i)

finally complete the operation:
metadata = picam2.wait()

The Picamera2 Library

6.5. Asynchronous capture 34

6.6. High-level capture API

There are some high-level image capture functions provided for those who may not want such an in-depth

understanding of how Picamera2 works. These functions should not be called from the camera’s event processing

thread (for example, it could be called directly from the Python interpreter, possibly via a script).

6.6.1. start_and_capture_file

For simple image capture we have the Picamera2.start_and_capture_file method. This function will configure and start

the camera automatically, and return once the capture is complete. It accepts the following parameters, though all have

sensible default values so that the function can be called with no arguments at all.

• name (default "image.jpg") - the file name under which to save the captured image.

• delay (default 1) - the number of seconds of delay before capturing the image. The value zero (no delay) is valid.

• preview_mode (default "preview") - the camera configuration to use for the preview phase of the operation. The

default value indicates to use the configuration in the Picamera2 object’s preview_configuration field, though any

other configuration can be supplied. The capture operation only has a preview phase if the delay is greater than

zero.

• capture_mode (default "still") - the camera configuration to use for capturing the image. The default value indicates

to use the configuration in the Picamera2 object’s still_configuration field, though any other configuration can be

supplied.

• show_preview (default True) - whether to show a preview window. By default preview images are only displayed for

the preview phase of the operation, unless this behaviour is overridden by the supplied camera configurations

using the display parameter. If subsequent calls are made which change the value of this parameter, we note that

the application should call the Picamera2.stop_preview method in between.

This function can be used as follows:

from picamera2 import Picamera2

picam2 = Picamera2()

picam2.start_and_capture_file("test.jpg")

All the usual file formats (JPEG, PNG, BMP and GIF) are supported.

6.6.2. start_and_capture_files

This function is very similar to start_and_capture_file, except that it can capture multiple images with a time delay

between them. Again, it can be called with no arguments at all, but it accepts the following optional parameters:

• name (default "image{:03d}.jpg") - the file name under which to save the captured image. This should include a

format directive (such as in the default name) that will be replaced by a counter, otherwise the images will simply

overwrite one another.

• initial_delay (default 1) - the number of seconds of delay before capturing the first image. The value zero (no

delay) is valid.

• preview_mode (default "preview") - the camera configuration to use for the preview phases of the operation. The

default value indicates to use the configuration in the Picamera2 object’s preview_configuration field, though any

other configuration can be supplied. The capture operation only has a preview phase when the corresponding

delay parameter (delay or initial_delay) is greater than zero.

The Picamera2 Library

6.6. High-level capture API 35

• capture_mode (default "still") - the camera configuration to use for capturing the images. The default value

indicates to use the configuration in the Picamera2 object’s still_configuration field, though any other

configuration can be supplied.

• num_files (default 1) - the number of images to capture.

• delay (default 1) - the number of second between captures for all images except the very first (which is governed by

initial_delay). If this has the value zero, then there is no preview phase between the captures at all.

• show_preview (default True) - whether to show a preview window. By default, preview images are only displayed for

the preview phases of the operation, unless this behaviour is overridden by the supplied camera configurations

using the display parameter. If subsequent calls are made which change the value of this parameter, we note that

the application should call the Picamera2.stop_preview method in between.

Finally, it could be used as follows:

from picamera2 import Picamera2

picam2 = Picamera2()

picam2.start_and_capture_files("test{:d}.jpg", initial_delay=5, delay=5, num_files=10)

This will capture ten files named test0.jpg through test9.jpg, with a five-second delay before every capture.

To capture images back-to-back with minimum delay, one could use:

from picamera2 import Picamera2

picam2 = Picamera2()

picam2.start_and_capture_files("test{:d}.jpg", initial_delay=0, delay=0, num_files=10)

In practice, the rate of capture will be limited by the time it takes to encode and save the JPEG files. For faster capture, it

might be worth saving a video in MJPEG format instead.

6.7. Further examples

Many of the examples demonstrate how to capture images. We draw the reader’s attention to just a few of them:

• metadata_with_image.py - shows how to capture an image and also the metadata for that image.

• capture_to_buffer.py - shows how to capture to a buffer rather than a file.

• still_during_video.py - shows how you might capture a still image while a video recording is in progress.

• opencv_mertens_merge.py - takes several captures at different exposures, starting and stopping the camera for

each capture.

• easy_capture.py - uses the "high level" API to capture images.

• capture_dng_and_jpeg_helpers.py - uses the "helpers" to save a JPEG and DNG file without holding the entire

CompletedRequest object.

The Picamera2 Library

6.7. Further examples 36

https://github.com/raspberrypi/picamera2/blob/main/examples/metadata_with_image.py
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_to_buffer.py
https://github.com/raspberrypi/picamera2/blob/main/examples/still_during_video.py
https://github.com/raspberrypi/picamera2/blob/main/examples/opencv_mertens_merge.py
https://github.com/raspberrypi/picamera2/blob/main/examples/easy_capture.py
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_dng_and_jpeg_helpers.py

Chapter 7. Capturing videos
In Picamera2, the process of capturing and encoding video is largely automatic. The application only has to define what

encoder it wants to use to compress the image data, and how it wants to output this compressed data stream.

The mechanics of taking the camera images that arrive, forwarding them to an encoder, which in turn sends the results

directly to the requested output, is entirely transparent to the user. The encoding and output all happens in a separate

thread from the camera handling to minimise the risk of dropping camera frames.

Here is a first example of capturing a ten-second video.

from picamera2.encoders import H264Encoder
from picamera2 import Picamera2
import time

picam2 = Picamera2()
video_config = picam2.create_video_configuration()
picam2.configure(video_config)

encoder = H264Encoder(bitrate=10000000)
output = "test.h264"

picam2.start_recording(encoder, output)
time.sleep(10)
picam2.stop_recording()

In this example we use the H.264 encoder. For the output object we can just use a string for convenience; this will be

interpreted as a simple output file. For configuring the camera, the create_video_configuration is a good starting point, as

it will use a larger buffer_count to reduce the risk of dropping frames.

We also used the convenient start_recording and stop_recording functions, which start and stop both the encoder and the

camera together. Sometimes it can be useful to separate these two operations, for example you might want to start and

stop a recording multiple times while leaving the camera running throughout. For this reason, start_recording could have

been replaced by:

encoder.output = 'test.h264'
picam2.start_encoder(encoder)
picam2.start()

and stop_recording by:

picam2.stop()
picam2.stop_encoder()

7.1. Encoders

All the video encoders can be constructed with parameters that determine the quality (amount of compression) of the

output, such as the bitrate for the H.264 encoder. For those not so familiar with the details of these encoders, these

parameters can also be omitted in favour of supplying a quality to the start_encoder or start_recording functions. The

permitted quality parameters are:

The Picamera2 Library

7.1. Encoders 37

• Quality.VERY_LOW

• Quality.LOW

• Quality.MEDIUM - this is the default for both functions if the parameter is not specified

• Quality.HIGH

• Quality.VERY_HIGH

This quality parameter only has any effect if the encoder was not passed explicit codec-specific parameters. It could be

used like this:

from picamera2.encoders import H264Encoder, Quality
from picamera2 import Picamera2
import time

picam2 = Picamera2()
picam2.configure(picam2.create_video_configuration())

encoder = H264Encoder()

picam2.start_recording(encoder, 'test.h264', Quality.HIGH)
time.sleep(10)
picam2.stop_recording()

Suitable adjustments will be made by the encoder according to the supplied quality parameter, though this is of a "best

efforts" nature and somewhat subject to interpretation. Applications are recommended to choose explicit parameters

for themselves if the quality parameter is not having the desired effect.

The available encoders are described in the sections below.

7.1.1. H264Encoder

The H264Encoder class implements an H.264 encoder using the Pi’s in-built hardware, accessed through the V4L2 kernel

drivers, supporting up to 1080p30. The constructor accepts the following optional parameters:

• bitrate (default None) - the bitrate (in bits per second) to use. The default value None will cause the encoder to

choose an appropriate bitrate according to the Quality when it starts.

• repeat (default False) - whether to repeat the stream’s sequence headers with every Intra frame (I-frame). This can

be sometimes be useful when streaming video over a network, when the client may not receive the start of the

stream where the sequence headers would normally be located.

• iperiod (default None) - the number of frames from one I-frame to the next. The value None leaves this at the

discretion of the hardware, which defaults to 60 frames.

This encoder can accept either 3-channel RGB ("RGB888" or "BGR888"), 4-channel RGBA ("XBGR8888" or "XRGB8888") or

YUV420 ("YUV420"). ==== JpegEncoder

The JpegEncoder class implements a multi-threaded software JPEG encoder, which can also be used as a motion JPEG

("MJPEG") encoder. It accepts the following optional parameters:

• num_threads (default 4) - the number of concurrent threads to use for encoding.

• q (default None) - the JPEG quality number. The default value None will cause the encoder to choose an appropriate

value according to the Quality when it starts.

• colour_space (default RGBX) - the colour space parameter that needs to be passed to the JPEG encoder library to

match the pixel format of the stream being encoded.

This encoder can accept either three-channel RGB ("RGB888" or "BGR888") or 4-channel RGBA ("XBGR8888" or "XRGB8888").

The Picamera2 Library

7.1. Encoders 38

 NOTE

The JpegEncoder is derived from the MultiEncoder class which wraps frame-level multi-threading around an existing

software encoder, and some users may find it helpful in creating their own parallelised codec implementations.

There will only be a significant performance boost if Python’s GIL (Global Interpreter Lock) can be released while the

encoding is happening - as is the case with the JpegEncoder as the bulk of the work happens in a call to a C library.

7.1.2. MJPEGEncoder

The MJPEGEncoder class implements an MJPEG encoder using the Raspberry Pi’s in-built hardware, accessed through the

V4L2 kernel drivers. The constructor accepts the following optional parameter:

• bitrate (default None) - the bitrate (in bits per second) to use. The default value None will cause the encoder to

choose an appropriate bitrate according to the Quality when it starts.

This encoder can accept either 3-channel RGB ("RGB888" or "BGR888"), 4-channel RGBA ("XBGR8888" or "XRGB8888") or

YUV420 ("YUV420").

7.2. Outputs

Output objects receive encoded video frames directly from the encoder and will typically forward them to files or to

network sockets. An output object is often made with its constructor, although a simple string can be passed to the

start_encoder and start_recording functions which will cause a FileOutput object to be made automatically.

The available output objects are described in the sections that follow.

7.2.1. FileOutput

The FileOutput is constructed from a single file parameter which may be:

• the value None, which causes any output to be discarded

• a string, in which case a regular file is opened, or

• a file-like object, which might be a memory buffer created using io.BytesIO(), or a network socket

For example, a simple file output could be created with:

from picamera2.outputs import FileOutput

output = FileOutput('test.h264')

A memory buffer:

from picamera2.outputs import FileOutput
import io

buffer = io.Bytes()
output = FileOutput(buffer)

A UDP network socket:

The Picamera2 Library

7.2. Outputs 39

from picamera2.outputs import FileOutput
import socket

with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as sock:
 sock.connect(("REMOTEIP", 10001))
 stream = sock.makefile("wb")
 output = FileOutput(stream)

7.2.2. FfmpegOutput

The FfmpegOutput class forwards the encoded frames to an FFmpeg process. This opens the door to some quite

sophisticated new kinds of output, including MP4 files and even audio, but may require substantial knowledge about

FFmpeg itself (which is well beyond the scope of this document, but FFmpeg’s own documentation is available).

The class constructor has one required parameter, the output file name, and all the others are optional:

• output_filename - typically we might pass something like "test.mp4", however, it is used as the output part of the

FFmpeg command line and so could equally well contain "test.ts" (to record an MPEG-2 transport stream), or even

"-f mpegts udp://<ip-addr>:>port" to forward an MPEG-2 transport stream to a given network socket.

• audio (default False) - if you have an attached microphone, pass True for the audio to be recorded along with the

video feed from the camera. The microphone is assumed to be available through PulseAudio.

• audio_device (default "default") - the name by which PulseAudio knows the microphone. Usually "default" will work.

• audio_sync (default -0.3) - the time shift in seconds to apply between the audio and video streams. This may need

tweaking to improve the audio/video synchronisation.

• audio_samplerate (default 48000) - the audio sample rate to use.

• audio_codec (default "aac") - the audio codec to use.

• audio_bitrate (default 128000) - the bitrate for the audio codec.

The range of output file names that can be passed to FFmpeg is very wide because it may actually include any of

FFmpeg’s output options, thereby exceeding the scope of what can be documented here or even tested

comprehensively. We list some more complex examples later on, and conclude with a simple example that records

audio and video to an MP4 file:

from picamera2.outputs import FfmpegOutput

output = FfmpegOutput("test.mp4", audio=True)

 NOTE

One limitation of the FfmpegOutput class is that there is no easy way to pass the frame timestamps - which Picamera2

knows precisely - to FFmpeg. As such, we have to get FFmpeg to resample them, meaning they become subject to a

relatively high degree of jitter. Whilst this may matter for some applications, it does not affect most users.

7.2.3. CircularOutput

The CircularOutput class is derived from the FileOutput and adds the ability to start a recording with video frames that

were from several seconds earlier. This is ideal for motion detection and security applications. The CircularOutput

constructor accepts the following optional parameters:

The Picamera2 Library

7.2. Outputs 40

https://ffmpeg.org/ffmpeg.html

• file (default None) - a string (representing a file name) or a file-like object which is used to construct a FileOutput.

This is where output from the circular buffer will get written. The value None means that, when the circular buffer is

created, it will accumulate frames within the circular buffer, but will not be writing them out anywhere.

• buffersize (default 150) - set this to the number of seconds of video you want to be able to access from before the

current time, multiplied by the frame rate. So 150 buffers is enough for five seconds of video at 30fps.

To make the CircularOutput start writing the frames out to a file (for example), an application should:

1. set the fileoutput property of the CircularOutput object, and

2. call its start() method.

In outline, the code will look something like this:

from picamera2.encoders import H264Encoder
from picamera2.outputs import CircularOutput
from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure(picam2.create_video_configuration())

encoder = H264Encoder()
output = CircularOutput()

picam2.start_recording(encoder, output)

Now when it's time to start recording the output, including the previous 5 seconds:
output.fileoutput = "file.h264"
output.start()

And later it can be stopped with:
output.stop()

7.3. High-level video recording API

As we saw with still captures, video recording also has a convenient API for those who wish to know less about the

encoders and output objects that make it work. We have the function start_and_record_video, which takes a file name as

a required argument and a further number of optional ones:

• output (required) - the name of the file to record to, or an output object of one of the types described above. When a

string ending in .mp4 is supplied, an FfmpegOutput rather than a FileOutput is created, so that a valid MP4 file is made.

• encoder (default None) - the encoder to use. If left unspecified, the function will make a best effort to choose (MJPEG

if the file name ends in mjpg or mjpeg, otherwise H.264).

• config (default None) - the camera configuration to use if not None. If the camera is unconfigured but none was given,

the camera will be configured according to the "video" (Picamera2.video_configuration) configuration.

• quality (default Quality.MEDIUM) - the video quality to generate, unless overriden in the encoder object.

• show_preview (default False) - whether to show a preview window. If this value is changed, it will have no effect

unless stop_preview is called beforehand.

• duration (default 0) - the recording duration. The function will block for this long before stopping the recording.

When the value is zero, the function returns immediately and the application will have to call stop_recording later.

• audio (default False) - whether to record an audio stream. This only works when recording to an MP4 file, and when

a microphone is attached as the default PulseAudio input.

This example will record a five-second MP4 file:

The Picamera2 Library

7.3. High-level video recording API 41

from picamera2 import Picamera2

picam2 = Picamera2()

picam2.start_and_record_video("test.mp4", duration=5)

7.4. Further examples

• audio_video_capture.py - captures both audio and video streams to an MP4 file. Obviously a microphone is

required for this to work.

• capture_circular.py - demonstrates how to capture to a circular buffer when motion is detected.

• capture_circular_stream.py - is a similar but more complex example that simultaneously sends the stream over a

network connection, using the multiple outputs feature.

• capture_mjpeg.py - shows how to capture an MJPEG stream.

• mjpeg_server.py - implements a simple web server than can deliver streaming MJPEG video to a web page.

The Picamera2 Library

7.4. Further examples 42

https://github.com/raspberrypi/picamera2/blob/main/examples/audio_video_capture.py
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_circular.py
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_circular_stream.py
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_mjpeg.py
https://github.com/raspberrypi/picamera2/blob/main/examples/mjpeg_server.py

Chapter 8. Advanced topics

8.1. Display overlays

All the Picamera2 preview windows support overlays. That is a bitmap with an alpha channel that can be super-imposed

over the live camera image. The alpha channel allows the overlay image to be opaque, partially transparent or wholly

transparent, pixel by pixel.

To add an overlay we can use the Picamera2.add_overlay function. It takes a single argument which is a three-dimensional

numpy array. The first two dimensions are the height and then the width, and the final dimension should have the value

4 as all pixels have R, G, B and A (alpha) values.

We note that:

• The overlay width and height do not have to match the camera images being displayed, as the overlay will be

resized to fit exactly over the camera image.

• set_overlay should only be called after the camera has been configured, as only at this point does Picamera2 know

how large the camera images being displayed will be.

• The overlay is always copied by the set_overlay call, so it is safe for an application to overwrite the overlay

afterwards.

• Overlays are designed to provide simple effects or GUI elements over a camera image. They are not designed for

sophisticated or fast-moving animations.

• Overlays ignore any display transform that was specified when the preview was created.

Here is a very simple example:

from picamera2 import Picamera2
import numpy as np

picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())
picam2.start(show_preview=True)

overlay = np.zeros((300, 400, 4), dtype=np.uint8)
overlay[:150, 200:] = (255, 0, 0, 64) # reddish
overlay[150:, :200] = (0, 255, 0, 64) # greenish
overlay[150:, 200:] = (0, 0, 255, 64) # blueish
picam2.set_overlay(overlay)

and the result shows the red, green and blue quadrants over the camera image:

The Picamera2 Library

8.1. Display overlays 43

Figure 3. A simple

overlay

For real applications, more complex overlays can of course be designed with image editing programs and loaded from

file. Remember that, if loading an RGBA image with OpenCV, you need to use the IMREAD_UNCHANGED flag:

overlay = cv2.imread("overlay.png", cv2.IMREAD_UNCHANGED)

Further examples

You can find the simple overlay example in:

• overlay_gl.py for the QTGL version of the overlay code.

• overlay_qt.py for the QT version of the overlay code.

• overlay_drm.py for the DRM version of the overlay code.

8.2. The event loop

8.2.1. Using the event loop callbacks

We saw in the discussion of preview windows how the preview window normally supplies the event loop that feeds

image buffers into libcamera in the form of requests, and receives tham back again once they are completed. Even

when there is no actual preview window, we start the NullPreview just to supply this event loop.

Sometimes it is useful to be able to apply some processing within the camera event loop, that happens unconditionally

to all frames. For example, an application might want to monitor the image metadata, or annotate images, all without

writing an explicit loop in the application code to do this.

We would generally recommend that any such code does not take too long because, being in the middle of the camera

event handling, it could easily cause frames to be dropped. It goes without saying that functions that make

asynchronous requests to Picamera2 (capturing metadata or images, for example) must be avoided as they would

almost certainly lead to instant deadlocks.

There are two places where user processing may be inserted into the event loop:

• The pre_callback, where the processing happens before the images are supplied to applications, before they are

passed to any video encoders, and before they are passed to any preview windows.

The Picamera2 Library

8.2. The event loop 44

https://github.com/raspberrypi/picamera2/blob/main/examples/overlay_gl.py
https://github.com/raspberrypi/picamera2/blob/main/examples/overlay_qt.py
https://github.com/raspberrypi/picamera2/blob/main/examples/overlay_drm.py

• The post_callback, where the processing happens before the images are passed to any video encoder, before they

are passed to any preview windows, but after images have been supplied to applications.

It is not possible to do processing on frames that will be recorded as video but to avoid doing the same processing on

the frames when they are displayed, or vice versa, as these two processes run in parallel. Though we note that an

application could display a different stream from the one it encodes (it might display the "main" stream and encode the

"lores" version), and apply processing only to one of them which would simulate this effect.

The following example uses OpenCV to apply a date and timestamp to every image.

from picamera2 import Picamera2, MappedArray
import cv2

picam2 = Picamera2()

colour = (0, 255, 0)
origin = (0, 30)
font = cv2.FONT_HERSHEY_SIMPLEX
scale = 1
thickness = 2

def apply_timestamp(request):
 timestamp = time.strftime("%Y-%m-%d %X")
 with MappedArray(request, "main") as m:
 cv2.putText(m.array, timestamp, origin, font, scale, colour, thickness)

picam2.pre_callback = apply_timestamp
picam2.start(show_preview=True)

Because we have used the pre_callback, it means that all images will be timestamped, whether the application requests

them through any of the capture methods, whether they are being encoded and recorded as video, and indeed when they

are displayed.

Had we used the post_callback instead, images acquired through the capture methods would not be timestamped.

Finally we draw attention to the MappedArray class. This class is provided as a convenient way to gain in-place access to

the camera buffers - all the capture methods that applications normally use are returning copies.

The MappedArray needs to be given a request and the name of the stream for which we want access to its image buffer. It

then maps that memory into user space and presents it to us as a regular numpy array, just as if we had obtained it via

capture_array. Once we leave the with block, the memory is unmapped and everything is cleaned up.

 WARNING

The amount of processing placed into the event loop should always be as limited as possible. It is recommended

that any such processing is restricted to drawing in-place on the camera buffers (as above), or using metadata from

the request. Above all, calls to the camera system should be avoided or handled with extreme caution as they are

likely to block waiting for the event loop to complete some task and can cause a deadlock.

Further examples

• opencv_face_detect_3.py shows how you would draw faces on a recorded video, but not on the image used for

face detection.

• timestamped_video.py writes a date/timestamp on every frame of a recorded video.

8.2.2. Dispatching tasks into the event loop

Besides using the pre- and post-callbacks, another way to use the event loop is to dispatch function calls to it which it

The Picamera2 Library

8.2. The event loop 45

https://github.com/raspberrypi/picamera2/blob/main/examples/opencv_face_detect_3.py
https://github.com/raspberrypi/picamera2/blob/main/examples/timestamped_video.py

will complete as and when camera images arrive. In fact, all of the "capture" type functions are implemented internally in

this way.

The idea is that a list of functions can be submitted to the event loop which behaves as follows:

1. Every time a completed request is received from the camera, it calls the first function in the list.

2. The functions must always return a tuple of two values. The first should be a boolean, indicating whether that

function is "finished". In this case, it is popped from the list, otherwise it remains at the front of the list and will be

called again next time. (Note that we never move on and call the next function with the same request.)

3. If the list is now empty, that list of tasks is complete and this is signalled to the caller. The second value from the

tuple is the one that is passed back to the caller as the result of the operation (usually through the wait method).

Let’s look at an example.

Normally when we call Picamera2.switch_mode_and_capture_file(), the camera system switches from the preview to the

capture mode, captures an image, then it switches back the the preview mode and starts the camera running again.

What if we want to stop the camera as soon as possible after the capture? In this case, we’ve spent time restarting the

camera in the preview mode before we can call Picamera2.stop() from our application (and wait again for that to

happen).

Here’s the code:

from picamera2 import Picamera2

picam2 = Picamera2()
capture_config = picam2.create_still_configuration()
picam2.start()

def switch_mode_capture_file_and_stop(camera_config, file_output, name="main"):
 def capture_and_stop_(file_output):
 picam2.capture_file_(file_output, name)
 picam2.stop_()
 return (True, None)

 functions = [(lambda: picam2.switch_mode_(camera_config)),
 (lambda: capture_and_stop_(file_output))]
 picam2.dispatch_functions(functions)
 return picam2.wait()

switch_mode_capture_file_and_stop(capture_config, "test.jpg")

The important points to note are:

• switch_mode_capture_file_and_stop creates a list of two functions that it dispatches to the event loop.

• The first of these functions (picam2.switch_mode_) will switch the camera into the capture mode, and then return True

as its first value, removing it from the list.

• When the first frame in the capture mode arrives, the local capture_and_stop_ function will run, capturing the file and

stopping the camera.

• This function returns True as its first value as well, so it will be popped of the list. The list is now empty so the event

loop will signal that it is finished.

• The picam2.wait() function will see this signal and return.

The Picamera2 Library

8.2. The event loop 46

 WARNING

Here too the application must take care what functions it calls from the event loop. For example, most of the usual

Picamera2 functions are likely to cause a deadlock. The convention has been adopted that functions that are

explicitly safe should end with a _ (an underscore).

8.3. Pixel formats and memory considerations

It is in general difficult to predict which image formats will work best. Some use considerably more memory than others,

and some are more widely supported than others in third party modules and libraries. Often these constraints work

against one another - the most widely useful formats are the most memory-hungry!

Similarly, some Pi versions have more memory available than others, and it may further depend which sensor (v1, v2 or

HQ) is being used and whether full-resolution images are being processed.

The table below lists the image formats that we would recommend users choose, the size of a single full resolution

12MP image, and whether they work with certain other modules.

Table 1.

Recommended image

formats

XRGB8888/XBGR8888 RGB888/BGR888 YUV420/YVU420

12MP size 48MB 36MB 18MB

Qt GL preview Yes No Yes

Qt preview Yes, slow Yes, slow Requires OpenCV, very slow

DRM preview Yes Yes Yes

Null preview Yes Yes Yes

JPEG encode Yes Yes No

Video encode Yes Yes Yes

OpenCV Often Yes Convert to RGB only

CMA memory

CMA stands for Contiguous Memory Allocator, and on the Raspberry Pi it provides memory that can be used directly by

the camera system and all its hardware devices. All the memory buffers for the main, lores and raw streams are

allocated here and, being shared with the rest of the Linux operating system, it can come under pressure and be subject

to fragmentation.

When the CMA area runs out of space, this can be identified by a Picamera2 error saying that V4L2 (the Video for Linux

kernel subsystem) has been unable to allocate buffers. Mitigations may include allocating fewer buffers (the

buffer_count parameter in the camera configuration), choosing image formats that use less memory, or using lower

resolution images. The following workarounds can also be tried.

Increase the size of the CMA area

The default CMA size on Pi devices is: 256MB if the total system memory is less than or equal to 1GB, otherwise

320MB. CMA memory is still available to the system when "regular" memory starts to run low, so increasing its size

does not normally starve the rest of the operating system.

As a rule of thumb, all systems should usually be able to increase the size to 320MB if they are experiencing problems;

1GB systems could probably go to 384MB and 2GB or larger systems could go as far as 512MB. But you may find that

different limits work best on your own systems, and some experimentation may be necessary.

To change the size of the CMA area, you will need edit the /boot/config.txt file. Find the line that says dtoverlay=vc4-kms-

v3d and replace it with:

• dtoverlay=vc4-kms-v3d,cma-320 for 320MB

The Picamera2 Library

8.3. Pixel formats and memory considerations 47

• dtoverlay=vc4-kms-v3d,cma-384 for 384MB, or

• dtoverlay=vc4-kms-v3d,cma-512 for 512MB.

Do not add any spaces or change any of the formatting from what is provided above.

 NOTE

Anyone using the fkms driver can continue to use it and change the CMA area as described above. Just keep fkms in

the driver name.

 WARNING

Legacy camera-stack users may at some point in time have increased the amount of gpu_mem available in their

system, as this was used by the legacy camera stack. Picamera2 and libcamera make no use of gpu_mem so we

strongly recommend removing any gpu_mem lines from your /boot/config.txt as its only effect is likely to be to waste

memory.

Working with YUV420 images

One final suggestion for reducing the size of images in memory is to use the YUV420 format instead. Third-party

modules often do not support this format very well, so some kind of software conversion to a more familiar RGB format

may be necessary. The benefit of doing this conversion in the application is that the large RGB buffer ends up in user

space where we benefit from virtual memory, and the CMA area only needs space for the smaller YUV420 version.

Fortunately, OpenCV provides a conversion function from YUV420 to RGB. It takes substantially less time to execute

than, for example, the JPEG encoder, so for some applications it may be a good trade-off. The following example shows

how to convert a YUV420 image to RGB:

from picamera2 import Picamera2
import cv2

picam2 = Picamera2()
picam2.create_preview_configuration({"format": "YUV420"})
picam2.start()

yuv420 = picam2.capture_array()
rgb = cv2.cvtColor(yuv420, cv2.COLOR_YUV420pRGB)

This function does not appear to let the application choose the YUV/RGB conversion matrix, however.

Further examples

• yuv_to_rgb.py shows how to convert a YUV420 image to RGB using OpenCV.

8.4. Buffer allocations and queues

Related to the general issue of memory usage is the question of how we know how many buffers (the buffer_count

parameter) we should allocate to the camera. Here are the heuristics used by Picamera2’s default configurations.

• Preview configurations are given four buffers by default. This is normally enough to keep the camera system

running smoothly even when there is moderate additional processing going on.

• Still capture configurations are given only one buffer by default. This is because they can be very large and may

pose particular problems for 512MB platforms. But it does mean that, because of the way the readout from the

image sensor is pipelined, we are certain to drop at least every other camera frame. If you have memory available

and want fast, full-resolution burst captures, you may want to increase this number.

The Picamera2 Library

8.4. Buffer allocations and queues 48

https://github.com/raspberrypi/picamera2/blob/main/examples/yuv_to_rgb.py

• Video configurations allocate six buffers. The system is likely to be more busy while recording video, so the extra

buffers reduce the chances of dropping frames.

Holding on to requests

We have seen how an application can hold on to requests for its own use, during which time they are not available to the

camera system. If this causes unacceptable frame drops, or even stalls the camera system entirely, then the answer is

simply to allocate more buffers to the camera at configuration time.

As a general rule, if your application will only ever be holding on to one request, then it should be sufficient to allocate

just one extra buffer to restore the status quo ante.

Buffer queues within Picamera2

Normally Picamera2 always tries to keep hold of the most recent camera frame to arrive. For example, if an application

does some processing that normally fits within a frame period, but occasionally takes a bit longer (which is always a

particular risk on a multi-tasking operating system), then it’s less likely to drop frames and fall behind.

The length of this queue within Picamera2 is just a single frame. It does mean that, when you ask to capture a frame or

metadata, the function is likely to return immediately, unless you have already made such a request just before.

The exception to this is when the camera is configured with a single buffer (the default setup for still capture), when it is

not possible to hang on to the previous camera image - because there is no "spare" buffer for the camera to fill to

replace it! In this case, no previous frame is held within Picamera2, and requests to capture a frame will always wait for

the next one from the camera. In turn, this does mean there is some risk of image "tearing" in the preview windows

(when the new image replaces the old one half way down the frame).

8.5. Using the camera in Qt applications

The recommended route to creating applications with a camera window embedded into the GUI is through Qt. In fact,

Picamera2’s own preview windows are implemented using Qt, though they are somewhat unconventional and we would

advise against copying them. We’ll see how to make a more standard Qt application here.

Qt widgets

Picamera2 provides two Qt widgets:

• QGlPicamera2 - this is a Qt widget that renders the camera images using hardware acceleration through the Pi’s GPU.

• QPicamera2 - a software rendered but otherwise equivalent widget. This version is much slower and the QGlPicamera2

should be preferred in nearly all circumstances except those where it does not work (for example, the application

has to operate with a remote window through X forwarding).

Both widgets have an add_overlay method which implements the overlay functionality of Picamera2’s preview windows.

This method accepts a single 3-dimensional numpy array as an RGBA image in exactly the same way, making this

feature also avilable to Qt applications.

When the widget is created there is also an optional keep_ar (keep aspect ratio) parameter, defaulting to True. This

allows the application to choose whether camera images should be letter- or pillar-boxed to fit the size of the widget

(keep_ar=True) or stretched to fill it completely, possibly distorting the relative image width and height (keep_ar=False).

Finally, the two Qt widgets both support the transform parameter that allows camera images to be flipped horizontally

and/or vertically as they are drawn to the screen (without having any affect on the camera image itself).

The event loop

When we’re writing a Picamera2 script that runs in the Python interpreter’s main thread, the event loop that drives the

camera system is supplied by the preview window (which may also be the NULL preview that doesn’t display anything).

In this case, however, the Qt event loop effectively becomes the main thread and drives the camera application too.

This is probably the simplest camera-enabled Qt application that we could write:

The Picamera2 Library

8.5. Using the camera in Qt applications 49

from PyQt5.QtWidgets import QApplication
from picamera2.previews.qt import QGlPicamera2
from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())

app = QApplication([])
qpicamera2 = QGlPicamera2(picam2, width=800, height=600, keep_ar=False)
qpicamera2.setWindowTitle("Qt Picamera2 App")

picam2.start()
qpicamera2.show()
app.exec()

In a real application, of course, the qpicamera2 widget will be embedded into the layout of a more complex parent widget

or window.

Invoking camera functions

Camera functions fall broadly into three types for the purposes of this discussion. There are:

1. Functions that return immediately and are safe to call

2. Functions that have to wait for the camera event loop to do something before the operation is complete, so they

must be called in a non-blocking manner, and

3. Functions that should not be called at all.

The following table lists the public API functions and indicates which category they are in:

Table 2. Public APIs in

a Qt application
Function Name Status

create_preview_configuration Safe to call directly

create_still_configuration Safe to call directly

create_video_configuration Safe to call directly

configure Safe to call directly

start Safe to call directly

stop Safe to call directly

start_encoder Safe to call directly

start_recording Safe to call directly

switch_mode Call in a non-blocking manner

switch_mode Call in a non-blocking manner

switch_mode Call in a non-blocking manner

switch_mode Call in a non-blocking manner

capture_file Call in a non-blocking manner

capture_buffer Call in a non-blocking manner

capture_array Call in a non-blocking manner

capture_request Call in a non-blocking manner

capture_request_and_stop Call in a non-blocking manner

capture_image Call in a non-blocking manner

The Picamera2 Library

8.5. Using the camera in Qt applications 50

Function Name Status

capture_metadata Call in a non-blocking manner

switch_mode_and_capture_file Call in a non-blocking manner

switch_mode_and_capture_buffer Call in a non-blocking manner

switch_mode_and_capture_array Call in a non-blocking manner

switch_mode_and_capture_image Call in a non-blocking manner

switch_mode_capture_request_and_stop Call in a non-blocking manner

start_and_capture_file Do not call at all

start_and_capture_files Do not call at all

start_and_record_video Do not call at all

Invoking a blocking camera function in a non-blocking manner

When we’re running a script in the Python interpreter thread, the camera event loop runs asynchronously - meaning we

can ask it to do things and wait for them to finish.

We accomplish this because these functions have a wait and a signal_function parameter which were discussed earlier.

The default values cause the function to block until it is finished, but if we pass a signal_function then the call will return

immediately, and we rely on the signal_function to return control to us.

In the Qt world, the camera thread and the Qt thread are the same, so we simply cannot block for the camera to finish -

because everything will deadlock. Instead, we have to tell these functions that they may not block, and also provide

them with an alternative Qt-friendly way of telling us they’re finished. Therefore, both widgets provide:

• a done_signal member - this is a Qt signal to which an application can connect its own callback function, and

• a signal_done function - which emits the done_signal.

So the steps for an application are:

• Connect a callback function to the done_signal.

• Functions like Picamera2.switch_mode_and_capture_file must be given a signal_function to call when the operation

completes (and which will cause them not to block). Normally we can simply supply the widget’s signal_done

method.

• Remember that we must still call Picamera2.wait when the operation has finished so as to clean everything up tidily.

We finish with a small worked example of this:

from PyQt5 import QtWidgets
from PyQt5.QtWidgets import QPushButton, QVBoxLayout, QApplication, QWidget

from picamera2.previews.qt import QGlPicamera2
from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())

def on_button_clicked():
 button.setEnabled(False)
 cfg = picam2.create_still_configuration()
 picam2.switch_mode_and_capture_file(cfg, "test.jpg", signal_function=qpicamera2.
signal_done)

def capture_done():
 picam2.wait()

The Picamera2 Library

8.5. Using the camera in Qt applications 51

 button.setEnabled(True)

app = QApplication([])
qpicamera2 = QGlPicamera2(picam2, width=800, height=600, keep_ar=False)
button = QPushButton("Click to capture JPEG")
window = QWidget()
qpicamera2.done_signal.connect(capture_done)
button.clicked.connect(on_button_clicked)

layout_v = QVBoxLayout()
layout_v.addWidget(qpicamera2)
layout_v.addWidget(button)
window.setWindowTitle("Qt Picamera2 App")
window.resize(640, 480)
window.setLayout(layout_v)

picam2.start()
window.show()
app.exec()

Observe that:

• The capture_done function is connected to the done_signal.

• When we call switch_mode_and_capture_file we must tell it not to block by supplying a function to call when it is

finished (qpicamera2.signal_done).

• This function emits the done_signal, which gives back control in the capture_done function where we can re-enable

the button.

• Once the operation is done, we must call the wait() method to complete the process before it can be run again.

And here is our sophisticated Qt application in action:

Figure 4. A Qt app

using Picamera2

Further Examples

• app_capture2.py lets you capture a JPEG by clicking a button, and then re-enables the button afterwards using the

Qt signal mechanism.

• app_capture_overlay.py demonstrates the use of overlays in the Qt widgets.

The Picamera2 Library

8.5. Using the camera in Qt applications 52

https://github.com/raspberrypi/picamera2/blob/main/apps/app_capture2.py
https://github.com/raspberrypi/picamera2/blob/main/apps/app_capture_overlay.py

• app_recording.py shows you how to record a video from a Qt application.

The Picamera2 Library

8.5. Using the camera in Qt applications 53

https://github.com/raspberrypi/picamera2/blob/main/apps/app_recording.py

Chapter 9. Application notes
This section answers a selection of "how to" questions for particular use cases.

9.1. Streaming to a network

There are some streaming examples available:

• capture_stream.py - streaming to a TCP socket

• capture_stream_udp.py - streaming to a UDP socket

• mjpeg_server.py - a simple webserver to stream MJPEG video to a web page

There are further examples below showing how to send HSL or MPEG-DASH live streams, and also one where we send

an MPEG-2 transport stream to a socket.

9.2. Output using FFmpeg

The FfmpegOutput class has been discussed previously. Here we give some more complex examples.

9.2.1. HLS live stream

The following FfmpegOutput example shows how to generate an HLS live stream:

from picamera2.outputs import FfmpegOutput

output = FfmpegOutput("-f hls -hls_time 4 -hls_list_size 5 -hls_flags delete_segments
-hls_allow_cache 0 stream.m3u8")

You would also have to start an HTTP server to enable remote clients to access the stream. One simple way to do this

is to open another terminal window in the same folder and enter:

python3 -m http.server

9.2.2. MPEG-DASH live stream

This FfmpegOutput example shows how to generate an MPEG-DASH live stream:

from picamera2.outputs import FfmpegOutput

output = FfmpegOutput("-f dash -window_size 5 -use_template 1 -use_timeline 1 stream.mpd")

You would also have to run an HTTP server just as we saw previously:

The Picamera2 Library

9.1. Streaming to a network 54

https://github.com/raspberrypi/picamera2/blob/main/examples/capture_stream.py
https://github.com/raspberrypi/picamera2/blob/main/examples/capture_stream_udp.py
https://github.com/raspberrypi/picamera2/blob/main/examples/mjpeg_server.py

python3 -m http.server

9.2.3. Sending an MPEG-2 transport stream to a socket

We can create an MPEG-2 transport stream and stream it to a UDP socket. We have to specify the format -f mpegts

because the rest of the output name does not allow it to be deduced:

from picamera2.outputs import FfmpegOutput

output = FfmpegOutput("-f mpegts udp://<ip-addr>:<port>")

Adding audio=True will add and send an audio stream if a microphone is available.

9.3. Multiple outputs

When recording video, it is possible to send the output to more than one place simultaneously. The FileOutput can be

started and stopped explicitly by the application at any time. All we have to do is set its fileoutput property and call the

start() method.

In this example we stream an MPEG-2 transport stream over the network using the UDP protocol where any client may

connect and view the stream. After five seconds we start the second output and record five seconds' worth of H.264

video to a file. We close this output file, but the network stream continues to play.

from picamera2 import Picamera2
from picamera2.encoders import H264Encoder
from picamera2.outputs import FileOutput, FfmpegOutput
import time

picam2 = Picamera2()
video_config = picam2.create_video_configuration()
picam2.configure(video_config)

encoder = H264Encoder(repeat=True, iperiod=15)
output1 = FfmpegOutput("-f mpegts udp://<ip-address>:12345")
output2 = FileOutput()
encoder.output = [output1, output2]

Start streaming to the network.
picam2.start_encoder(encoder)
picam2.start()
time.sleep(5)

Start recording to a file.
output2.fileoutput = "test.h264"
output2.start()
time.sleep(5)
output2.stop()

The file is closed, but carry on streaming to the network.
time.sleep(9999999)

The Picamera2 Library

9.3. Multiple outputs 55

9.4. Manipulate camera buffers in place

We have already presented one example where we manipulate camera buffers in place.

Here, we imagine that we want to receive a camera image and use OpenCV to perform face detection. Rather than using

OpenCV to display the resulting image (which would be at the framerate we use to perform the face detection), we are

going to use Picamera2’s own preview window, running at 30 frames per second.

Before each frame is displayed, we draw the face rectangles in place on the image. The face rectangles correspond to

the locations returned when the face detector last ran - so while the preview image updates at the full rate, the face

boxes move only at the face detector’s rate.

from picamera2 import Picamera2, MappedArray
import cv2

face_detector = cv2.CascadeClassifier("/path/to/haarcascade_frontalface_default.xml")

def draw_faces(request):
 with MappedArray(request, "main") as m:
 for f in faces:
 (x, y, w, h) = [c * n // d for c, n, d in zip(f, (w0, h0) * 2, (w1, h1) * 2)]
 cv2.rectangle(m.array, (x, y), (x + w, y + h), (0, 255, 0, 0))

picam2 = Picamera2()
config = picam2.create_preview_configuration(main={"size": (640, 480)},
 lores={"size": (320, 240), "format": "YUV420"})
picam2.configure(config)

(w0, h0) = picam2.stream_configuration("main")["size"]
(w1, h1) = picam2.stream_configuration("lores")["size"]
faces = []
picam2.post_callback = draw_faces

picam2.start(show_preview=True)
while True:
 array = picam2.capture_array("lores")
 grey = array[h1,:]
 faces = face_detector.detectMultiScale(grey, 1.1, 3)

The Picamera2 Library

9.4. Manipulate camera buffers in place 56

Appendix A: Pixel and image
formats
The table below lists the image and pixel formats supported by Picamera2. For each format we list:

• The number of bits per pixel

• The optimal alignment for this format in units of pixels

• The shape of an image as reported by numpy on an array obtained using capture_array (where supported)

Table 3. Different

image formats
Bits per

pixel

Optimal

alignment

Shape Description

XBGR8888 32 16 (height, width, 4) RGB format with an alpha channel. Each pixel is laid out as [R, G,

B, A] where the A (or alpha) value is fixed at 255.

XRGB8888 32 16 (height, width, 4) RGB format with an alpha channel. Each pixel is laid out as [B, G,

R, A] where the A (or alpha) value is fixed at 255.

BGR888 24 32 (height, width, 3) RGB format. Each pixel is laid out as [R, G, B].

RGB888 24 32 (height, width, 3) RGB format. Each pixel is laid out as [B, G, R].

YUV420 12 64 (height×3/2, width) YUV 4:2:0 format. There are height rows of Y values, then

height/2 rows of half-width U and height/2 rows of half-width V.

The array form has two rows of U (or V) values on each row of the

matrix.

YVU420 12 64 (height×3/2, width) YUV 4:2:0 format. There are height rows of Y values, then

height/2 rows of half-width V and height/2 rows of half-width U.

The array form has two rows of V (or U) values on each row of the

matrix.

NV12 12 32 Unsupported YUV 4:2:0 format. A plane of height×stride Y values followed by

height/2×stride interleaved U and V values.

NV21 12 32 Unsupported YUV 4:2:0 format. A plane of height×stride Y values followed by

height/2×stride interleaved V and U values.

YUYV 16 32 Unsupported YUV 4:2:2 format. A plane of height×stride interleaved values in

the order Y U Y V for every two pixels.

YVYU 16 32 Unsupported YUV 4:2:2 format. A plane of height×stride interleaved values in

the order Y V Y U for every two pixels.

UYVY 16 32 Unsupported YUV 4:2:2 format. A plane of height×stride interleaved values in

the order U Y V Y for every two pixels.

VYUY 16 32 Unsupported YUV 4:2:2 format. A plane of height×stride interleaved values in

the order V Y U Y for every two pixels.

The final table lists the extent of support for each of these formats, both in Picamera2 and in some third party libraries.

Table 4. Support for

different image

formats

XRGB8888/XBGR8888 RGB888/BGR888 YUV420/YVU420 NV12/NV21 YUYV/UYVY YVYU/VYUY

Capture buffer Yes Yes Yes Yes Yes Yes

Capture array Yes Yes Yes No No No

QtGL preview Yes No Yes No Yes No

The Picamera2 Library

Appendix A: Pixel and image formats 57

XRGB8888/XBGR8888 RGB888/BGR888 YUV420/YVU420 NV12/NV21 YUYV/UYVY YVYU/VYUY

Qt preview Yes, slow Yes, slow Requires OpenCV,

very slow

No No No

DRM preview Yes Yes Yes No No No

Null preview Yes Yes Yes Yes Yes Yes

JPEG encode Yes Yes No No No No

Video encode Yes Yes Yes Yes Yes Yes

OpenCV Often Yes Convert to RGB only No No No

Python image

library

Yes Yes No No No No

The Picamera2 Library

Appendix A: Pixel and image formats 58

Appendix B: Camera configuration
parameters
The table below lists all camera configuration parameters, the allowed values, and gives a description. We start with the

global parameters: those which are not specific to any of the main, lores or raw streams.

Table 5. Global

camera configuration

parameters

Parameter name Permitted values Description

"use_case" "preview"

"still"

"video"

This parameter only exists as an aid to users, to show the intented use

for configurations. The create_preview_configuration() will create

configurations where this is set to "preview"; still and video versions

work the same way.

"transform" Transform()

Transform(hflip=1)

Transform(vflip=1)

Transform(hflip=1, vflip=1)

The 2D plane transform that is applied to all images from all the

configured streams. The listed values represent, respectively, the

identity transform, a horizontal mirror, a vertical flip and a 180 degree

rotation. The default is always the identity transform.

"colour_space" Sycc()

Smpte170m()

Rec709()

The colour space to be used for the main and lores streams. The

allowed values are either the JPEG colour space (meaning sRGB

primaries and transfer function and full-range BT.601 YCbCr

encoding), the SMPTE 170M colour space or the Rec.709 colour

space.

create_preview_configuration() and create_still_configuration() both

default to Sycc(). create_video_configuration() chooses Sycc() if the

main stream is using an RGB format. For YUV formats it will default to

Smpte170m() if the resolution is smaller than 1280x720, otherwise

Rec709().

For any raw stream, the colour space will always implicitly be the

image sensor’s native colour space.

"buffer_count" 1, 2, … The number of sets of buffers to allocate for requests, which becomes

the number of "request" objects that are available to the camera

system. By default we choose four for preview configurations, one for

still capture configurations, and six for video.

Increasing the number of buffers will tend to lead to fewer frame

drops, although this comes with diminishing returns. The maximum

possible number of buffers depends on the platform, the image

resolution, the amount of CMA allocated.

"display" None

"main"

"lores"

The name of the stream that will be displayed in the preview window

(if one is running). Normally the main stream will be displayed, though

the lores stream can be shown instead when it is defined. By default,

create_still_configuration() will use the value None, as the buffers are

typically very large and can lead to memory fragmentation problems in

some circumstances if the display stack is holding on to them.

"encode" None

"main"

"lores"

The name of the stream that will be used for video recording. By

default create_video_configuration() will set this to the main stream,

though the lores stream can also be used if it is defined. For preview

and still use cases the value will be set to None.

The Picamera2 Library

Appendix B: Camera configuration parameters 59

Parameter name Permitted values Description

"controls" Please refer to the camera

controls section.

With this parameter we can specify a set of runtime controls that can

be regarded as part of the camera configuration, and applied

whenever the configuration is (re-)applied. Different use cases may

also supply some slightly different default control values.

Next we list the stream-specific configuration parameters.

Table 6. Stream-

specific configuration

parameters

Parameter name Permitted values Description

"format" A string describing the

image format. Please refer

to this table.

The pixel and image format. Please refer to the linked table for a full

description.

For raw streams the permitted values will be raw image formats and

can be listed either by querying the Picamera2.sensor_modes property or

from a terminal by running libcamera-hello --list-cameras. The formats

will be the strings that start with an uppercase S and are followed by

something like RGGB or GBRG. The trailing _CSI2P may be omitted if

unpacked raw pixels are required, though in most cases this it not

recommended as it uses more total memory and more system

memory bandwidth.

"size" (width, height) A tuple of two values giving the width and height of the output image.

Both numbers should be no less than 64.

For raw streams, the allowed resolutions are listed again by libcamera-

hello --list-cameras, along with the correct format to use for that

resolution. You can pick different sizes, but the system will simply use

whichever of the allowed values it deems to be "closest".

The Picamera2 Library

Appendix B: Camera configuration parameters 60

Appendix C: Camera controls
Setting enum control values

Some camera controls have enum values, that is to say, an explicitly enumerated list of acceptable values. To use such

values, the correct method would be to import controls from libcamera and use code like the following:

from picamera2 import Picamera2
from libcamera import controls

picam2 = Picamera2()
picam2.set_controls({"AeMeteringMode": controls.AeMeteringModeEnum.Spot})

Controls that change with the camera configuration

Some controls have limits that change with the camera configuration. In this case the valid range of values can be

queried from the camera_controls property where each control has a (minimum_value, maximum_value, default_value) triple.

The controls specifically affected are: AnalogueGain, ExposureTime, FrameDurationLimits and ScalerCrop. For example:

from picamera2 import Picamera2

picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())
min_exp, max_exp, default_exp = picam2.camera_controls["ExposureTime"]

Camera controls and image metadata

Note that controls also double up as values reported in captured image metadata. Some controls only appear in such

metadata, which means they cannot be set, therefore making them read-only. We indicate this in the table below.

Table 7. Available

camera controls
Control name Description Permitted values

"AeConstraintMode" Sets the constraint mode of the AEC/AGC

algorithm.[1]

AeConstraintModeEnum followed by one of:

Normal - normal metering

Highlight - meter for highlights

Shadows - meter for shadows

Custom - user-defined metering

"AeEnable" Allow the AEC/AGC algorithm to be turned on

and off. When if is off, there will be no

automatic updates to the camera’s gain or

exposure settings.

False - turn AEC/AGC off

True - turn AEC/AGC on

"AeExposureMode" Sets the exposure mode of the AEC/AGC

algorithm.[1]

AeExposureModeEnum followed by one of:

Normal - normal exposures

Short - use shorter exposures

Long - use longer exposures

Custom - use custom exposures

"AeMeteringMode" Sets the metering mode of the AEC/AGC

algorithm.[1]

AeMeteringModeEnum followed by one of:

CentreWeighted - centre weighted metering

Spot - spot metering

Matrix - matrix metering

Custom - custom metering

The Picamera2 Library

Appendix C: Camera controls 61

Control name Description Permitted values

"AnalogueGain" Analogue gain applied by the sensor. Consult the camera_controls property.

"AwbEnable" Turn the auto white balance (AWB) algorithm

on or off. When it is off, there will be no

automatic updates to the colour gains.

False - turn AWB off

True - turn AWB on

"AwbMode" Sets the mode of the AWB algorithm.[2] AwbModeEnum followed by one of:

Auto - any illumant

Tungsten - tungsten lighting

Fluorescent - fluorescent lighting

Indoor - indoor illumination

Daylight - daylight illumination

Cloudy - cloudy illumination

Custom - custom setting

"Brightness" Adjusts the image brightness where -1.0 is

very dark, 1.0 is very bright, and 0.0 is the

default "normal" brightness.

Floating point number from -1.0 to 1.0

"ColourCorrectionMatrix" The 3×3 matrix used within the image signal

processor (ISP) to convert the raw camera

colours to sRGB. This control appears only in

captured image metadata and is read-only.

Tuple of nine floating point numbers

between -16.0 and 16.0.

"ColourGains" Pair of numbers where the first is the red gain

(the gain applied to red pixels by the AWB

algorithm) and the second is the blue gain.

Setting these numbers disables AWB.

Tuple of two floating point numbers

between 0.0 and 32.0.

"ColourTemperature" An estimate of the colour temperature (in

Kelvin) of the current image. It is only available

in captured image metadata, and is read-only.

Integer

"Contrast" Sets the contrast of the image, where zero

means "no contrast", 1.0 is the default "normal"

contrast, and larger values increase the

contrast proportionately.

Floating point number from 0.0 to 32.0

"DigitalGain" The amount of digital gain applied to an

image. Digital gain is used automatically when

the sensor’s analogue gain control cannot go

high enough, and so this value is only reported

in captured image metadata. It cannot be set

directly - users should set the AnalogueGain

instead and digital gain will be used when

needed.

Floating point number

"ExposureTime" Exposure time for the sensor to use, measured

in microseconds.

Consult the camera_controls property

"ExposureValue" Exposure compensation value in "stops", which

adjusts the target of the AEC/AGC algorithm.

Positive values increase the target brightness,

and negative values decrease it. Zero

represents the base or "normal" exposure level.

Floating point number between -8.0 and 8.0

The Picamera2 Library

Appendix C: Camera controls 62

Control name Description Permitted values

"FrameDuration" The amount of time (in microseconds) since

the previous camera frame. This value is only

available in captured image metadata and is

read-only. To change the camera’s framerate,

the "FrameDurationLimits" control should be

used.

Integer

"FrameDurationLimits" The maximum and minimum time that the

sensor can take to deliver a frame, measured

in microseconds. So the reciprocals of these

values (first divided by 1000000) will give the

minimum and maximum framerates that the

sensor can deliver.

Consult the camera_controls property

"Lux" An estimate of the brightness (in lux) of the

scene. It is available only in captured image

metadata and is read-only.

Integer

"NoiseReductionMode" Selects a suitable noise reduction mode.

Normally Picamera2’s configuration will select

an appropriate mode automatically, so it

should not normally be necessary to change it.

The HighQuality noise reduction mode can be

expected to affect the maximum achievable

framerate.

draft.NoiseReductionModeEnum followed by one

of:

Off - no noise reduction

Fast - fast noise reduction

HighQuality - best noise reduction

"Saturation" Amount of colour saturation, where zero

produces greyscale images, 1.0 represents

default "normal" saturation, and higher values

produce more saturated colours.

Floating point number from 0.0 to 32.0

"ScalerCrop" The scaler crop rectangle determines which

part of the image received from the sensor is

cropped and then scaled to produce an output

image of the correct size. It can be used to

implement digital pan and zoom. The

coordinates are always given from within the

full sensor resolution.

A libcamera.Rectangle consisting of:

x_offset

y_offset

width

height

"SensorTimestamp" The time this frame was produced by the

sensor, measured in nanoseconds since the

system booted. This control appears only in

captured image metadata and is read-only.

Integer

"SensorBlackLevels" The black levels of the raw sensor image. This

control appears only in captured image

metadata and is read-only. One value is

reported for each of the four Bayer channels,

scaled up as if the full pixel range were 16 bits

(so 4096 represents a black level of 16 in 10-

bit raw data).

Tuple of four integers

"Sharpness" Sets the image sharpness, where zero implies

no additional sharpening is performed, 1.0 is

the default "normal" level of sharpening, and

larger values apply proportionately stronger

sharpening.

Floating point number from 0.0 to 16.0

The Picamera2 Library

Appendix C: Camera controls 63

[1] See https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf section 5.8.

[2] See https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf section 5.7.

The Picamera2 Library

Appendix C: Camera controls 64

https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf
https://datasheets.raspberrypi.com/camera/raspberry-pi-camera-guide.pdf

Appendix D: Camera properties
All the available camera properties are listed in the table below. Some properties are updated only when a camera mode

is configured. They can be accessed through the Picamera2 object’s camera_properties property and are all read-only.

Table 8. Camera

properties
Property name Description Datatype

"ColourFilterArrangement" A number representing the native Bayer order of sensor (before

any rotation is taken into account).

0 - RGGB

1 - GRBG

2 - GBRG

3 - BGGR

4 - monochrome

"Location" An integer which specifies where on the device the camera is

situated (for example, front or back). For the Raspberry Pi, the

value has no meaning.

Integer

"Model" The name that the attached sensor advertises. String

"PixelArrayActiveAreas" The active area of the sensor’s pixel array within the entire sensor

pixel array. Given as a tuple of (x_offset, y_offset, width, height)

values.

Tuple of four integers

"PixelArraySize" The size of the active pixel area as an (x, y) tuple. This is the full

available resolution of the sensor.

Tuple of two integers

"Rotation" The rotation of the sensor relative to the camera board. On many

Raspberry Pi devices, the sensor is actually upside down when the

camera board is held with the connector at the bottom, and these

will return a value of 180° here.

Integer

"ScalerCropMaximum" This value is updated when a camera mode is configured. It

returns the rectangle as a (x_offset, y_offset, width, height)

tuple within the pixel area active area, that is read out by this

camera mode.

Tuple of 4 integers

"SensorSensitivity" This value is updated when a camera mode is configured. It

represents a relative sensitivity of this camera mode compared to

other camera modes. Usually, camera modes all have the same

sensitivity so that the same exposure time and gain yield an

image of the same brightness. Sometimes cameras have modes

where this is not true, and to get the same brightness you would

have to adjust the total requested exposure by the ratio of these

sensitivities. For most sensors this will always return 1.0.

Floating point number

"UnitCellSize" The physical size of this sensor’s pixels, if known. Given as an (x,

y) tuple in units of nanometres.

Tuple of two integers

The Picamera2 Library

Appendix D: Camera properties 65

	The Picamera2 Library
	Colophon
	Legal disclaimer notice
	Table of contents

	Chapter 1. Introduction
	Chapter 2. Getting started
	2.1. Requirements
	2.2. Installation and updating
	2.3. A first example
	2.4. Picamera2’s high-level API
	2.5. Additional software
	2.5.1. OpenCV
	2.5.2. TensorFlow Lite
	2.5.3. FFmpeg

	2.6. Further examples

	Chapter 3. Preview windows
	3.1. Preview window parameters
	3.2. Preview window implementations
	3.2.1. QtGL preview
	3.2.2. DRM/KMS preview
	3.2.3. Qt preview
	3.2.4. NULL preview

	3.3. Starting and stopping previews
	3.4. Remote preview windows
	3.5. Further preview topics
	3.6. Further examples

	Chapter 4. Configuring the camera
	4.1. Generating and using a camera configuration
	4.2. Configurations in more detail
	4.2.1. General configuration parameters
	4.2.2. Stream configuration parameters
	4.2.3. Configurations and runtime camera controls

	4.3. Configuration objects
	4.4. Further examples

	Chapter 5. Camera controls and properties
	5.1. Camera controls
	5.1.1. How to set camera controls
	5.1.2. Object syntax for camera controls

	5.2. Camera properties
	5.3. Further examples

	Chapter 6. Capturing images and requests
	6.1. Capturing images
	6.1.1. Capturing arrays
	6.1.2. Capturing PIL images
	6.1.3. Switching camera mode and capturing
	6.1.4. Capturing straight to files and file-like objects

	6.2. Capturing metadata
	6.3. Capturing multiple images at once
	6.4. Capturing requests
	6.5. Asynchronous capture
	6.6. High-level capture API
	6.6.1. start_and_capture_file
	6.6.2. start_and_capture_files

	6.7. Further examples

	Chapter 7. Capturing videos
	7.1. Encoders
	7.1.1. H264Encoder
	7.1.2. MJPEGEncoder

	7.2. Outputs
	7.2.1. FileOutput
	7.2.2. FfmpegOutput
	7.2.3. CircularOutput

	7.3. High-level video recording API
	7.4. Further examples

	Chapter 8. Advanced topics
	8.1. Display overlays
	8.2. The event loop
	8.2.1. Using the event loop callbacks
	8.2.2. Dispatching tasks into the event loop

	8.3. Pixel formats and memory considerations
	8.4. Buffer allocations and queues
	8.5. Using the camera in Qt applications

	Chapter 9. Application notes
	9.1. Streaming to a network
	9.2. Output using FFmpeg
	9.2.1. HLS live stream
	9.2.2. MPEG-DASH live stream
	9.2.3. Sending an MPEG-2 transport stream to a socket

	9.3. Multiple outputs
	9.4. Manipulate camera buffers in place

	Appendix A: Pixel and image formats
	Appendix B: Camera configuration parameters
	Appendix C: Camera controls
	Appendix D: Camera properties

