## voltbricks

DATASHEET

## Cepuя VDRI VDRI20, VDRI30

Миниатюрные DC/DC преобразователи для промышленных сфер



#### 1. Описание

Универсальные изолированные импульсные DC/DC преобразователи повышенной надежности с увеличенным ресурсом эксплуатации для использования в аппаратуре промышленного назначения.

Использование герметизирующей заливки обеспечивает надежную защиту от внешних воздействующих факторов и допускает применение в широком температурном диапазоне.

Каждая партия изделий, при производстве проходит проверку на соответствие нескольким десяткам электрических параметров, а также подвергается специальным видам температурных и производственных испытаний.

Назначение выводов является стандартным и позволяет без переразводки печатной платы применять преобразователи разных производителей в этом форм-факторе.

#### 1.1. Разработаны в соответствии

- Климатическое исполнение, стойкость к ВВФ «02.1»<sup>[1]</sup> по ГОСТ 15150
- Контроль стойкости к ВВФ ГОСТ 20.57.406
- Прочность изоляции, сопротивление изоляции ГОСТ 12997
- Требования к безопасности EN 60950
- Электромагнитная совместимость EN 55032 Class B

#### 1.2. Особенности

- Гарантия 3 года
- Форм-фактор 1×1 inch
- Выходной ток до 9 А
- Рабочая температура корпуса -40...+105 °C
- Низкопрофильная 10,2 мм конструкция
- Защита от КЗ и перенапряжения
- Дистанционное вкл/выкл
- Пиковый КПД 90%
- Герметизирующая заливка

#### 1.3. Дополнительная информация

#### 1.3.1. Описание на сайте производителя

https://voltbricks.ru/product/vdri



#### 1.3.2. Отдел продаж

+7 473 211-22-80; sales@voltbricks.ru

#### 1.3.3. Техническая поддержка

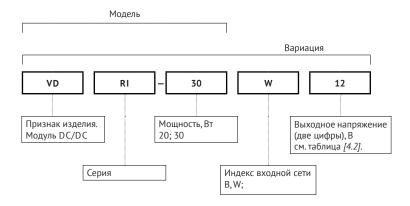
support@voltbricks.ru

#### 1.3.4. Обзор преобразователей на YouTube

https://youtu.be/naF61AIW3VM



[1] С ограничениями в соответствии с ТУ.


## 2. Содержание

| 1. Описание                                                    | 1   |
|----------------------------------------------------------------|-----|
| 1.1. Разработаны в соответствии                                | 1   |
| 1.2. Особенности                                               | 1   |
| 1.3. Дополнительная информация                                 | 1   |
| 1.3.1. Описание на сайте производителя                         | 1   |
| 1.3.2. Отдел продаж                                            | 1   |
| 1.3.3. Техническая поддержка                                   | 1   |
| 1.3.4. Обзор преобразователей на YouTube                       | 1   |
| 2. Содержание                                                  | 2   |
| 3. Условное обозначение модулей                                | 2   |
| 3.1. Сокращения                                                | 3   |
| 4. Характеристики преобразователей                             | 3   |
| 4.1. Входные характеристики                                    | 3   |
| 4.2. Выходные характеристики                                   | 3   |
| 4.3. Общие характеристики                                      | 4   |
| 4.4. Защитные функции                                          | 5   |
| 4.5. Конструктивные параметры                                  | 5   |
| 4.6. Функциональная схема                                      | 5   |
| 5. Схемы включения                                             | 6   |
| 5.1. Типовая схема включения                                   | 6   |
| 5.2. Схема включения для соответствия стандарту EN 55032 Class |     |
|                                                                |     |
| 5.3. Схема включения для соответствия стандарту EN 55032 Class |     |
|                                                                | . 7 |
| 5.4. Схема включения для соответствия стандарту                |     |
| MIL-STD-461F CE102                                             | 8   |

| 6. Сервисные функции                      | 9               |
|-------------------------------------------|-----------------|
| 6.1. Дистанционное управление             | 9               |
| 6.1.1. Выключение модулей путем соединен  | ия вывода «ВКЛ/ |
| ВЫКЛ» с выводом «-ВХ»                     | 9               |
| 6.1.2. Выключение модулей путем подачи    |                 |
| управляющего сигнала                      | 9               |
| 6.2. Регулировка                          | 9               |
| 7. Результаты испытаний                   | 10              |
| 7.1. Зависимость КПД от нагрузки          |                 |
| 7.1.1. VDRI30 с индексом входной сети «В» |                 |
| 7.1.2. VDRI30 с индексом входной сети «W» | 12              |
| 7.2. Ограничение мощности                 | 13              |
| 7.3. Осциллограммы                        | 14              |
| 7.3.1. Измерения для VDRI30B05            | 14              |
| 7.3.2. Измерения для VDRI30W05            |                 |
| 7.4. Спектрограммы радиопомех             | 16              |
| 7.4.1. VDRI20B05                          | 16              |
| 7.4.2. VDR120B24                          | 16              |
| 7.4.3. VDR120W24                          | 17              |
| 7.4.4. VDR120W48                          | 17              |
| 7.4.5. VDR130B05                          | 18              |
| 7.4.6. VDR130B24                          | 18              |
| 7.4.7. VDRI30W24                          | 19              |
| 7.4.8. VDR130W48                          | 19              |
| 8 Габаритине портожи                      | 20              |

## 3. Условное обозначение модулей

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 473 211-22-80 или электронной почте sales@voltbricks.ru



## 3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

| Сокращение                               | Описание                                                                 |
|------------------------------------------|--------------------------------------------------------------------------|
| $P_{B \cup X}$                           | Выходная мощность                                                        |
| $U_{BblX.HOM}$                           | Номинальное выходное напряжение                                          |
| I <sub>Bых.ном</sub>                     | Номинальный выходной ток                                                 |
| І <sub>вых.мин</sub>                     | Минимальный выходной ток                                                 |
| U <sub>BX.HOM</sub>                      | Номинальное входное напряжение                                           |
| U <sub>BX.MNH</sub> U <sub>BX.MAKC</sub> | Диапазон входного напряжения                                             |
| Ткорп                                    | Рабочая температура корпуса                                              |
| TOKP                                     | Рабочая температура окружающей среды                                     |
| НКУ                                      | Нормальные климатические условия (температура воздуха от 15 °C до 35 °C) |
| ТУ                                       | Технические условия ТУЛВ.436630.005ТУ                                    |

## 4. Характеристики преобразователей

Обращаем внимание, что информация в настоящем документе является не полной. Более подробная информация (дополнительные требования, типовые схемы, правила эксплуатации) приведена в технических условиях. Сами технические условия, а также 3D модели преобразователей и Footprints доступны для скачивания на сайте www.voltbricks.ru в разделе «Документация».

#### 4.1. Входные характеристики

| Параметр                       | Условия                         | Значение |
|--------------------------------|---------------------------------|----------|
| Номинальное входное напряжение | Индекс «В»                      | 24 B     |
|                                | Индекс «W»                      | 48 B     |
| Диапазон входного напряжения   | U <sub>BX.HOM</sub> =24B        | 936 B    |
|                                | U <sub>BX.HOM</sub> =48 B       | 1875 B   |
| Переходное отклонение $U_{BX}$ | U <sub>вх.ном</sub> =24 В @ 1 с | 840 B    |
|                                | U <sub>вх.ном</sub> =48 В @ 1 с | 1680 B   |

#### 4.2. Выходные характеристики

| Параметр                                          | Условия                                           | Значение                        |                             |
|---------------------------------------------------|---------------------------------------------------|---------------------------------|-----------------------------|
| Мощность                                          |                                                   | 20; 30 Вт                       |                             |
| Количество выходных каналов                       |                                                   | 1                               |                             |
| Номинальное выходное напряжение                   |                                                   | 3,3; 5; 9; 12; 15; 24; 48       | 3                           |
| Минимальный выходной ток                          |                                                   | 0 A                             |                             |
| Номинальный* выходной ток                         |                                                   | для Р <sub>ВЫХ</sub> =20 Вт     | для Р <sub>вых</sub> =30 Вт |
|                                                   | 3,3                                               | 6 A                             | 9 A                         |
|                                                   | 5                                                 | 4 A                             | 6 A                         |
|                                                   | 9                                                 | 2,2 A                           | 3,3 A                       |
|                                                   | 12                                                | 1,67 A                          | 2,5 A                       |
|                                                   | 15                                                | 1,33 A                          | 2 A                         |
|                                                   | 24                                                | 0,83 A                          | 1,25 A                      |
|                                                   | 48                                                | 0,42 A                          | 0,63 A                      |
| Подстройка выходного напряжения                   |                                                   | мин. ±10 % U <sub>вых.ном</sub> |                             |
| Установившееся отклонение выходного<br>напряжения | U <sub>BX.HOM</sub> , I <sub>BЫX.MAKC</sub> , HKY | макс. ±1 % U <sub>вых.ном</sub> |                             |

| Параметр                                                             | Условия                                                                                                                                                                           |                                                                             | Значение                                                                                                     |                                                                                                                |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Нестабильность выходного напряжения                                  | При плавном изменении $U_{BX}$ , в диапазоне установившегося значения                                                                                                             |                                                                             | макс. ±0,5 % U <sub>вых.ном</sub>                                                                            |                                                                                                                |
|                                                                      | При плавном изменен 0,051×I <sub>ВЫХ.МАКС</sub>                                                                                                                                   | При плавном изменении $I_{BblX}$ , в диапазоне $0,051 \times I_{BblX,MAKC}$ |                                                                                                              |                                                                                                                |
|                                                                      | Температурная нестаб                                                                                                                                                              | ильность                                                                    | макс. ±2 % U <sub>вых.ном</sub>                                                                              |                                                                                                                |
|                                                                      | Временная нестабильн                                                                                                                                                              | НОСТЬ                                                                       | макс. ±0,5 % U <sub>вых.ном</sub>                                                                            |                                                                                                                |
|                                                                      | Суммарная нестабилы $U_{BX}, I_{BMX}$ и $T_{OKP}$                                                                                                                                 | ность во всем диапазоне                                                     | макс. ±4 % U <sub>вых.ном</sub>                                                                              |                                                                                                                |
| Размах пульсаций (пик-пик)                                           | U <sub>BыX</sub> ≤5 B                                                                                                                                                             | типовое                                                                     | <15 мВ                                                                                                       |                                                                                                                |
|                                                                      |                                                                                                                                                                                   | максимальное                                                                | <50 мВ                                                                                                       |                                                                                                                |
|                                                                      | U <sub>B Ы X</sub> > 5 B                                                                                                                                                          | типовое                                                                     | <20 мВ                                                                                                       |                                                                                                                |
|                                                                      |                                                                                                                                                                                   | максимальное                                                                | <1% от U <sub>вых.ном</sub>                                                                                  |                                                                                                                |
| Максимальная суммарная ёмкость конденсаторов на вы-<br>ходе модуля** | U <sub>Bыx</sub> =3,3 B<br>U <sub>Bыx</sub> =5 B<br>U <sub>Bыx</sub> =9 B<br>U <sub>Bыx</sub> =12 B<br>U <sub>Bыx</sub> =15 B<br>U <sub>Bыx</sub> =24 B<br>U <sub>Bыx</sub> =48 B |                                                                             | для Р <sub>ВЫХ</sub> =20 Вт<br>10000 мкФ<br>7000 мкФ<br>2000 мкФ<br>1100 мкФ<br>750 мкФ<br>300 мкФ<br>70 мкФ | для Р <sub>ВЫХ</sub> =30 ВТ<br>10000 мкФ<br>9000 мкФ<br>3100 мкФ<br>1700 мкФ<br>1100 мкФ<br>450 мкФ<br>100 мкФ |
| Время включения                                                      | I <sub>Bых.номс</sub> + C <sub>MAKC.</sub>                                                                                                                                        |                                                                             | <0,05 c                                                                                                      |                                                                                                                |
| Переходное отклонение выходного напряжения от U <sub>ном</sub>       | ¬вых.номс ¬макс. При изменении U <sub>вх.ном</sub> до 1,4×U <sub>вх.ном</sub> ; в пределах (0,751)×I <sub>вых.макс</sub> ; длительность фронта >100 мкс.                          |                                                                             | макс. ±5 %                                                                                                   |                                                                                                                |

 $<sup>^*</sup>$ Длительная эксплуатация при токах выше номинальных значений не допускается.

#### 4.3. Общие характеристики

| Параметр                               | Условия                                       | Значение                                      |
|----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Рабочая температура корпуса            |                                               | −40+105 °C                                    |
| Рабочая температура окружающей среды   | При соблюдении температуры корпуса            | −40+85 °C                                     |
| Температура хранения                   |                                               | −50+110 °C                                    |
| Частота преобразования                 |                                               | 350–400 кГц                                   |
| Прочность изоляции @ 60 с              | Вход/выход, вход/корпус, выход/корпус         | =1500 B                                       |
| Сопротивление изоляции @ =500 В        | Вход/выход, вход/корпус, выход/корпус         | не менее 1 ГОм                                |
| Тепловое сопротивление корпуса         |                                               | 15 °С/Вт                                      |
| Типовой коэффициент полезного действия | U <sub>BX</sub> =24 B, U <sub>BыX</sub> =12 B | 90 %                                          |
|                                        | U <sub>BX</sub> =48 B, U <sub>BыX</sub> =12 B | 90 %                                          |
| Дистанционное вкл/выкл                 |                                               | 01 В или соединение выводов ВКЛ и −ВХ, I≤5 мА |
| MTBF                                   | T <sub>KOPП</sub> =75 °C, P=70 %              | 585 000 ч                                     |
| Срок гарантии                          |                                               | 3 года                                        |

<sup>\*\*</sup> При работе преобразователя с  $I_{\text{вых}} < 58 \times I_{\text{вых,ном}}$  и суммарным значением ёмкости выходных конденсаторов близким к максимальному значению, возможно появление увеличенного значения пульсаций выходного напряжения.

#### 4.4. Защитные функции

Параметры являются справочными. Не рекомендуется долговременное использование модуля с превышением максимального выходного тока. При срабатывании защит от короткого замыкания и перенапряжения на выходе преобразователи переходят в режим «релаксации» (Hiccup mode).

| Параметр                           | Условия                        | Значение                             |
|------------------------------------|--------------------------------|--------------------------------------|
| Защита от короткого замыкания      | 20 Вт                          | до 3 І <sub>вых.макс</sub>           |
|                                    | 30 BT                          | до 2 І <sub>вых.макс</sub>           |
| Защита от перенапряжения на выходе |                                | 1,3 U <sub>Bых.ном</sub>             |
| Синусоидальная вибрация            |                                | 102000 Гц, 200 (20) м/c² (g), 0,3 мм |
| Устойчивость к пыли                |                                | есть                                 |
| Устойчивость к соляному туману     |                                | есть                                 |
| Устойчивость к влаге               | 98% при Т <sub>ОКР</sub> =35°C | есть                                 |

#### 4.5. Конструктивные параметры

| Параметр                     | Условия           | Значение                |
|------------------------------|-------------------|-------------------------|
| Форм-фактор                  |                   | 1×1 inch                |
| Материал корпуса             |                   | алюминий                |
| Материал покрытия            |                   | мдо                     |
| Материал выводов             |                   | бронза                  |
| Macca                        |                   | макс. 20 г              |
| Температура пайки 5 с 260 °C |                   | 260 °C                  |
| Габаритные размеры           | Без учета выводов | макс. 25,4×25,4×10,2 мм |

По согласованию с изготовителем возможно расширение характеристик.

Также возможно исследование и нормирование нерегламентируемых характеристик и параметров.

#### 4.6. Функциональная схема

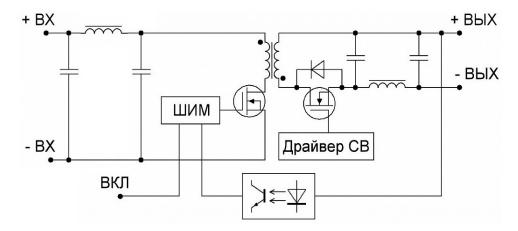



Рис. 1. Функциональная схема VDR120, VDR130.

#### 5. Схемы включения

#### 5.1. Типовая схема включения

 $R_{\rm H}$  — нагрузка.

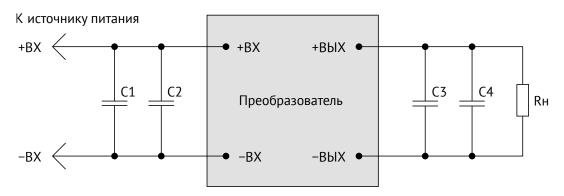



Рис. 2. Типовая схема включения VDR120, VDR130.

| Наименование | Тип элемента             | Комментарий         |                                                                    | VDRI20             | VDRI30                                          |
|--------------|--------------------------|---------------------|--------------------------------------------------------------------|--------------------|-------------------------------------------------|
| C1           | танталовый конденсатор   | Входное напряжение  | =24 B<br>=48 B                                                     | 22 мкФ<br>22 мкФ   | 47 мкФ<br>33 мкФ                                |
| C2           | керамический конденсатор |                     | =24 B<br>=48 B                                                     | 4,7 мкФ<br>4,7 мкФ | 10 мкФ<br>6,8 мкФ                               |
| C3           | керамический конденсатор | Выходное напряжение | от 3,3 до 15 В вкл.<br>=24 В<br>=48 В                              | 4                  | 10 мкФ<br>4,7 мкФ<br>2,2 мкФ                    |
| C4           | танталовый конденсатор   | Выходное напряжение | =3,3 B<br>=5 B<br>от 9 до 12 В вкл.<br>=15 B<br>от 24 до 48 В вкл. |                    | .00 мкФ<br>68 мкФ<br>47 мкФ<br>33 мкФ<br>10 мкФ |

Табл. 1. Описание элементов типовой схемы включения VDR120, VDR130.

#### 5.2. Схема включения для соответствия стандарту EN 55032 Class A

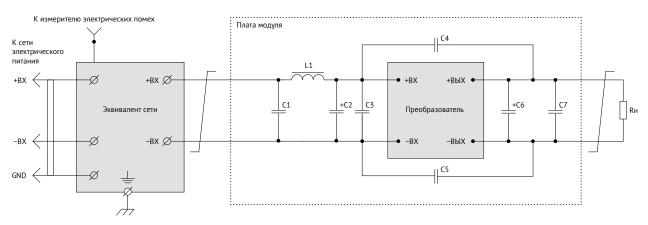
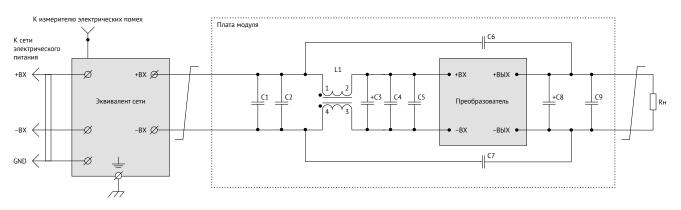




Рис. 3. Схема включения VDR120, VDR130 для соответствия стандарту EN 55032 Class A.

| Наименование | Тип элемента             | Комментарий            |                                                                    | VDRI20             | VDRI30                                          |
|--------------|--------------------------|------------------------|--------------------------------------------------------------------|--------------------|-------------------------------------------------|
| C1           | керамический конденсатор |                        |                                                                    |                    | 4,7 мкФ                                         |
| C2           | танталовый конденсатор   | Входное<br>напряжение  | =24 B<br>=48 B                                                     | 22 мкФ<br>22 мкФ   | 47 мкФ<br>33 мкФ                                |
| C3           | керамический конденсатор |                        | =24 B<br>=48 B                                                     | 4,7 мкФ<br>4,7 мкФ | 10 мкФ<br>6,8 мкФ                               |
| C4, C5       | керамический конденсатор |                        |                                                                    |                    | 10 нФ                                           |
| C6           | танталовый конденсатор   | Выходное<br>напряжение | =3,3 B<br>=5 B<br>от 9 до 12 В вкл.<br>=15 В<br>от 24 до 48 В вкл. |                    | .00 мкФ<br>68 мкФ<br>47 мкФ<br>33 мкФ<br>10 мкФ |
| C7           | керамический конденсатор | Выходное<br>напряжение | =3,3 В<br>от 5 до 48 В вкл.                                        |                    | 10 мкФ<br>4,7 мкФ<br>2,2 мкФ                    |
| L1           |                          | Выходное<br>напряжение | =3,3 B<br>≥3,3 B                                                   |                    | нее 2,2 мкГн<br>танавливать                     |

Табл. 2. Описание элементов схемы включения VDR120, VDR130 для соответствия стандарту EN 55032 Class A.

#### 5.3. Схема включения для соответствия стандарту EN 55032 Class B



Puc. 4. Схема включения VDR120, VDR130 для соответствия стандарту EN 55032 Class B.

| Наименование | Тип элемента             | Комментарий            |                                                                    | VDRI20             | VDRI30                                         |
|--------------|--------------------------|------------------------|--------------------------------------------------------------------|--------------------|------------------------------------------------|
| C1, C2       | керамический конденсатор |                        |                                                                    | 4                  | 1,7 мкФ                                        |
| C3           | танталовый конденсатор   | Входное<br>напряжение  | =24 B<br>=48 B                                                     | 22 мкФ<br>22 мкФ   | 47 мкФ<br>35 мкФ                               |
| C4           | керамический конденсатор |                        | =24 B<br>=48 B                                                     | 4,7 мкФ<br>4,7 мкФ | 10 мкФ<br>6,8 мкФ                              |
| C5           | керамический конденсатор |                        |                                                                    | 4                  | 1,7 мкФ                                        |
| C6, C7       | керамический конденсатор |                        |                                                                    |                    | 10 нФ                                          |
| C8           | танталовый конденсатор   | Выходное<br>напряжение | =3,3 В<br>=5 В<br>от 9 до 12 В вкл.<br>=15 В<br>от 24 до 48 В вкл. |                    | 00 мкФ<br>68 мкФ<br>47 мкФ<br>33 мкФ<br>10 мкФ |
| C9           | керамический конденсатор | Выходное<br>напряжение | от 3,3 до 15 В вкл.<br>=24 В<br>=48 В                              | 4                  | 10 мкФ<br>1,7 мкФ<br>2,2 мкФ                   |
| L1           | синфазный дроссель       |                        |                                                                    | не ме              | нее 350 мкГн                                   |

Табл. 3. Описание элементов схемы подключения VDR120, VDR130 для соответствия стандарту EN 55032 Class B.

#### 5.4. Схема включения для соответствия стандарту MIL-STD-461F CE102

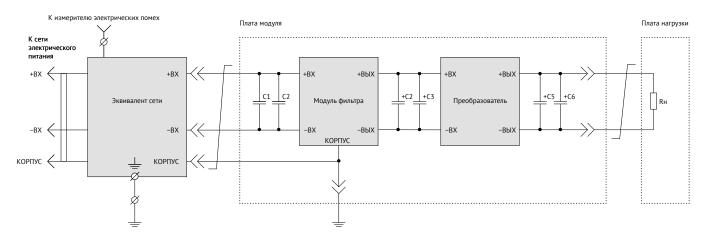



Рис. 5. Схема включения VDR120, VDR130 для соответствия стандарту MIL-STD-461F CE102.

| Наименование      | Тип элемента             | Комментарий            |                                                                | VDRI20                                                    | VDRI30            |
|-------------------|--------------------------|------------------------|----------------------------------------------------------------|-----------------------------------------------------------|-------------------|
| C1                | танталовый конденсатор   | Входное<br>напряжение  | =24 B<br>=48 B                                                 | 22 мкФ<br>22 мкФ                                          | 47 мкФ<br>33 мкФ  |
| C2                | керамический конденсатор |                        | =24 B<br>=48 B                                                 | 4,7 мкФ<br>4,7 мкФ                                        | 10 мкФ<br>6,8 мкФ |
| C3                | танталовый конденсатор   |                        | =24 B<br>=48 B                                                 | 22 мкФ<br>22 мкФ                                          | 47 мкФ<br>33 мкФ  |
| C4                | керамический конденсатор |                        | =24 B<br>=48 B                                                 | 4,7 мкФ<br>4,7 мкФ                                        | 10 мкФ<br>6,8 мкФ |
| C5                | танталовый конденсатор   | Выходное<br>напряжение | =3,3 B<br>=5 B<br>от 9 до 12 В вкл.<br>=15 В<br>=24 В<br>=48 В | 100 мкФ<br>68 мкФ<br>47 мкФ<br>33 мкФ<br>10 мкФ<br>10 мкФ |                   |
| C6                | керамический конденсатор | Выходное<br>напряжение | от 3,3 до 15 В вкл.<br>=24 В<br>=48 В                          | 10 мкФ<br>4,7 мкФ<br>2,2 мкФ                              |                   |
| Модуль фильтрации |                          | Входное<br>напряжение  | =24 B<br>=48 B                                                 | VFD07B<br>VFD07W                                          |                   |

Табл. 4. Описание элементов схемы включения VDR120, VDR130 для соответствия стандарту MIL-STD-461F CE102.

### 6. Сервисные функции

#### 6.1. Дистанционное управление

#### 6.1.1. Выключение модулей путем соединения вывода «ВКЛ/ВЫКЛ» с выводом «-ВХ»

Функция дистанционного управления (ДУ) реализована таким образом, что при замыкании вывода «ДУ» на «-ВХ» модуль выключается. Функция «ДУ» позволяет по команде управлять состоянием модуля (включен/выключен), используя для управления механическое реле [Рис. 6], биполярный транзистор, подключенный к выводу «ВКЛ/ВЫКЛ» по схеме «открытый коллектор» [Рис. 7] или оптрон [Рис. 8].

В то время, пока активирован режим «ДУ» (модуль выключен), через ключ может протекать ток до 2мА. Максимальное падение напряжения на ключе не должно превышать 1 В. В то время, пока режим «ДУ» не активен (модуль включен), к закрытому ключу может быть приложено напряжение до 8 В. Утечка тока через ключ не должна превышать 50 мкА.

При организации ДУ одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «–ВХ» и коммутирующий ключ. Если функция ДУ не используется, вывод «ВКЛ/ВЫКЛ» или «ВКЛ» допускается оставить неподключенным или обрезать.

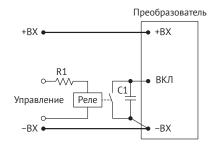



Рис. 6. ВКЛ/ВЫКЛ с помощью реле.

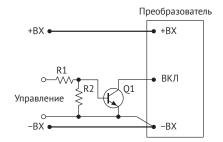



Рис. 7. ВКЛ/ВЫКЛ с помощью биполярного транзистора.

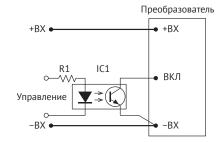



Рис. 8. ВКЛ/ВЫКЛ с помощью оптрона.

#### 6.1.2. Выключение модулей путем подачи управляющего сигнала

Дистанционное выключение модулей может также осуществляться подачей управляющего сигнала на вывод «ВКЛ/ВЫКЛ» относительно «-ВХ». Если напряжение на вывод «ВКЛ/ВЫКЛ» менее 1,0 В, то модуль перейдет в выключенное состояние. Если напряжение на данном выводе более 2,5 В, то модуль перейдет во включенное состояние.

#### 6.2. Регулировка



Puc. 9.  $Peryлировка увеличением <math>U_{BblX}.$ 

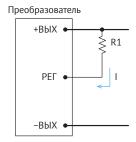



Рис. 10. Регулировка снижением  $U_{BЫX}$ .

Регулирование выходного напряжения модулей осуществляется путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения [Puc. 9] или к выводу «+ВЫХ» для уменьшения выходного напряжения [Puc. 10].

Значение подстроечного резистора R1 (Rdown/Rup), можно рассчитать по формулам:

$$Rdown: = \frac{U_{BbIX} \times K1 - K2}{U_{BbIX, HOM} - U_{BbIX}} - K3 \qquad Rup: = \frac{K2}{U_{BbIX} - U_{BbIX, HOM}} - K3$$

| <b>Uвых_ном</b> | 3,3  | 5    | 9    | 12    | 15    | 24    | 48     |
|-----------------|------|------|------|-------|-------|-------|--------|
| K1              | 2,05 | 3,83 | 7,5  | 10,7  | 13    | 22    | 43     |
| K2              | 2,54 | 4,75 | 9,3  | 13,27 | 16,12 | 54,89 | 107,29 |
| K3              | 6,8  | 7,5  | 9,76 | 8,25  | 9,1   | 8,25  | 8,25   |

 $\mathsf{U}_{\mathsf{B}\mathsf{b}\mathsf{l}\mathsf{X}}$  — необходимое значение выходного напряжения после регулировки.

Полученное значение резистора в кОм.

### 7. Результаты испытаний

Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т. п.) приведена в технических условиях, а также в руководящих технических материалах на сайте www.voltbricks.ru в разделе «Документация».

#### 7.1. Зависимость КПД от нагрузки

На [Puc. 11]—[Puc. 24] приведены измерения КПД для модулей VDRI20, VDRI30 (с зависимостью от значений входного напряжения и выходной мощности в диапазоне загрузки 20..100%). Измерения носят «демонстрационный характер», значения могут отличаться от фактических.

#### 7.1.1. VDRI30 с индексом входной сети «В»

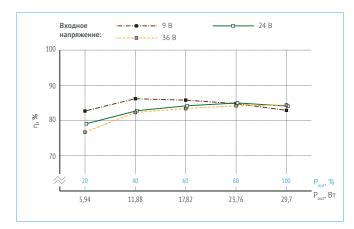



Рис. 11. КПД для VDR I 30 В 3, 3.

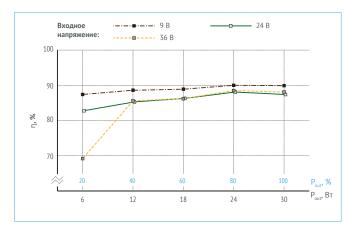



Рис. 12. КПД для VDRI30B05.

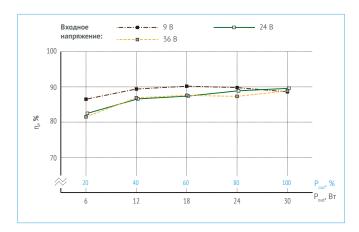



Рис. 13. КПД для VDR I30B09.

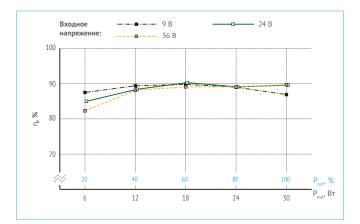



Рис. 14. КПД для VDRI30B12.

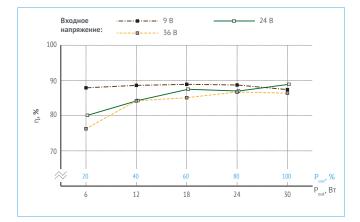



Рис. 17. КПД для VDRI30B48.

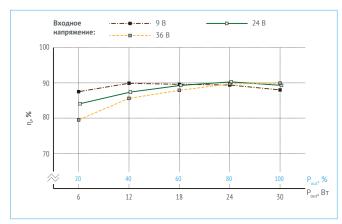



Рис. 15. КПД для VDRI30B15.

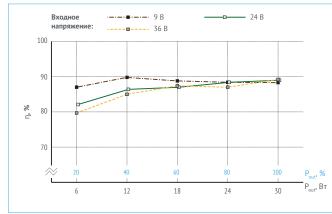



Рис. 16. КПД для VDRI30B24.

#### 7.1.2. VDRI30 с индексом входной сети «W»

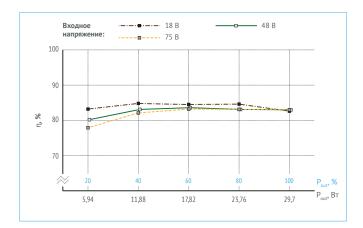



Рис. 18. КПД для VDRI30W3,3.

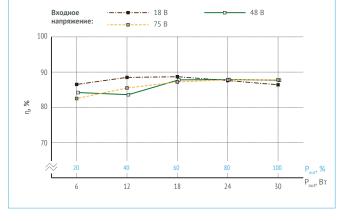



Рис. 19. КПД для VDR I 30W05.

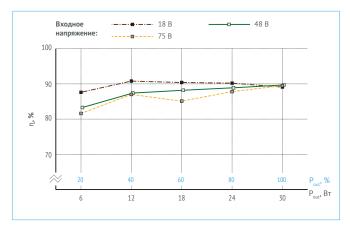



Рис. 20. КПД для VDR130W09.

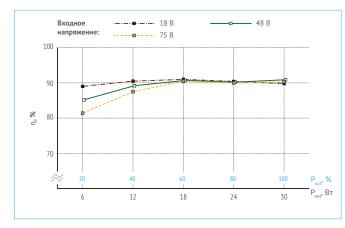



Рис. 21. КПД для VDRI30W12.

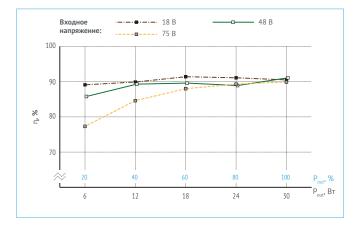



Рис. 22. КПД для VDRI30W15.

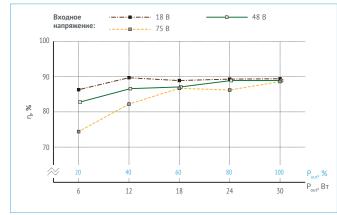



Рис. 23. КПД для VDR130W24.

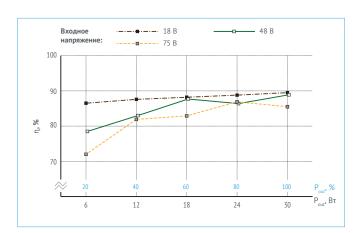



Рис. 24. КПД для VDR130W48.

#### 7.2. Ограничение мощности

На [*Puc. 25*] и [*Puc. 26*] приведены рекомендации по ограничению мощности нагрузки (20...100%), подключаемой к выходу преобразователя, в зависимости от температуры окружающей среды. Информация является расчетной и показана в виде графика для преобразователей с единой входной сетью и разными выходными напряжениями. Спадающие участки кривых соответствуют максимальной температуре корпуса модуля +105 °C.

График даёт ориентировочное представление о том, на каком значении выходной мощности допустимо использовать преобразователь в зависимости от температурных условий, чтобы преобразователь не превысил максимально допустимую температуру корпуса.

Значения на графике могут отличаться от реальных значений, которые зависят от U<sub>B X</sub>, КПД, условий эксплуатации и конструктивных особенностей теплоотвода.

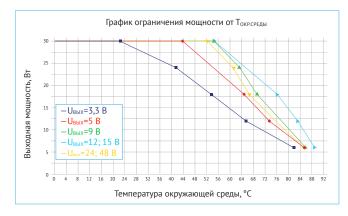



Рис. 25. График ограничения мощности от Токр.среды без применения внешнего радиатора. Для модулей VDRI30B с входной сетью «В», при  $U_{BX}$ =24 В.

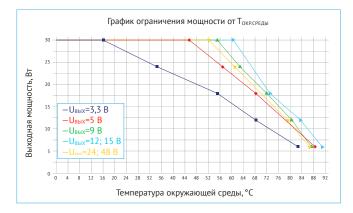



Рис. 26. График ограничения мощности от Токр.среды без применения внешнего радиатора. Для модулей VDR130W с входной сетью «W», при  $U_{BX}$ =48 B.

#### 7.3. Осциллограммы

#### 7.3.1. Измерения для VDRI30B05

Режимы и условия испытаний:  $U_{BX}$  = 24 B,  $U_{BbiX}$  = 5 B,  $I_{BbiX}$  = 6 A, HKУ, подключение согласно типовой схеме включения [*Puc. 2*].

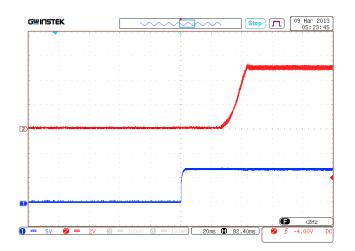



Рис. 27. Установление  $U_{BыX.HOM}$  с момента подачи сигнала ДУ (размыкание выводов «ДУ» и «-BX»).

Луч 1 (синий)— напряжение на выводе «ДУ». Масштаб 5 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 2 В/дел. Развертка 20 мс/дел.



Рис. 29. Установление  $U_{Bых.ном}$  с момента подачи  $U_{Bx.ном}$ . Луч 1 (синий) — входное напряжение. Масштаб 10 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 2 В/дел. Развертка 50 мс/дел.

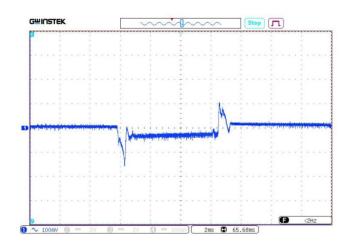



Рис. 28. Осциплограмма переходного отклонения выходного напряжения при скачкообразном изменении выходного тока с 50% до 100% и со 100% до 50%.

Масштаб 100 мВ/дел.

Развертка 2 мс/дел.

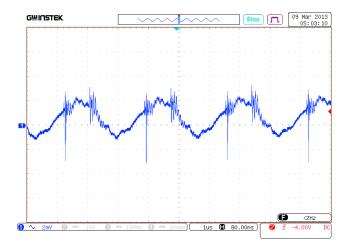



Рис. 30. Осциллограмма пульсаций  $U_{BыX.HOM.}$  Масштаб 2 мВ/дел.

Развертка 1 мкс/дел.

#### 7.3.2. Измерения для VDRI30W05

Режимы и условия испытаний:  $U_{BX}$ =48 B,  $U_{BыX}$ =5 B,  $I_{BыX}$ =6 A, HKУ, подключение согласно типовой схеме включения [*Puc. 2*].



Рис. 31. Установление  $U_{BыX.HOM}$  с момента подачи сигнала ДУ (соединение выводов «ДУ» и «–BX»).

Луч 1 (синий)— входное напряжение. Масштаб 5 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 2 В/дел. Развертка 20 мс/дел.



Рис. 33. Установление  $U_{Bых.HOM}$  с момента подачи  $U_{Bx.HOM}$ . Луч 1 (синий) — входное напряжение. Масштаб 50 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 2 В/дел. Развертка 20 мс/дел.

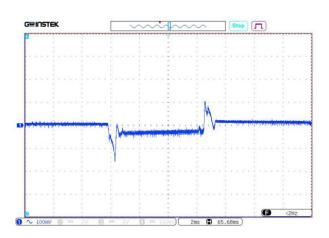



Рис. 32. Осциллограмма переходного отклонения выходного напряжения при скачкообразном изменении выходного тока с 50% до 100% и со 100% до 50%.

Масштаб 100 мВ/дел.

Развертка 2 мкс/дел.

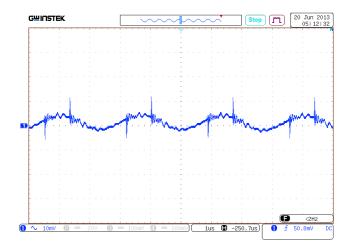



Рис. 34. Пульсации  $U_{B \mapsto X.H \cap M.}$  Масштаб 10 мВ/дел. Развертка 1 мкс/дел.

#### 7.4. Спектрограммы радиопомех

#### 7.4.1. VDRI20B05

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc. 3] и EN 55032 Class B [Puc. 4].

Условия:  $U_{BX}$ =24 B,  $P_{BIIX}$ =20 Вт, НКУ.



Рис. 35. Спектрограмма работы VDR120B05 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A (0,15-30 MFu).



Рис. 36. Спектрограмма работы VDR120B05 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

#### 7.4.2. VDRI20B24

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc.3] u EN 55032 Class B [Puc.4]. Условия:  $U_{BX}$ =24 B,  $P_{BblX}$ =20 Bt, HKУ.



Рис. 37. Спектрограмма работы VDR120B24 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A (0,15-30 MFu).



Рис. 38. Спектрограмма работы VDR120B24 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

#### 7.4.3. VDRI20W24

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc.3] u EN 55032 Class B [Puc.4]. Условия:  $U_{BX}$ =48 B,  $P_{BblX}$ =20 Bt, HKY.

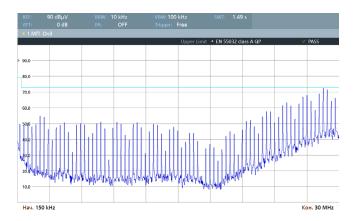



Рис. 39. Спектрограмма работы VDR120W24 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A (0,15–30 MFu).



Рис. 40. Спектрограмма работы VDR120W24 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

#### 7.4.4. VDR120W48

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc. 3] u EN 55032 Class B [Puc. 4]. Условия:  $U_{BX}$ =48 B,  $P_{BblX}$ =20 BT, HKУ.




Рис. 41. Спектрограмма работы VDR120W48 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A (0,15-30 MFu).

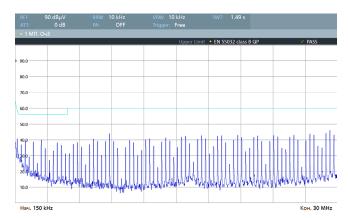



Рис. 42. Спектрограмма работы VDR120W48 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

#### 7.4.5. VDRI30B05

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc.3] u EN 55032 Class B [Puc.4]. Условия:  $U_{BX}$ =24 B,  $P_{BblX}$ =30 Bt, HKУ.



Рис. 43. Спектрограмма работы VDR130B05 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A (0,15-30 MFu).

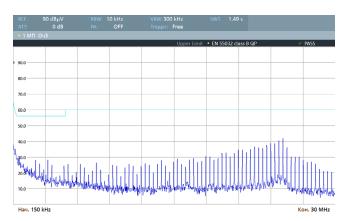



Рис. 44. Спектрограмма работы VDRI30B05 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

#### 7.4.6. VDRI30B24

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc. 3] u EN 55032 Class B [Puc. 4]. Условия:  $U_{BX}$ =24 B,  $P_{BblX}$ =30 BT, HKУ.



Рис. 45. Спектрограмма работы VDR130B24 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A (0,15-30 MFu).

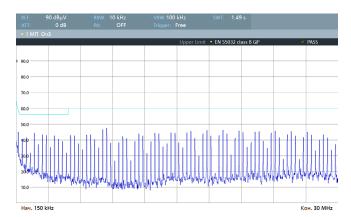



Рис. 46. Спектрограмма работы VDRI30B24 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

#### 7.4.7. VDRI30W24

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc.3] u EN 55032 Class B [Puc.4]. Условия:  $U_{BX}$ =48 B,  $P_{BblX}$ =30 Bt, HKУ.



Рис. 47. Спектрограмма работы VDR130W24 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A  $(0,15-30\ \text{MFu})$ .



Рис. 48. Спектрограмма работы VDRI30W24 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

#### 7.4.8. VDRI30W48

Испытания проведены со схемами включения для соответствия EN 55032 Class A [Puc.3] u EN 55032 Class B [Puc.4]. Условия:  $U_{BX}$ =48 B,  $P_{BblX}$ =30 Bt, HKУ.



Рис. 49. Спектрограмма работы VDR130W48 по схеме включения [Рис. 3], измерения произведены в соответствии с EN 55032 Class A (0,15-30 MFu).

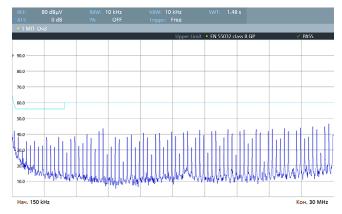
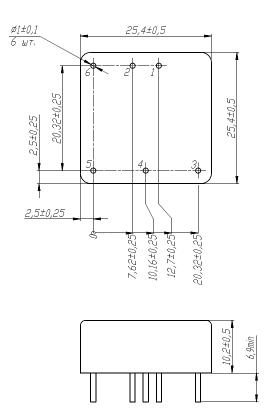




Рис. 50. Спектрограмма работы VDRI30W48 по схеме включения [Рис. 4], измерения произведены в соответствии с EN 55032 Class B (0,15-30 MFu).

## 8. Габаритные чертежи



Вывод Назначение +IN +BX 2 -IN -BX 3 +OUT +ВЫХ 4 РЕГ TRIM 5 -OUT -ВЫХ 6 ON/OFF ДУ

Puc. 51. Исполнение VDRI20, VDRI30.

# voltbricks

www.voltbricks.ru info@voltbricks.ru

Компания «Вольтбрикс» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

396005, Россия, Воронежская область, Медовка, Перспективная, д.1 +7 473 211-22-80

Даташит распространяется на следующие модели: VDRI20B3,3; VDRI20B05; VDRI20B05; VDRI20B12; VDRI20B12; VDRI20B15; VDRI20B4; VDRI20B48; VDRI20W3,3; VDRI20W05; VDRI20W09; VDRI20W09; VDRI20W012; VDRI20W12; VDRI20W24; VDRI20W48; VDRI30B05; VDRI30B09; VDRI30B12; VDRI30B12; VDRI30B12; VDRI30B12; VDRI30B12; VDRI30B12; VDRI30W12; VDRI30W12; VDRI30W12; VDRI30W14; VDRI30W14; VDRI30W14.