Features

* High-performance, Low-power AVR® 8-bit Microcontroller
¢ Advanced RISC Architecture
— 130 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers + Peripheral Control Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
¢ High Endurance Non-volatile Memory segments
— 64K Bytes of In-System Reprogrammable Flash program memory
— 2K Bytes EEPROM
— 4K Bytes Internal SRAM
— Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
— Data retention: 20 years at 85°C/100 years at 25°C")
— Optional Boot Code Section with Independent Lock Bits
¢ In-System Programming by On-chip Boot Program
¢ True Read-While-Write Operation
— Up to 64K Bytes Optional External Memory Space
— Programming Lock for Software Security
— SPI Interface for In-System Programming
¢ JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode, and
Capture Mode
— Real Time Counter with Separate Oscillator
— Two 8-bit PWM Channels
— 6 PWM Channels with Programmable Resolution from 1 to 16 Bits
— 8-channel, 10-bit ADC
¢ 8 Single-ended Channels
7 Differential Channels
¢ 2 Differential Channels with Programmable Gain (1x, 10x, 200x)
— Byte-oriented Two-wire Serial Interface
— Dual Programmable Serial USARTs
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with On-chip Oscillator
— On-chip Analog Comparator
¢ Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
— Software Selectable Clock Frequency
— ATmegal03 Compatibility Mode Selected by a Fuse
— Global Pull-up Disable
¢ |/0O and Packages
— 53 Programmable I/O Lines
— 64-lead TQFP and 64-pad QFN/MLF
¢ Operating Voltages
— 2.7 - 5.5V for ATmega64A
¢ Speed Grades
— 0 - 16 MHz for ATmega64A

ATMEL

Y ()

8-bit AVR"
Microcontroller
with 64K Bytes
In-System
Programmable
Flash

ATmega64A

8160C-AVR-07/09

WL

1. Pin Configuration

Figure 1-1. Pinout ATmega64A

TQFP/MLF
OO =
S285
~~~~EEEE
O AN M < 1 O M~ —_— o~ —~
OO 00000 O00 o - o
(el alalalalyalya) [N aiya)
Q msssssssso SSINSS
a —
SZERIRYIRLELZ02%Y
<O <ooooocooaoon >0 o
OO0 O00000000O00on
T OAN ™~ O OO O OO T OAN— O O
e ©O© © © © ©O LW O O W U W W W WU I
PENC|1 o 48 [1 PA3 (AD3)
RXDO/(PDI) PEO [ 2 47 [0 PA4 (AD4)
(TXDO/PDO) PE1 ] 3 46 [ PA5 (AD5)
(XCKO/AINO) PE2 [] 4 45 [1 PA6 (AD6)
(OC3A/AIN1) PE3 [ 5 44 [ PA7 (AD7)
(OC3B/INT4) PE4 [] 6 43 [1 PG2(ALE)
(OC3C/INT5) PE5 [] 7 42 [1PC7 (A15)
(T3/INT6) PE6 [] 8 41[1PC6 (A14)
(ICP3/INT7) PE7 [] 9 40 [0 PC5 (A13)
(SS)PBO ] 10 39 [1 PC4 (A12)
(SCK) PB1 ] 11 38 [1 PC3 (A11)
(MOSI) PB2 [] 12 37 [1 PC2 (A10
(MISO) PB3 [] 13 36 [1 PC1 (A9)
(OCO) PB4 [] 14 35 [1 PCO (A8)
(OC1A) PB5 ] 15 34 [1 PG1(RD)
OC1B WR
( )PB6 E 16l\ W OO T~ AN M ITLWOINOWOO O (\l33 :I PGO(W )
T A AN AN AN AN AN AN NANANOOM
D00 000000000 O Q™
DB sm82Y-85883885
&&&wg%fjgmm&mmm&c\_
cagle XX oradooera
- EEEEQLXEFE
0O RA zZzzz00 ——
opRPR SSSESX
g 3322
¢] ~2zE

Note:  The bottom pad under the QFN/MLF package should be soldered to ground.

ATMEL z

8160C-AVR-07/09



WL

2. Overview

The ATmega64A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega64A achieves
throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power con-
sumption versus processing speed.

2.1 Block Diagram

Figure 2-1.  Block Diagram

= Sa= == DU 000 B
L PORTF DRIVERS PORTA DRIVERS PORTG DRIVERS | 1
<RI EER T ST
| % ! i i ! i e
AREF ! é
=

i
| XTAL2 “—||'
L

OSCILLATOR

i |

JTAG TAP |

| XTAL1 'L|||
CALIB.OSC ;
INTERNAL i
ADC OSCILLATOR i
i
i

WATCHDOG
TIMER

!

PROGRAM . STACK
COUNTER | POINTER
i
|
i

!

ON-CHIP DEBUG

PROGRAM
FLASH

TIMING AND
CONTROL

SRAM

MCU CONTROL
REGISTER

LOGIC

BOUNDARY-
SCAN

PROGRAMMING

i
T | RESET
i

TIMER/
COUNTERS =

INSTRUCTION
REGISTER

GENERAL
PURPOSE

|
.
i
! REGISTERS
!
-« X
INSTRUCTION :(— Y INTERRUPT
DECODER - Z UNIT

T T T

e ".I!I"’ pe—

STATUS
REGISTER

iil y

ART Pl 2-WIRE SERIAL
USARTO | USARTI | | INTERFACE
{ ! !

¢:> 3

i ! ! = !

DATA HEGISTEH DATA DIR. DATA REGISTEH DATA DIR. DATA HEGISTER DATA DIR. DATA REG."DATA DIR.

REG. PORTE REG. PORTB REG. PORTD PORTG |[REG. PORT

ANALOG

COMPARATOR A
+

PORTE DRIVERS PORTB DRIVERS PORTD DRIVERS PORTG DRIVERS

|¢¢¢¢i¢¢¢ DU TOE OMUUN TR JUNN | I

8160C-AVR-07/09

FLTTFF- T PP —FL -

PEO - PE7 PBO - PB7 PDO - PD7 PGO - PG4

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATmega64A provides the following features: 64K bytes of In-System Programmable Flash
with Read-While-Write capabilities, 2K bytes EEPROM, 4K bytes SRAM, 53 general purpose I/O

ATMEL ;



WL

lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Coun-
ters with compare modes and PWM, two USARTS, a byte oriented Two-wire Serial Interface, an
8-channel, 10-bit ADC with optional differential input stage with programmable gain, program-
mable Watchdog Timer with internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant
JTAG test interface, also used for accessing the On-chip Debug system and programming, and
six software selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down
mode saves the register contents but freezes the Oscillator, disabling all other chip functions
until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer contin-
ues to run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer
and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crys-
tal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast
start-up combined with low power consumption. In Extended Standby mode, both the main
Oscillator and the asynchronous timer continue to run.

The device is manufactured using Atmel’s high-density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-
gram running on the AVR core. The Boot Program can use any interface to download the
Application Program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega64A is a powerful microcontroller that provides a highly-flexi-
ble and cost-effective solution to many embedded control applications.

The ATmega64A AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators,
and evaluation kits.

2.2 ATmegai03 and ATmega64A Compatibility

8160C-AVR-07/09

The ATmega64A is a highly complex microcontroller where the number of I/O locations super-
sedes the 64 I/O location reserved in the AVR instruction set. To ensure backward compatibility
with the ATmega103, all I/O locations present in ATmega103 have the same location in
ATmega64A. Most additional I/O locations are added in an Extended 1/O space starting from
0x60 to OxFF (i.e., in the ATmega103 internal RAM space). These location can be reached by
using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions.
The relocation of the internal RAM space may still be a problem for ATmega103 users. Also, the
increased number of Interrupt Vectors might be a problem if the code uses absolute addresses.
To solve these problems, an ATmegai03 compatibility mode can be selected by programming
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the
internal RAM is located as in ATmega103. Also, the extended Interrupt Vectors are removed.

The ATmega64A is 100% pin compatible with ATmega103, and can replace the ATmega103 on
current printed circuit boards. The application notes “Replacing ATmega103 by ATmega128”
and “Migration between ATmega64 and ATmegai128” describes what the user should be aware
of replacing the ATmega103 by an ATmega128 or ATmega64.

ATMEL ;



WL

221 ATmega103 Compatibility Mode

By programming the M103C Fuse, the ATmega64A will be compatible with the ATmega103
regards to RAM, I/O pins and Interrupt Vectors as described above. However, some new fea-
tures in ATmega64A are not available in this compatibility mode, these features are listed below:

* One USART instead of two, asynchronous mode only. Only the eight least significant bits of
the Baud Rate Register is available.

* One 16 bits Timer/Counter with two compare registers instead of two 16 bits Timer/Counters
with three compare registers.

* Two-wire serial interface is not supported.

* Port G serves alternate functions only (not a general I/O port).

* Port F serves as digital input only in addition to analog input to the ADC.

* Boot Loader capabilities is not supported.

* It is not possible to adjust the frequency of the internal calibrated RC Oscillator.

* The External Memory Interface can not release any Address pins for general 1/O, neither
configure different wait states to different External Memory Address sections.

* Only EXTRF and POREF exist in the MCUCSR Register.

* No timed sequence is required for Watchdog Timeout change.

* Only low-level external interrupts can be used on four of the eight External Interrupt sources.
¢ Port C is output only.

* USART has no FIFO buffer, so Data OverRun comes earlier.

* The user must have set unused I/O bits to 0 in ATmega103 programs.

2.3 Pin Descriptions

2.3.1 vCcC

2.3.2 GND

Digital supply voltage.

Ground.

2.3.3 Port A (PA7:PAO)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the ATmega64A as listed on page
75.

234 Port B (PB7:PBO0)

8160C-AVR-07/09

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

ATMEL ;



WL

Port B also serves the functions of various special features of the ATmega64A as listed on page
76.

2.3.5 Port C (PC7:PCO0)

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of special features of the ATmega64A as listed on page 79. In
ATmega103 compatibility mode, Port C is output only, and the port C pins are not tri-stated
when a reset condition becomes active.

2.3.6 Port D (PD7:PDO0)

Port D is an 8-bit bi-directional 1/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega64A as listed on page
80.

2.3.7  Port E (PE7:PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the ATmega64A as listed on page
83.

2.3.8 Port F (PF7:PFO0)

8160C-AVR-07/09

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will
be activated even if a reset occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.
Port F also serves the functions of the JTAG interface.

In ATmega103 compatibility mode, Port F is an input port only.

ATMEL ;



WL

2.3.9

2.3.10

2.3.11

2.3.12

2.3.13

2.3.14

2.3.15

3. Resources

Port G (PG4:PG0)

RESET

XTALA1

XTAL2

AVCC

AREF

PEN

Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port G also serves the functions of various special features.

In ATmega103 compatibility mode, these pins only serves as strobes signals to the external
memory as well as input to the 32 kHz Oscillator, and the pins are initialized to PGO = 1,
PG1 =1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock
is not running. PG3 and PG4 are Oscillator pins.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 28-3 on page
330. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to V¢, even if the ADC is not used. If the ADC is used, it should be connected to V¢
through a low-pass filter.

AREEF is the analog reference pin for the A/D Converter.

This is a programming enable pin for the SPI Serial Programming mode. By holding this pin low
during a Power-on Reset, the device will enter the SPI Serial Programming mode. PEN is inter-
nally pulled high. The pullup is shown in Figure 10-1 on page 52 and its value is given in Section
28.2 “DC Characteristics” on page 327. PEN has no function during normal operation.

A comprehensive set of development tools, application notes and datasheetsare available for
download on http://www.atmel.com/avr.

4. Data Retention

8160C-AVR-07/09

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

ATMEL 7



WL

5. About Code Examples

8160C-AVR-07/09

This datasheet contains simple code examples that briefly show how to use various parts of the
device. These code examples assume that the part specific header file is included before compi-
lation. Be aware that not all C compiler vendors include bit definitions in the header files and
interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation
for more details.

For 1/0 Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended 1/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

ATMEL |



WL

6. AVR CPU Core

6.1

Overview

8160C-AVR-07/09

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Figure 6-1.  Block Diagram of the AVR MCU Architecture

( Data Bus 8-bit

v
Program Status
Flash < [
Program Counter and Control
Memory <
Interrupt
4 32x8 < Unit
Instruction General
Register Purpose SP|
Registrers > Unit
v
Instruction Watchdog
Decoder <« Timer
= 2 N
£ @»
[} [%]
i 3 £ ALU PR Analog
Control Lines 3 2 Comparator
< 5
[ 8] [0}
@ =
= e o
= £ <> /0 Module1
Data < /O Module 2
. o SRAM
<—>» 1/O Module n
EEPROM
I/O Lines

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-

ATMEL ;



WL

ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the
Application program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack
Pointer SP is read/write accessible in the 1/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The 1/0 memory space contains 64 addresses which can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the ATmega64A
has Extended 1/O space from 0x60 - OxFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

6.2 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

6.3  Status Register

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as

ATMEL 1

8160C-AVR-07/09



WL

specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

6.3.1 SREG - AVR Status Register

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0
0x3F (0x5F) | I T H S v N Z c | srec
Read/Write RIW R/W R/W R/W R/W RIW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 —I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared in
software with the SEI and CLI instructions, as described in the instruction set reference.

e Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

e Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit,S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3 - V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

e Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

e Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

ATMEL Y



WL

6.3.2 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:
¢ One 8-bit output operand and one 8-bit result input.
¢ Two 8-bit output operands and one 8-bit result input.
* Two 8-bit output operands and one 16-bit result input.
¢ One 16-bit output operand and one 16-bit result input.
Figure 6-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 6-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 O0xOF
Working R16 0x10
Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 6-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user data space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file.

6.3.3 X-, Y-, and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These regis-
ters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 6-3.

ATMEL 1

8160C-AVR-07/09



WL

Figure 6-3. The X-, Y-, and Z-Registers

15 XH XL

X - register I 7 0 I 7 0 I
R27 (0x1B) R26 (0x1A)
15 YH YL

Y - register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL

Z - register I 7 0 I 7 0 I
R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

6.4 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer. If software reads the Program Counter from the Stack after a call or an interrupt, unused
bits (bit 15) should be masked out.

The Stack Pointer points to the data SRAM Stack area where the subroutine and interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/IW R/W R/IW R/W R/W R/IW R/W
R/W R/W R/W R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

6.5 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkgpy, directly generated from the selected clock source for the
chip. No internal clock division is used.

ATMEL 1

8160C-AVR-07/09



WL

Figure 6-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 6-4. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

D 2 N S N A N S N

CPU

1st Instruction Fetch

|

|

1

1st Instruction Execute :
2nd Instruction Fetch |

|

T

|

|

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X | | |

Figure 6-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 6-5. Single Cycle ALU Operation
T1 T2 T3 T4

ok —1 4 0 S

CPU
Total Execution Time

Register Operands Fetch

ALU Operation Execute

1 !
| |
| |
| |
| |
! !
| |
! !
| |
T T
| |
| |

Result Write Back

+ +
| |
! !

6.6 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 295 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 60. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 60 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the

ATMEL 1

8160C-AVR-07/09



WL

8160C-AVR-07/09

BOOTRST Fuse, see “Boot Loader Support — Read-While-Write Self-programming” on page
281.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE
out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;
CcSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();
EECR |= (1<<EEMWE) ; /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

ATMEL 1



WL

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set global interrupt enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for Iinterrupt */

/* note: will enter sleep before any pending interrupt(s) */

6.7 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

ATMEL 1

8160C-AVR-07/09



WL

7. AVR Memories

This section describes the different memories in the ATmega64A. The AVR architecture has two
main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmega64A features an EEPROM Memory for data storage. All three memory spaces are linear
and regular.

7.1 In-System Reprogrammable Flash Program Memory

8160C-AVR-07/09

The ATmega64A contains 64K bytes On-chip In-System Reprogrammable Flash memory for
program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as
32K x 16. For software security, the Flash Program memory space is divided into two sections,
Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega64A
Program Counter (PC) is 15 bits wide, thus addressing the 32K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in “Boot Loader Support — Read-While-Write Self-programming” on page 281.
“Memory Programming” on page 295 contains a detailed description on Flash programming in
SPI, JTAG, or Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 13.

ATMEL L



WL

Figure 7-1. Program Memory Map

$0000
Application Flash Section
Boot Flash Section
$7FFF

7.2 SRAM Data Memory
The ATmega64A supports two different configurations for the SRAM data memory as listed in

Table 7-1.
Table 7-1. Memory Configurations
Internal SRAM External SRAM
Configuration Data Memory Data Memory
Normal mode 4096 up to 64K
ATmega103 compatibility mode 4000 up to 64K

Figure 7-2 on page 20 shows how the ATmega64A SRAM Memory is organized.

The ATmega64A is a complex microcontroller with more peripheral units than can be supported
within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used. The Extended I/O space does not exist when the ATmega64A is in the
ATmega103 compatibility mode.

The first 4,352 data memory locations address both the Register File, the I/O memory, Extended
I/0 memory, and the internal data SRAM. The first 32 locations address the Register File, the
next 64 location the standard I/O memory, then 160 locations of Extended 1/0O memory, and the
next 4,096 locations address the internal data SRAM.

ATMEL 1

8160C-AVR-07/09



WL

8160C-AVR-07/09

In ATmega103 compatibility mode, the first 4,096 data memory locations address both the Reg-
ister File, the I/O memory and the internal data SRAM. The first 32 locations address the
Register File, the next 64 location the standard 1/O memory, and the next 4,000 locations
address the internal data SRAM.

An optional external data SRAM can be used with the ATmega64A. This SRAM will occupy an
area in the remaining address locations in the 64K address space. This area starts at the
address following the internal SRAM. The Register File, /0, Extended I/O and internal SRAM
occupy the lowest 4,352 bytes in Normal mode, and the lowest 4,096 bytes in the ATmega103
compatibility mode (Extended I/O not present), so when using 64KB (65,536 bytes) of External
memory, 61,184 Bytes of External memory are available in Normal mode, and 61,440 Bytes in
ATmega103 compatibility mode. See “External Memory Interface” on page 23 for details on how
to take advantage of the external memory map.

When the addresses accessing the SRAM memory space exceeds the internal data memory
locations, the external data SRAM is accessed using the same instructions as for the internal
data memory access. When the internal data memories are accessed, the read and write strobe
pins (PGO and PG1) are inactive during the whole access cycle. External SRAM operation is
enabled by setting the SRE bit in the MCUCR Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the
internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP
take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine
calls and returns take three clock cycles extra because the 2-byte Program Counter is pushed
and popped, and external memory access does not take advantage of the internal pipeline
memory access. When external SRAM interface is used with wait state, one-byte external
access takes two, three, or four additional clock cycles for one, two, and three wait states
respectively. Interrupt, subroutine calls and returns will need five, seven, or nine clock cycles
more than specified in the AVR Instruction Set manual for one, two, and three waitstates.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, 160 extended I/O Registers, and
the 4,096 bytes of internal data SRAM in the ATmega64A are all accessible through all these
addressing modes. The Register File is described in “General Purpose Register File” on page
12.

ATMEL 1



WL

Figure 7-2.

Data Memory Map

Memory Configuration A

Memory Configuration B

7.21

8160C-AVR-07/09

Data Memory

32 Registers

64 1/0O Registers

160 Ext I/0 Reg.

Internal SRAM
(4096 x 8)

External SRAM
(0-64K x 8)

$0000 - $001F
$0020 - $005F
$0060 - $00FF
$0100

$10FF
$1100

Data Memory

32 Registers

$0000 - $001F

64 1/0 Registers

$0020 - $005F

Internal SRAM
(4000 x 8)

$0060

$OFFF

External SRAM
(0- 64K x 8)

_____________

$1000

Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The

internal data SRAM access is performed in two clkgp cycles as described in Figure 7-3.

ATMEL

20



WL

Figure 7-3.  On-chip Data SRAM Access Cycles
T T2 T3

ok 4 )

CPU | X X
Address ! Compute Address | X__Address Valid |
I I I
Data : | : =
I I I "E
I I I
WR L/ 2\ =
I I I —
I I 4 -
Data 1 . | -
| | T @
I I | S:_)
RD ! L/ "
T T —
I I I
Memory Access Instruction Next Instruction

7.3 EEPROM Data Memory

The ATmega64A contains 2K bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.

“Memory Programming” on page 295 contains a detailed description on EEPROM programming
in SPI, JTAG, or Parallel Programming mode.

7.3.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 7-5 on page 34. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, V¢ is likely to rise or fall slowly on Power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See “Preventing EEPROM Corruption” on page 22. for details on how to avoid problems in
these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

7.3.2 EEPROM Write During Power-down Sleep Mode
When entering Power-down Sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the oscillator continues running, and

ATMEL 2

8160C-AVR-07/09



WL

as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.

7.3.3 Preventing EEPROM Corruption

7.4 /O Memory

8160C-AVR-07/09

During periods of low V¢ the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V. Reset Protection circuit
can be used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

The 1/0 space definition of the ATmega64A is shown in “Register Summary” on page 373.

All ATmega64A 1/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the 1/0 space. I/0 Registers within the address range
0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the 1/0 specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing 1/0O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATmega64A is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved
in Opcode for the IN and OUT instructions. For the Extended 1/0O space from 0x60 - OxFF in
SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. The Extended I/O
space is replaced with SRAM locations when the ATmega64A is in the ATmega103 compatibility
mode.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/0O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI
instructions will operate on all bits in the 1/0O Register, writing a one back into any flag read as
set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to Ox1F only.

The 1/0 and peripherals control registers are explained in later sections.

ATMEL 2



WL

7.5 External Memory Interface

With all the features that the External Memory Interface provides, it is well suited to operate as
an interface to memory devices such as external SRAM and Flash, and peripherals such as
LCD-display, A/D, and D/A. The main features are:

* Four different wait-state settings (Including no wait-state).

¢ Independent wait-state setting for different external memory sectors (configurable sector

size).
* The number of bits dedicated to address high byte is selectable.
* Bus Keepers on data lines to minimize current consumption (optional).

7.5.1 Overview

When the eXternal MEMory (XMEM) is enabled, address space outside the internal SRAM
becomes available using the dedicated external memory pins (see Figure 1-1 on page 2, Table
13-3 on page 75, Table 13-9 on page 79, and Table 13-21 on page 87). The memory configura-
tion is shown in Figure 7-4.

Figure 7-4.  External Memory with Sector Select")

Memory Configuration A Memory Configuration B
0x0000 0x0000
Internal Memory Internal Memory
OxOFFF
A 0x1000
O0x10FF
A 0x1100
Lower Sector
SRWO1
SRWO00
———————— SRL[2..0] SRW10
External Memory Upper Sector External Memory
(0-60K x 8) (0-60K x 8)
SRW11
SRW10
v OxFFFF 17 OxFFFF

Note: 1. ATmega64A in non ATmega103 compatibility mode: Memory Configuration A is available
(Memory Configuration B N/A).
ATmega64A in mega103 compatibility mode: Memory Configuration B is available (Memory
Configuration A N/A).

ATMEL 2

8160C-AVR-07/09



WL

7.5.2 ATmega103 Compatibility
Both External Memory Control Registers, XMCRA and XMCRB, are placed in Extended I/O
space. In ATmega103 compatibility mode, these registers are not available, and the features
selected by these registers are not available. The device is still ATmega103 compatible, as
these features did not exist in ATmega103. The limitations in ATmega103 compatibility mode
are:

* Only two wait-state settings are available (SRW1n = 0b00 and SRW1n = 0b01).

* The number of bits that are assigned to address high byte are fixed.

* The external memory section cannot be divided into sectors with different wait-state settings.
* Bus Keeper is not available.

* RD, WR, and ALE pins are output only (Port G in ATmega64A).

7.5.3 Using the External Memory Interface
The interface consists of:

* AD7:0: Multiplexed low-order address bus and data bus.

¢ A15:8: High-order address bus (configurable number of bits).
¢ ALE: Address latch enable.

* RD: Read strobe.

» WR: Write strobe.

The control bits for the External Memory Interface are located in three registers, the MCU Con-
trol Register - MCUCR, the External Memory Control Register A — XMCRA, and the External
Memory Control Register B — XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the Data
Direction Registers that corresponds to the ports dedicated to the XMEM interface. For details
about the port override, see the alternate functions in section “I/O Ports” on page 68. The XMEM
interface will auto-detect whether an access is internal or external. If the access is external, the
XMEM interface will output address, data, and the control signals on the ports according to Fig-
ure 7-6 (this figure shows the wave forms without wait states). When ALE goes from high-to-low,
there is a valid address on AD7:0. ALE is low during a data transfer. When the XMEM interface
is enabled, also an internal access will cause activity on address-, data- and ALE ports, but the
RD and WR strobes will not toggle during internal access. When the external memory interface
is disabled, the normal pin and data direction settings are used. Note that when the XMEM inter-
face is disabled, the address space above the internal SRAM boundary is not mapped into the
internal SRAM. Figure 7-5 illustrates how to connect an external SRAM to the AVR using an
octal latch (typically 74 x 573 or equivalent) which is transparent when G is high.

754 Address Latch Requirements
Due to the high-speed operation of the XRAM interface, the address latch must be selected with
care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V. When operating at condi-
tions above these frequencies, the typical old style 74HC series latch becomes inadequate. The
external memory interface is designed in compliance to the 74AHC series latch. However, most
latches can be used as long they comply with the main timing parameters. The main parameters
for the address latch are:

ATMEL 2

8160C-AVR-07/09



WL

7.5.5

7.5.6

* D to Q propagation delay (t,q).
* Data setup time before G low (1)
* Data (address) hold time after G low (y,).

The external memory interface is designed to guaranty minimum address hold time after G is
asserted low of t, = 5 ns (refer to t axx | p/t  axx_s7 iN Table 28-8 to Table 28-15 on page 340).
The D to Q propagation delay (t,q) must be taken into consideration when calculating the access
time requirement of the external component. The data setup time before G low (t;,) must not
exceed address valid to ALE low (ty ) minus PCB wiring delay (dependent on the capacitive
load).

Figure 7-5.  External SRAM Connected to the AVR

'\ D[7:0
Ll\ ] [7:0]
. TN A
AD7:0 \I—I/ D Q —l/ A[7:0]
ALE > G
AVR SRAM
A15:8 ll> A[15:8]
"RD » RD
‘WR > WR

Pull-up and Bus Keeper

Timing

8160C-AVR-07/09

The pull-ups on the AD7:0 ports may be activated if the corresponding Port Register is written to
one. To reduce power consumption in sleep mode, it is recommended to disable the pull-ups by
writing the Port Register to zero before entering sleep.

The XMEM interface also provides a Bus Keeper on the AD7:0 lines. The Bus Keeper can be
disabled and enabled in software as described in “XMCRB — External Memory Control Register
B” on page 32. When enabled, the Bus Keeper will ensure a defined logic level (zero or one) on
the AD7:0 bus when these lines would otherwise be tri-stated by the XMEM interface.

External memory devices have different timing requirements. To meet these requirements, the
ATmega64A XMEM interface provides four different wait states as shown in Table 7-3. It is
important to consider the timing specification of the external memory device before selecting the
wait-state. The most important parameters are the access time for the external memory com-
pared to the set-up requirement of the ATmega64A. The access time for the external memory is
defined to be the time from receiving the chip select/address until the data of this address actu-
ally is driven on the bus. The access time cannot exceed the time from the ALE pulse is asserted
low until data must be stable during a read sequence (1, g + tr g - tovey iN Table 28-8 to Table
28-15 on page 340). The different wait states are set up in software. As an additional feature, it
is possible to divide the external memory space in two sectors with individual wait-state settings.
This makes it possible to connect two different memory devices with different timing require-
ments to the same XMEM interface. For XMEM interface timing details, please refer to Figure
28-6 to Figure 28-9, and Table 28-8 to Table 28-15.

ATMEL 2



WL

8160C-AVR-07/09

Note that the XMEM interface is asynchronous and that the waveforms in the following figures
are related to the internal system clock. The skew between the internal and external clock
(XTAL1) is not guaranteed (varies between devices, temperature, and supply voltage). Conse-
quently the XMEM interface is not suited for synchronous operation.

Figure 7-6.

External Data Memory Cycles without Wait State("

(SRWn1 = 0 and SRWn0 =0)

1
| ™

System Clock (CLKgpyj) _/_\_/_\_/_\_/_\_/_
| |
1
ALE _E_/_E_\
1
1

. T2 . T3 . T4 ,

—

A15:8 v. addr.

Address

X

. X

1

Prél

E
DA7:0 Prév. data

i

WR X

1

1

N /ol

DA7:0 (XMBK = 0)  Prév. data

I
)
1 1
1 1
1
1 1
1 1
1
1 1
1
1
1
| |
I 1 1
:X Address )@(: Data X
| | |
| :
1 1
1 I
1 1
| |/
1
1
1

1
X e Y o)
1

DA7:0 (XMBK = 1)  Prgv. data

1 1
X Address Xxxxfxx)( Data | X XXXXXXXX )IC
1 1

‘RD

Note: 1.
SRWO0O (lower sector).

Write

Read

SRWn1 =SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or

The ALE pulse in period T4 is only present if the next instruction accesses the RAM (internal

or external).

Figure 7-7.

System Clock (CLKgpy)

External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1("

' T ' 2 ' 3 | T4 \ s \
1 1 1 1 1
, : T\ s
: ‘ '
ALE _E_/_E—\ / :
' '
} ' P—
A15:8  Prdv. Addr. X Address
. .
:X Address >@< Data

DA7:0 Prgv. Data

WR H
|
|

DA7:0 (XMBK = 0)  Prév. Data

Address >—«« Data

I

DA7:0 (XMBK = 1)  Prév. Data

Address

X Data

1
RD .
|
|

R

Note: 1.
SRWOO (lower sector).

I

Write

Read

SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or

The ALE pulse in period T5 is only present if the next instruction accesses the RAM (internal

or external).

ATMEL

26



WL

Figure 7-8.  External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0

T i T2 ] T3 1 T4 i 5 ] T6

System Clock (CLKgpy) _/%/ /:/ /%/ \__/%/ w

ALE

: ;
A15:8  Prdv. Addr. X | Address | : : X
j | j | j j | 2
: : £
DA7:0  Prév. Data X Address X::X ' Data ! ' X E
- X : ! : : |
WR | : : : ; : _
1 1 1 ' 1 ' ' /]
DAT:0 (XMBK = 0) _Prdv. Data X Address }——+——{{ Data | : —
j \ 1 j j | |
1 1 g
: _ ) ' . X '
DAT:0 (XMBK = 1) _Prdv Data :X Address | X Data : : : X &
. :
RD

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM (internal
or external).

Figure 7-9.  External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1("
o m oy T2, T3, T4 T8 T6 . T7T |

.

A15:8  Prbv. Addr. X ! Address | ' , , X:
- ! : : : i N
DA7:0 Prgv. Data XAddress 1 Data H ' ' ' =
a laress Yool ; : ; : X
WR l A\ | : / : D
DA7:0 (XMBK = 0)  Prbv. Data X Address \—+—{{ Data | ' D) ; (
H H , j j H , ‘
. N . N . L ' e
DA7:0 (XMBK =1)  Prkv. Data D( Address | X Data | ! , . X: 2
. . j | . j i '
o : : : ' ' . .
RD | ' A\ . : )/ : :

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM (internal
or external).

7.5.7 Using all Locations of External Memory Smaller than 64 KB
Since the external memory is mapped after the internal memory as shown in Figure 7-4 on page
23, the external memory is not addressed when addressing the first 4,352 bytes of data space. It
may appear that the first 4,352 bytes of the external memory are inaccessible (external memory
addresses 0x0000 to 0x10FF). However, when connecting an external memory smaller than 64
KB, for example 32 KB, these locations are easily accessed simply by addressing from address
0x8000 to 0x90FF. Since the External Memory Address bit A15 is not connected to the external
memory, addresses 0x8000 to Ox90FF will appear as addresses 0x0000 to Ox10FF for the exter-
nal memory. Addressing above address Ox90FF is not recommended, since this will address an
external memory location that is already accessed by another (lower) address. To the Applica-
tion software, the external 32 KB memory will appear as one linear 32 KB address space from

ATMEL 2

8160C-AVR-07/09



WL

0x1100 to Ox90FF. This is illustrated in Figure 7-10. Memory configuration B refers to the
ATmega103 compatibility mode, configuration A to the non-compatible mode.

When the device is set in ATmega103 compatibility mode, the internal address space is 4,096
bytes. This implies that the first 4,096 bytes of the external memory can be accessed at
addresses 0x8000 to Ox8FFF. To the Application software, the external 32 KB memory will
appear as one linear 32 KB address space from 0x1000 to Ox8FFF.

Figure 7-10. Address Map with 32 KB External Memory

Memory Configuration A Memory Configuration B

AVR Memory Map External 32K SRAM AVR Memory Map External 32K SRAM
0x0000 0x0000 0x0000 0x0000

Internal Memory oxoFFF | Internal Memory OXOFFF
oxore L _____| L ______ OX10FF CSTUVI i I A 0x1000
0x1100 0x1100
ox7FFF | _Extemal OX7FFF oxzFFF | _Bxternal OX7FFF
0x8000 Memory 0x8000 Memory
Ox90FF |_ _ _ _ _ _ _ oxeFFF |
0x9100 0x9000

(Unused) (Unused)

OxFFFF OXFFFF

7.5.8 Using all 64KB Locations of External Memory

8160C-AVR-07/09

Since the external memory is mapped after the internal memory as shown in Figure 7-4, only
60KB of external memory is available by default (address space 0x0000 to 0x10FF is reserved
for internal memory). However, it is possible to take advantage of the entire external memory by
masking the higher address bits to zero. This can be done by using the XMMn bits and con-
trolled by software the most significant bits of the address. By setting Port C to output 0x00, and
releasing the most significant bits for normal Port Pin operation, the Memory Interface will
address 0x0000 - Ox1FFF. See code examples below.

ATMEL 2



WL

8160C-AVR-07/09

Assembly Code Example("

; OFFSET is defined to 0x2000 to ensure

; external memory access

; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

1d4i rlée, OxFF

out DDRC, rlé6

1di rl6, 0x00

out PORTC, rlé6

; release PC7:5

1di rl6, (1<<XMM1) | (1<<XMMO)

sts XMCRB, rlé6

; write OxAA to address 0x0001 of external
; memory

1d4i rlée, Oxaa

sts 0x0001+OFFSET, rl6

; re-enable PC7:5 for external memory
1di rl6, (0<<XMM1) | (0<<XMMO)

sts XMCRB, rlé6

; store 0x55 to address (OFFSET + 1) of
; external memory

1di rle, 0x55

sts 0x0001+OFFSET, rlé6

C Code Example"

#define OFFSET 0x2000

void XRAM_example (void)

{

unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OxFF;
PORTC = 0x00;

XMCRB = (1<<XMM1) | (1<<XMMO) ;
*p = Oxaa;
XMCRB = 0x00;

*p = 0x55;
}

Note: 1. See “About Code Examples” on page 8.
Care must be exercised using this option as most of the memory is masked away.

ATMEL

29



WL

7.6 Register Description

7.6.1 MCUCR - MCU Control Register

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) | SRE | SRW10 SE SM1 SMO SM2 IVSEL IVCE | mcucr
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0, A15:8,
ALE, WR, and RD are activated as the alternate pin functions. The SRE bit overrides any pin
direction settings in the respective data direction registers. Writing SRE to zero, disables the
External Memory Interface and the normal pin and data direction settings are used.

¢ Bit 6 — SRW10: Wait State Select Bit

For a detailed description in non ATmega103 compatibility mode, see common description for
the SRWhn bits below (XMRA description). In ATmega103 compatibility mode, writing SRW10 to
one enables the wait state and one extra cycle is added during read/write strobe as shown in
Figure 7-7.

7.6.2 XMCRA - External Memory Control Register A

Bit 7 6 5 4 3 2 1 0
(0x6D) | - | SRL2 | SRL1 | SRLO SRW01 SRW00 SRW11 - | XMCRA
Read/Write R R/W R/W R/W R/W R/W R/W R
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — Res: Reserved Bit

This is a reserved bit and will always read as zero. When writing to this address location, write
this bit to zero for compatibility with future devices.

e Bit 6:4 — SRL2, SRL1, SRLO: Wait State Sector Limit

It is possible to configure different wait states for different external memory addresses. The
external memory address space can be divided in two sectors that have separate wait-state bits.
The SRL2, SRL1, and SRLO bits select the split of the sectors, see Table 7-2 and Figure 7-4. By
default, the SRL2, SRL1, and SRLO bits are set to zero and the entire external memory address
space is treated as one sector. When the entire SRAM address space is configured as one sec-
tor, the wait states are configured by the SRW11 and SRW10 bits.

ATMEL s

8160C-AVR-07/09



WL

Table 7-2. Sector Limits with Different Settings of SRL2:0

SRL2 SRLA1 SRLO Sector Limits
0 0 0 Lower sector = N/A
Upper sector = 0x1100 - OxFFFF
0 0 1 Lower sector = 0x1100 - Ox1FFF
Upper sector = 0x2000 - OxFFFF
0 1 0 Lower sector = 0x1100 - OX3FFF
Upper sector = 0x4000 - OxFFFF
0 1 1 Lower sector = 0x1100 - Ox5FFF
Upper sector = 0x6000 - OxFFFF
1 0 0 Lower sector = 0x1100 - Ox7FFF
Upper sector = 0x8000 - OxFFFF
1 0 1 Lower sector = 0x1100 - OX9FFF
Upper sector = 0xA000 - OxFFFF
1 1 0 Lower sector = 0x1100 - OXBFFF
Upper sector = 0xC000 - OxFFFF
1 1 1 Lower sector = 0x1100 - OXDFFF
Upper sector = OXEOQO - OxFFFF

¢ Bit 1 and Bit 6 MCUCR — SRW11, SRW10: Wait State Select Bits for Upper Sector
The SRW11 and SRW10 bits control the number of wait states for the upper sector of the exter-
nal memory address space, see Table 7-3.

¢ Bit 3:2 - SRW01, SRW00: Wait State Select Bits for Lower Sector

The SRWO01 and SRWO0O0 bits control the number of wait states for the lower sector of the exter-
nal memory address space, see Table 7-3.

Table 7-3.  Wait States'"

SRWn1 SRWn0 | Wait States

0 0 No wait states
0 1 Wait one cycle during read/write strobe
1 0 Wait two cycles during read/write strobe

Wait two cycles during read/write and wait one cycle before driving out new

1 1 address

Note: 1. n=0or 1 (lower/upper sector).
For further details of the timing and wait states of the External Memory Interface, see Figure 7-
6 to Figure 7-9 how the setting of the SRW bits affects the timing.

¢ Bit 0 — Res: Reserved Bit
This is a reserved bit and will always read as zero. When writing to this address location, write
this bit to zero for compatibility with future devices.

ATMEL s

8160C-AVR-07/09



WL

7.6.3 XMCRB - External Memory Control Register B

Bit 7 6 5 4 3 2 1 0
(0x6C) | XMBK | - | - | - - XMM2 XMM1 XMMO | XMCRB
Read/Write R/W R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — XMBK: External Memory Bus Keeper Enable

Writing XMBK to one enables the Bus Keeper on the AD7:0 lines. When the Bus Keeper is
enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would otherwise
be tri-stated. Writing XMBK to zero disables the Bus Keeper. XMBK is not qualified with SRE, so
even if the XMEM interface is disabled, the Bus Keepers are still activated as long as XMBK is
one.

* Bit 6:3 — Res: Reserved Bits
These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.

e Bit 2:0 - XMM2, XMM1, XMMO: External Memory High Mask

When the External Memory is enabled, all Port C pins are default used for the high address byte.
If the full 60KB address space is not required to access the external memory, some, or all, Port
C pins can be released for normal port pin function as described in Table 7-4. As described in
“Using all Locations of External Memory Smaller than 64 KB” on page 27, it is possible to use
the XMMn bits to access all 64KB locations of the external memory.

Table 7-4. Port C Pins Released as Normal Port Pins when the External Memory is Enabled
XMM2 XMM1 XMMO | # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full 60 KB space) None

0 0 1 7 PC7

0 1 0 6 PC7 - PC6

0 1 1 5 PC7 - PC5

1 0 0 4 PC7 - PC4

1 0 1 3 PC7 - PC3

1 1 0 2 PC7 - PC2

1 1 1 No Address high bits Full Port C

7.6.4 EEARH and EEARL — EEPROM Address Register

8160C-AVR-07/09

Bit 15 14 13 12 1 10 9 8
0x1F (Ox3F) - - - - - EEAR10 EEAR9 EEARS EEARH
0x1E (0x3E) EEAR7 EEAR6 EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R/W R/W R/IW
R/W R/W R/W R/IW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 X X X
X X X X X X X X

ATMEL 5



WL

¢ Bits 15:11 — Res: Reserved Bits
These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.

* Bits 10:0 - EEAR10:0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the 2K
bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 2,048.
The Initial Value of EEAR is undefined. A proper value must be written before the EEPROM may
be accessed.

7.6.5 EEDR - EEPROM Data Register

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) | MsB | LsB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7:0 — EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

7.6.6 EECR - EEPROM Control Register

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) | - | - EERIE EEMWE EEWE EERE | EECR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

e Bits 7:4 — Res: Reserved Bits
These bits are reserved bits in the ATmega64A and will always read as zero.

¢ Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready Interrupt generates a constant inter-
rupt when EEWE is cleared.

e Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is written to one, writing EEWE to one within four clock cycles will write data to
the EEPROM at the selected address. If EEMWE is zero, writing EEWE to one will have no
effect. When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

e Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be set to write the value into the EEPROM.
The EEMWE bit must be set when the logical one is written to EEWE, otherwise no EEPROM
write takes place. The following procedure should be followed when writing the EEPROM (the
order of steps 3 and 4 is not essential):

ATMEL s

8160C-AVR-07/09



WL

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader
Support — Read-While-Write Self-programming” on page 281 for details about Boot
programming.

ook wh =

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during the four last steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 7-5 lists the typical pro-
gramming time for EEPROM access from the CPU.

Table 7-5.  EEPROM Programming Time("

Number of Calibrated RC Oscillator
Symbol Cycles Typ Programming Time

EEPROM write (from CPU) 8448 8.4 ms

Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse settings.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g., by disabling interrupts
globally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash boot loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

ATMEL s

8160C-AVR-07/09



WL

8160C-AVR-07/09

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_write
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rl6) to data register
out EEDR,rl6
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR, EEWE

ret

C Code Example

void EEPROM_write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEWE))
/* Set up address and data registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE) ;
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

ATMEL

35



WL

8160C-AVR-07/09

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR, EEWE

rjmp EEPROM_read

; Set up address (rl18:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Start eeprom read by writing EERE

sbi EECR, EERE

; Read data from data register

in rl6, EEDR

ret

C Code Example

{

unsigned char EEPROM_read(unsigned int uiAddress)

/* Wait for completion of previous write */
while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1l<<EERE);

/* Return data from data register */

return EEDR;

ATMEL

36



WL

8. System Clock and Clock Options

8.1 Clock Systems and their Distribution
Figure 8-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in “Power Manage-
ment and Sleep Modes” on page 46. The clock systems are detailed below.

Figure 8-1.  Clock Distribution

Asynchronous General I/O Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
/ / / A A Y 4
Clkupne
clkyo AVR Clock clkgpy
Control Unit
ClkASY ClkFLASH
Y Y
Reset Logic Watchdog Timer
F 1 :
Source Clock Watchdog Clock
Clock Watchdog
Multiplexer Oscillator
A A A A A

Timer/Counter External RC Crystal Low-frequency Calibrated RC
External Clock
Oscillator Oscillator Oscillator Crystal Oscillator Oscillator

8.1.1 CPU Clock - clkcpy
The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

8.1.2 I/0 Clock - clko
The I/0 clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clkq is halted, enabling TWI address reception in all sleep modes.

ATMEL 5

8160C-AVR-07/09



WL

8.1.3

8.14

8.1.5

8.2

8.3

8160C-AVR-07/09

F|aSh C|Ock - CIkFLASH
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

Asynchronous Timer Clock — clk,gy
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external 32 kHz clock crystal. The dedicated clock domain allows using this
Timer/Counter as a real-time counter even when the device is in sleep mode.

ADC Clock - clk,pc
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 8-1.  Device Clocking Options Select(")

Device Clocking Option CKSEL3:0
External Crystal/Ceramic Resonator 1111 -1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is as an additional delay allowing the power to reach a stable level before com-
mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the
start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 8-
2. The frequency of the Watchdog Oscillator is voltage dependent as shown in the “Typical
Characteristics” on page 343.

Table 8-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
41ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)

Default Clock Source

The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source setting is
therefore the Internal RC Oscillator with longest startup time. This default setting ensures that all
users can make their desired clock source setting using an In-System or Parallel Programmer.

ATMEL s



WL

8.4 Crystal Oscillator

8160C-AVR-07/09

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 8-2. Either a quartz crystal or a
ceramic resonator may be used. The CKOPT Fuse selects between two different Oscillator
amplifier modes. When CKOPT is programmed, the Oscillator output will oscillate a full rail-to-
rail swing on the output. This mode is suitable when operating in a very noisy environment or
when the output from XTAL2 drives a second clock buffer. This mode has a wide frequency
range. When CKOPT is unprogrammed, the Oscillator has a smaller output swing. This reduces
power consumption considerably. This mode has a limited frequency range and it cannot be
used to drive other clock buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and 16 MHz with
CKOPT programmed. C1 and C2 should always be equal for both crystals and resonators. The
optimal value of the capacitors depends on the crystal or resonator in use, the amount of stray
capacitance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 8-3. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

Figure 8-2.  Crystal Oscillator Connections

c2

Iy  XTAL2
i T

St 1| XTAL1

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3:1 as shown in Table 8-3.

Figure 8-3. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors
CKOPT CKSEL3:1 (MHz) C1 and C2 for Use with Crystals (pF)
1 101 0.4-0.9 -
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12-22
0 101, 110, 111 1.0 - 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1:0 Fuses select the start-up times as shown in Table
8-3.

ATMEL s



WL

Table 8-3. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO SUT1:0 Power-save (Ve =5.0V) Recommended Usage

0 00 058 CK() 41 ms C_e_ramlc resonator, fast
rising power

0 01 058 CK(1 65 ms C_)e_ramlc resonator, slowly
rising power

0 10 1K CK® _ Ceramic resonator, BOD
enabled

0 11 1K CK®@ 41 ms Cgramm resonator, fast
rising power

1 00 1K CK®@ 65 ms C_)e_ramlc resonator, slowly
rising power

1 01 16K CK _ Crystal Oscillator, BOD
enabled

1 10 16K CK 41 ms erstal Oscillator, fast
rising power

1 11 16K CK 65 ms erstal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

8.5 Low-frequency Crystal Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-frequency crystal
Oscillator must be selected by setting the CKSEL Fuses to “1001”. The crystal should be con-
nected as shown in Figure 8-2. By programming the CKOPT Fuse, the user can enable internal
capacitors on XTAL1 and XTAL2, thereby removing the need for external capacitors. The inter-
nal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 8-4.
Table 8-4. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
Start-up Time from Additional Delay from
Power-down and Reset
SUT1:0 Power-save (Ve =5.0V) Recommended Usage

00 1K CK 41 ms Fast rising power or BOD enabled
01 1K CK 65 ms Slowly rising power
10 32K CK 65 ms Stable frequency at start-up
11 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

ATMEL .

8160C-AVR-07/09



WL

8.6 External RC Oscillator
For timing insensitive applications, the external RC configuration shown in Figure 8-4 can be
used. The frequency is roughly estimated by the equation f = 1/(3RC). C should be at least 22
pF. By programming the CKOPT Fuse, the user can enable an internal 36 pF capacitor between
XTAL1 and GND, thereby removing the need for an external capacitor.

8160C-AVR-07/09

Figure 8-4. External RC Configuration
VCC

NC —

o
I—e— s

XTAL2

XTALA

GND

The Oscillator can operate in four different modes, each optimized for a specific frequency

range. The operating mode is selected by the fuses CKSEL3:0 as shown in Table 8-5.

Table 8-5. External RC Oscillator Operating Modes

CKSEL3:0 Frequency Range (MHz)
0101 0.1-0.9
0110 0.9-3.0
0111 3.0-8.0
1000 8.0-12.0

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 8-6.

Table 8-6. Start-up Times for the External RC Oscillator Clock Selection

Start-up Time from Additional Delay from
Power-down and Reset
SUT1:0 Power-save (Vec =5.0V) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 41 ms Fast rising power
10 18 CK 65 ms Slowly rising power
11 6 CKM 41 ms Fast rising power or BOD enabled

Note: 1. This option should not be used when operating close to the maximum frequency of the device.

ATMEL

41



WL

8.7 Calibrated Internal RC Oscillator

The calibrated internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All frequen-
cies are nominal values at 5V and 25-C. This clock may be selected as the system clock by
programming the CKSEL Fuses as shown in Table 8-7. If selected, it will operate with no exter-
nal components. The CKOPT Fuse should always be unprogrammed when using this clock
option. During reset, hardware loads the calibration byte into the OSCCAL Register and thereby
automatically calibrates the RC Oscillator. At 5V, 25-C and 1.0 MHz Oscillator frequency
selected, this calibration gives a frequency within + 3% of the nominal frequency. Using run-time
calibration methods as described in application notes available at www.atmel.com/avr it is possi-
ble to achieve + 1% accuracy at any given V. and Temperature. When this Oscillator is used
as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for the
Reset Time-out. For more information on the preprogrammed calibration value, see the section
“Calibration Byte” on page 298.

Table 8-7. Internal Calibrated RC Oscillator Operating Modes

CKSEL3:0 Nominal Frequency (MHz)
0001 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 8-8. XTAL1 and XTAL2 should be left unconnected (NC).

Table 8-8. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Power- Additional Delay from
SUT1:0 down and Power-save Reset (Vo = 5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 41 ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

8.8 External Clock

8160C-AVR-07/09

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
8-5. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.
By programming the CKOPT Fuse, the user can enable an internal 36 pF capacitor between
XTAL1 and GND.

ATMEL 1



WL

Figure 8-5. External Clock Drive Configuration

NC ——————— XTAL2
EXTERNAL

cLock — XTAL1
SIGNAL

GND

-

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 8-9.

Table 8-9. Start-up Times for the External Clock Selection

Start-up Time from Power- Additional Delay from
SUT1:0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 41 ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

8.9 Timer/Counter Oscillator
For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is
connected directly between the pins. No external capacitors are needed. The Oscillator is opti-
mized for use with a 32.768 kHz watch crystal. Applying an external clock source to TOSC1 is
not recommended.

Note:  The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator
and the internal capacitors have the same nominal value of 36 pF.

ATMEL i

8160C-AVR-07/09



WL

8.10 Register Descriprion

8.10.1 XDIV — XTAL Divide Control Register
The XTAL Divide Control Register is used to divide the source clock frequency by a number in
the range 2 - 129. This feature can be used to decrease power consumption when the require-
ment for processing power is low.

Bit 7 6 5 4 3 2 1 0
0x3C (0x5C) | XDIVEN | XDIV6é | XDIV5 XDIV4 XDIV3 XDIV2 XDIV1 XDIVO |  XDIV
Read/Write R/W R/W R/W R/W R/W RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — XDIVEN: XTAL Divide Enable

When the XDIVEN bit is written one, the clock frequency of the CPU and all peripherals (clk,,o,
Clkapcs Clkepy, ClKe agh) is divided by the factor defined by the setting of XDIV6 - XDIVO. This bit
can be written run-time to vary the clock frequency as suitable to the application.

* Bits 6:0 — XDIV6:XDIVO: XTAL Divide Select Bits 6 - 0

These bits define the division factor that applies when the XDIVEN bit is set (one). If the value of
these bits is denoted d, the following formula defines the resulting CPU and peripherals clock
frequency f:

. _ Source clock
Jok = THa9-g

The value of these bits can only be changed when XDIVEN is zero. When XDIVEN is written to
one, the value written simultaneously into XDIV6:XDIVO is taken as the division factor. When
XDIVEN is written to zero, the value written simultaneously into XDIV6:XDIVO is rejected. As the
divider divides the master clock input to the MCU, the speed of all peripherals is reduced when a
division factor is used.

Note: ~ When the system clock is divided, Timer/CounterQ can be used with Asynchronous clock only. The
frequency of the asynchronous clock must be lower than 1/4th of the frequency of the scaled down
Source clock. Otherwise, interrupts may be lost, and accessing the Timer/Counter0 registers may
fail.

8.10.2 OSCCAL - Oscillator Calibration Register'"

Bit 7 6 5 4 3 2 1 0
(OX6F) | car | cAe | cALs CAL4 CAL3 CAL2 CALA1 CAL0 | osccAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Note: 1. The OSCCAL Register is not available in ATmega103 compatibility mode.

e Bits 7:0 — CAL7:0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove process vari-
ations from the Oscillator frequency. During Reset, the 1 MHz calibration value which is located
in the signature row high byte (address 0x00) is automatically loaded into the OSCCAL Register.
If the internal RC is used at other frequencies, the calibration values must be loaded manually.
This can be done by first reading the signature row by a programmer, and then store the calibra-
tion values in the Flash or EEPROM. Then the value can be read by software and loaded into
the OSCCAL Register. When OSCCAL is zero, the lowest available frequency is chosen. Writing
non-zero values to this register will increase the frequency of the internal Oscillator. Writing

ATMEL "

8160C-AVR-07/09



WL

8160C-AVR-07/09

OxFF to the register gives the highest available frequency. The calibrated Oscillator is used to
time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to more than
10% above the nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that
the Oscillator is intended for calibration to 1.0, 2.0, 4.0, or 8.0 MHz. Tuning to other values is not
guaranteed, as indicated in Table 8-10.

Table 8-10. Internal RC Oscillator Frequency Range

OSCCAL Value

Min Frequency in Percentage of
Nominal Frequency (%)

Max Frequency in Percentage of
Nominal Frequency (%)

0x00 50 100
Ox7F 75 150
OxFF 100 200

ATMEL

45



WL

9. Power Management and Sleep Modes

9.1

9.2

Idle Mode

8160C-AVR-07/09

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the six sleep modes, the SE-bit in MCUCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the MCUCR Register
select which sleep mode (ldle, ADC Noise Reduction, Power-down, Power-save, Standby, or
Extended Standby) will be activated by the SLEEP instruction. See Table 9-2 for a summary. If
an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is
then halted for four cycles in addition to the start-up time, it executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

Figure 8-1 on page 37 presents the different clock systems in the ATmega64A, and their distri-
bution. This figure is helpful in selecting an appropriate sleep mode.

When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode,
stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial Inter-
face, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clksp and clkg osy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

ADC Noise Reduction Mode

When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the
Two-wire Serial Interface address watch, Timer/Counter0 and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clk;q, clkepy, and clk-g asn, While allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface address match interrupt, a Timer/Counter0O interrupt, an
SPM/EEPROM ready interrupt, an external level interrupt on INT7:4, or an External Interrupt on
INT3:0 can wake up the MCU from ADC Noise Reduction mode.

ATMEL 1



WL

9.3 Power-down Mode

When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
address match interrupt, an external level interrupt on INT7:4, or an External Interrupt on INT3:0
can wake up the MCU. This sleep mode basically halts all generated clocks, allowing operation
of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “8-bit Timer/Counter0 with PWM
and Asynchronous Operation” on page 92 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 38.

9.4 Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter0 is clocked asynchronously (i.e., the ASO bit in ASSR is set), Timer/Counter0O
will run during sleep. The device can wake up from either Timer Overflow or Output Compare
event from Timer/Counter0 if the corresponding Timer/Counter0 interrupt enable bits are set in
TIMSK, and the Global Interrupt Enable bit in SREG is set.

If the asynchronous timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the asynchronous timer
should be considered undefined after wake-up in Power-save mode if ASO is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous
modules, including Timer/Counter0 if clocked asynchronously.

9.5 Standby Mode

When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

9.6 Extended Standby Mode

8160C-AVR-07/09

When the SM2:0 bits are 111 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to
Power-save mode with the exception that the Oscillator is kept running. From Extended Standby
mode, the device wakes up in six clock cycles.

ATMEL i



WL

Table 9-1. Active Clock Domains and Wake Up Sources in the Different Sleep Modes
Active Clock Domains Oscillators Wake Up Sources
=
T 9 a o
2 2 8 5 | ex ﬁg 5 o S| § | =3 5
Sleep S T o < 2 %83«580«5 _'O-*(-'(é g =0 g _.-OC_,)
Mode g £ 5 % £ |3685£88 _=z £33 £ | HHe 52
Idle X X X X X@ X X X X X | X
ADC
Noise X X X X@ X® X X X X
Reduction
Power- X@ X
down
Power- X@ X®@ X® X X®
save
Standby!" X X® X
Extended
(2 () () )
Standby!" X X X X X X
Notes: 1. External Crystal or resonator selected as clock source.
2. If ASO bit in ASSR is set.

3. Only INT3:0 or level interrupt INT7:4.

9.7 Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

9.7.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter” on page 233
for details on ADC operation.

9.7.2 Analog Comparator

9.7.3

8160C-AVR-07/09

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the internal voltage reference as input, the Analog Comparator should be disabled
in all sleep modes. Otherwise, the internal voltage reference will be enabled, independent of
sleep mode. Refer to “Analog Comparator” on page 230 for details on how to configure the Ana-
log Comparator.

Brown-out Detector

If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and

ATMEL 1



WL

hence, always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Brown-out Detector” on page 48 for details on how to
configure the Brown-out Detector.

9.7.4 Internal Voltage Reference
The internal voltage reference will be enabled when needed by the Brown-out Detector, the Ana-
log Comparator or the ADC. If these modules are disabled as described in the sections above,
the internal voltage reference will be disabled and it will not be consuming power. When turned
on again, the user must allow the reference to start up before the output is used. If the reference
is kept on in sleep mode, the output can be used immediately. Refer to “Internal Voltage Refer-
ence” on page 55 for details on the start-up time.

9.7.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 55 for details on how to configure the Watchdog Timer.

9.7.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is then to ensure that no pins drive resistive loads. In sleep modes where
the both the I/O clock (clk;g) and the ADC clock (clkapc) are stopped, the input buffers of the
device will be disabled. This ensures that no power is consumed by the input logic when not
needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will
then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 72 for
details on which pins are enabled. If the input buffer is enabled and the input signal is left floating
or have an analog signal level close to V¢/2, the input buffer will use excessive power.

9.7.7 JTAG Interface and On-chip Debug System
If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or
Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will
contribute significantly to the total current consumption. There are three alternative ways to
avoid this:

¢ Disable OCDEN Fuse.
* Disable JTAGEN Fuse.
¢ Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.

ATMEL 1

8160C-AVR-07/09



WL

9.8 Register Description

9.8.1 MCUCR - MCU Control Register

8160C-AVR-07/09

The MCU Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
0x35(0x55) | SRE | SRWi0 | SE | sm1 | smo | SmM2 | IVSEL | IVCE | McCucr
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 5 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmers
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

¢ Bits 4:2 — SM2:0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the six available sleep modes as shown in Table 9-2.

Table 9-2. Sleep Mode Select

SM2 SM1 SMo Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby!"
1 1 1 Extended Standby"

Note: 1. Standby mode and Extended Standby mode are only available with external crystals or
resonators.

ATMEL s



WL

10. System Control and Reset

10.0.1 Resetting the AVR

10.0.2 Reset Sources

8160C-AVR-07/09

During Reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP — absolute
jump — instruction to the Reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 10-1 shows the Reset
logic. Table 28-3 defines the electrical parameters of the Reset circuitry.

The 1/0 ports of the AVR are immediately Reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the Internal
Reset. This allows the power to reach a stable level before normal operation starts. The Time-
out period of the delay counter is defined by the user through the CKSEL Fuses. The different
selections for the delay period are presented in “Clock Sources” on page 38.

The ATmega64A has five sources of reset:
* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpgr)-

» External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.

¢ Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V¢ is below the Brown-out
Reset threshold (Vzgt) and the Brown-out Detector is enabled.

* JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) Boundary-
scan” on page 259 for details.

ATMEL 2



WL

Figure 10-1. Reset Logic

DATA BUS
A

PEN ) D Q MCU Control and Status
Register (MCUCSR)

L 6 TR TR RNy
ZglE SE
. Q1QElgls
Pull-up Resistor w
Viete Power-lOn AReset
Circuit
BODEN F{Browrg_out_ -
BODLEVEL eset Circuit UUJ'I
T N\ w
Pull-up Resistor ‘l s a *nj
L) H:Z / s
= SPIKE
RESET FILTER Reset Circuit —R &
z
—
[ m
i
JTAG Reset Watchdog o
Register Timer E
=
T =
=)
Q
Watchdog o
Oscillator
Y
>
Clock CK Delay Counters ||
Generator 4 TIMEOUT
A A
CKSEL[3:0]
sutfl —4—4089 — |

10.0.3 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip Detection circuit. The detection level
is defined in Table 28-3. The POR is activated whenever V is below the detection level. The
POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply
voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after V rise. The RESET signal is activated again, without any delay,
when V; decreases below the detection level.

ATMEL 52

8160C-AVR-07/09



ATmega64A

Figure 10-2. MCU Start-up, RESET Tied to V¢

-7~ Veor
Vee J

U4V
RESET J RST

TIME-OUT

INTERNAL
RESET

Figure 10-3. MCU Start-up, RESET Extended Externally

1
-7~ Veor

1
1
| |
1 1
1 )
AN
RESET ! 1 RST
| |
1 1
1 1
TIME-OUT | ot
| |
1 1
1 1
1 1
I 1
INTERNAL A
RESET '

10.0.4 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 28-3) will generate a reset, even if the clock is not running.
Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the
Reset Threshold Voltage — Vggr On its positive edge, the delay counter starts the MCU after the
Time-out period t;oy1 has expired.

Figure 10-4. External Reset during Operation

Vee
RESET | 1
1 1
1 1
1 1
1 1
1
| — trour —>
TIME-OUT : 1
1
1
1
|
INTERNAL
RESET

ATMEL s

8160C-AVR-07/09



WL

10.0.5 Brown-out Detection

ATmega64A has an On-chip Brown-out Detection (BOD) circuit for monitoring the V. level dur-
ing operation by comparing it to a fixed trigger level. The trigger level for the BOD can be
selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL
programmed). The trigger level has a hysteresis to ensure spike free Brown-out Detection. The
hysteresis on the detection level should be interpreted as Vgor, = Vgor + Viyst/2 and Vgor. =
Veor - Vhvst/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled
(BODEN programmed), and V¢ decreases to a value below the trigger level (Vggr. in Figure 10-
5), the Brown-out Reset is immediately activated. When V. increases above the trigger level

(Vgor, in Figure 10-5), the delay counter starts the MCU after the Time-out period t;oyr has
expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for lon-
ger than tzgp given in Table 28-3.

Figure 10-5. Borwn-out Reset During Operation

RESET

INTERNAL
RESET

| |
| |
| |
| |
| |
| |
TIME-OUT ! < trout

| |
| |
| |
| |

|

|

|

|

10.0.6 Watchdog Reset

8160C-AVR-07/09

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period t;o 1. Refer to
page 55 for details on operation of the Watchdog Timer.

ATMEL s



WL

Figure 10-6. Watchdog Reset During Operation
Vee

RESET

—>» «— 1CKCycle
WDT
TIME-OUT n

RESET
TIME-OUT

INTERNAL
RESET

10.1 Internal Voltage Reference

ATmega6b4A features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC. The 2.56V ref-
erence to the ADC is generated from the internal bandgap reference.

10.1.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 28-3. To save power, the reference is not always turned on. The
reference is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

10.2 Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 Mhz. This is
the typical value at V. = 5V. See characterization data for typical values at other V. levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 10-2 on page 58. The WDR — Watchdog Reset — instruction resets the Watch-
dog Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the ATmega64A resets and executes from the
Reset Vector. For timing details on the Watchdog Reset, refer to “Watchdog Reset” on page 54.

To prevent unintentional disabling of the Watchdog or unintentional change of Time-out period,
three different safety levels are selected by the fuses M103C and WDTON as shown in Table
10-1. Safety level 0 corresponds to the setting in ATmega103. There is no restriction on
enabling the WDT in any of the safety levels. Refer to “Timed Sequences for Changing the Con-
figuration of the Watchdog Timer” on page 56 for details.

ATMEL s

8160C-AVR-07/09



WL

Table 10-1. WDT Configuration as a Function of the Fuse Settings of M103C and WDTON
Safety | WDT Initial | How to Disable | How to Change
M103C WDTON Level State the WDT Time-out
Unprogrammed Unprogrammed 1 Disabled Timed Timed sequence
sequence
Unprogrammed Programmed 2 Enabled Always enabled | Timed sequence
Programmed Unprogrammed 0 Disabled Timed No restriction
sequence
Programmed Programmed 2 Enabled Always enabled | Timed sequence
Figure 10-7. Watchdog Timer
WATCHDOG N WATCHDOG
OSCILLATOR 5 PRESCALER
HNREEEEEE
WATCHDOG 2|12|2|2|2|2l3| 8
RESET ele|e|s| e
I VVYVVYVVYYN
WDPO >‘k
WDP1 r\
WDP2 P\
WDE

MCU RESET

10.3 Timed Sequences for Changing the Configuration of the Watchdog Timer

The sequence for changing configuration differs slightly between the three safety levels. Sepa-
rate procedures are described for each level.

10.3.1 Safety Level 0
This mode is compatible with the Watchdog operation found in ATmega103. The Watchdog
Timer is initially disabled, but can be enabled by writing the WDE bit to 1 without any restriction.
The Time-out period can be changed at any time without restriction. To disable an enabled
Watchdog Timer, the procedure described on page 57 (WDE bit description) must be followed.
10.3.2 Safety Level 1

In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or
changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits as
desired, but with the WDCE bit cleared.

ATMEL s

8160C-AVR-07/09



WL

10.3.3 Safety Level 2
In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A
timed sequence is needed when changing the Watchdog Time-out period. To change the
Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as desired,
but with the WDCE bit cleared. The value written to the WDE bit is irrelevant.

10.4 Register Description

10.4.1  MCUCSR — MCU Control and Status Register!"
The MCU Control and Status Register provides information on which reset source caused an

MCU Reset.
Bit 7 6 5 4 3 2 1 0
0x34 (0x54) | JTD - JTRF WDRF BORF EXTRF PORF | MCUCSR
Read/Write R/W R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 See Bit Description

Note: 1. Only EXTRF and PORF are available in mega103 compatibility mode.

e Bit4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Brown-out Reset, or by writing a logic
zero to the flag.

¢ Bit 3 - WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

* Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 1 — EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

¢ Bit 0 — PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.
To make use of the reset flags to identify a reset condition, the user should read and then reset
the MCUCSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the Reset Flags.

10.4.2 WDTCR - Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0
0x21 (0x41) | - | - | - WDCE WDE WDP2 WDP1 wDP0 | WDTCR
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
1 AImEl 57
Y )

8160C-AVR-07/09



WL

8160C-AVR-07/09

e Bits 7:5 — Res: Reserved Bits

These bits are reserved bits in the ATmega64A and will always read as zero.

* Bit 4 - WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure. In Safety Level 1 and 2, this bit
must also be set when changing the prescaler bits. See “Timed Sequences for Changing the
Configuration of the Watchdog Timer” on page 56.

¢ Bit 3 - WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm

described above. See “Timed Sequences for Changing the Configuration of the Watchdog
Timer” on page 56.

¢ Bits 2:0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPQ bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods
are shown in Table 10-2.

Table 10-2. Watchdog Timer Prescale Select
Number of WDT Typical Time-out Typical Time-out
WDP2 | WDP1 | WDPO Oscillator Cycles at Voo = 3.0V at Voc = 5.0V
0 0 0 16K (16,384) 17.1 ms 16.3 ms
0 0 1 32K (32,768) 34.3 ms 32.5ms
0 1 0 64K (65,536) 68.5 ms 65 ms
0 1 1 128K (131,072) 0.14s 0.13s
1 0 0 256K (262,144) 0.27 s 0.26 s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 1.1s 1.0s
1 1 1 2,048K (2,097,152) 22s 21s

The following code examples show one assembly and one C function for turning off the WDT.
The examples assume that interrupts are controlled (e.g., by disabling interrupts globally) so that
no interrupts will occur during execution of these functions.

ATMEL

58



WL

Assembly Code Example

WDT_off:
; reset WDT
wdr
in rl6, WDTCR
1di rl6, (1<<WDCE) | (1<<WDE)
; Write logical one to WDCE and WDE
ori rl6, (1<<WDCE) | (1<<WDE)
out WDTCR, rlé6
; Turn off WDT
1di rl6, (0<<WDE)
out WDTCR, rlé6

ret

C Code Example

void WDT_off (void)
{
/* Reset WDT*/

_WDRC () ;
/* Write logical one to WDCE and WDE */

= (1<<WDCE) (1<<WDE) ;

WDTCR |
/* Turn off wWDT */
WDTCR = 0x00;

ATMEL

8160C-AVR-07/09

59



WL

11. Interrupts

11.1 Overview

11.2 Interrupt Vectors in ATmega64A

8160C-AVR-07/09

This section describes the specifics of the interrupt handling as performed in ATmega64A. For a
general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on

page 14.

Table 11-1.  Reset and Interrupt Vectors
Vector Program

No. Address® | Source Interrupt Definition

1 0x0000" | RESET External Pin, Power-on Reset, Brown-out Reset,

Watchdog Reset, and JTAG AVR Reset

2 0x0002 INTO External Interrupt Request 0

3 0x0004 INTH External Interrupt Request 1

4 0x0006 INT2 External Interrupt Request 2

5 0x0008 INT3 External Interrupt Request 3

6 0x000A INT4 External Interrupt Request 4

7 0x000C INT5 External Interrupt Request 5

8 0x000E INT6 External Interrupt Request 6

9 0x0010 INT7 External Interrupt Request 7

10 0x0012 TIMER2 COMP Timer/Counter2 Compare Match
11 0x0014 TIMER2 OVF Timer/Counter2 Overflow

12 0x0016 TIMER1 CAPT Timer/Counter1 Capture Event

13 0x0018 TIMER1 COMPA Timer/Counter1 Compare Match A
14 0x001A TIMER1 COMPB Timer/Counter1 Compare Match B
15 0x001C TIMER1 OVF Timer/Counter1 Overflow

16 0x001E TIMERO COMP Timer/Counter0 Compare Match
17 0x0020 TIMERO OVF Timer/Counter0 Overflow

18 0x0022 SPI, STC SPI Serial Transfer Complete

19 0x0024 USARTO, RX USARTO, Rx Complete

20 0x0026 USARTO, UDRE USARTO Data Register Empty

21 0x0028 USARTO, TX USARTO, Tx Complete

22 0x002A ADC ADC Conversion Complete

23 0x002C EE READY EEPROM Ready

24 0x002E ANALOG COMP Analog Comparator

25 0x0030® | TIMER1 COMPC Timer/Countre1 Compare Match C
26 0x0032® | TIMER3 CAPT Timer/Counter3 Capture Event

ATMEL

60



WL

Table 11-1. Reset and Interrupt Vectors (Continued)

Vector Program
No. Address® | Source Interrupt Definition
27 0x0034® | TIMER3 COMPA Timer/Counter3 Compare Match A
28 0x0036°) | TIMER3 COMPB Timer/Counter3 Compare Match B
29 0x0038® | TIMER3 COMPC | Timer/Counter3 Compare Match C
30 0x003A® | TIMER3 OVF Timer/Counter3 Overflow
31 0x003C® | USART1, RX USART1, Rx Complete
32 0x003E® | USART1, UDRE USART1 Data Register Empty
33 0x0040® | USART1, TX USART1, Tx Complete
34 0x0042® | TWI Two-wire Serial Interface
35 0x0044® | SPM READY Store Program Memory Ready

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see “Boot Loader Support — Read-While-Write Self-programming” on page 281.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash section. The address of each Interrupt Vector will then be address in this table added to
the start address of the Boot Flash section.

3. The Interrupts on address 0x0030 - 0x0044 do not exist in ATmega103 compatibility mode.
Table 11-2 shows Reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 11-2.  Reset and Interrupt Vectors Placement(")

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 26-6 on page 292. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmegab4A is:

Address Labels Code Comments

0x0000 Jjmp RESET ; Reset Handler
0x0002 jmp EXT_INTO ; IRQO Handler
0x0004 jmp EXT_INT1 ; IRQ1 Handler
0x0006 Jjmp EXT_INT2 ; IRQ2 Handler
0x0008 Jjmp EXT_INT3 ; IRQ3 Handler
0x000A Jjmp EXT_INT4 ; IRQ4 Handler
0x000C Jjmp EXT_INT5 ; IRQ5 Handler
0x000E jmp EXT_INT6 ; IRQ6 Handler
0x0010 jmp EXT_INT7 ; IRQ7 Handler

ATMEL o

8160C-AVR-07/09



WL

0x0012 Jjmp TIM2_COMP ; Timer2 Compare Handler

0x0014 Jjmp TIM2_OVF ; Timer2 Overflow Handler
0x0016 Jjmp TIM1_CAPT ; Timerl Capture Handler

0x0018 Jjmp TIM1_COMPA ; Timerl CompareA Handler
0x001A jmp TIM1_COMPB ; Timerl CompareB Handler
0x001C jmp TIM1_OVF ; Timerl Overflow Handler
0x001E Jjmp TIMO_COMP ; Timer(0 Compare Handler

0x0020 Jjmp TIMO_OVF ; Timer0 Overflow Handler
0x0022 Jjmp SPI_STC ; SPI Transfer Complete Handler
0x0024 jmp USARTO_RXC ; USARTO RX Complete Handler
0x0026 jmp USARTO_DRE ; USARTO,UDR Empty Handler
0x0028 jmp USARTO_TXC ; USARTO TX Complete Handler
0x002A Jjmp ADC ; ADC Conversion Complete Handler
0x002C Jjmp EE_RDY ; EEPROM Ready Handler

0x002E Jjmp ANA_COMP ; Analog Comparator Handler
0x0030 jmp TIM1_COMPC ; Timerl CompareC Handler
0x0032 jmp TIM3_CAPT ; Timer3 Capture Handler

0x0034 jmp TIM3_COMPA ; Timer3 CompareA Handler
0x0036 Jjmp TIM3_COMPB ; Timer3 CompareB Handler
0x0038 Jjmp TIM3_COMPC ; Timer3 CompareC Handler
0x003A Jjmp TIM3_OVF ; Timer3 Overflow Handler
0x003C jmp USART1_RXC ; USART1 RX Complete Handler
0x003E jmp USART1_DRE ; USART1,UDR Empty Handler
0x0040 jmp USART1_TXC ; USART1 TX Complete Handler
0x0042 Jjmp TWI ; Two-wire Serial Interface Handler
0x0044 jmp SPM_RDY ; SPM Ready Handler

0x0046 RESET: 1di rl6, high(RAMEND); Main program start

0x0047 out SPH,rl6 ; Set Stack Pointer to top of RAM
0x0048 1di rl6, low(RAMEND)

0x0049 out SPL,rl6

0x004A sei ; Enable interrupts

0x004B <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x0000 RESET: 1di rl6,high (RAMEND); Main program start

0x0001 out SPH, rl6 ; Set Stack Pointer to top of RAM
0x0002 1di rl6, low (RAMEND)

0x0003 out SPL,rlé6

0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

.org 0x7002

0x7002 jmp EXT_INTO ; IRQO Handler

0x7004 Jjmp EXT_INT1 ; IRQ1 Handler

0x7044 Jjmp SPM_RDY ; Store Program Memory Ready Handler

ATMEL o

8160C-AVR-07/09



WL

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code

.org 0x0002
0x0002
0x0004

0x0044
.org 0x7000
0x7000 RESET:

0x7001
0x7002

0x7003
0x7004

0x7005

jmp
jmp

jmp

1di
out
1di

out
sei

Comments

EXT_INTO ; IRQO Handler
EXT_INT1 ; IRQ1 Handler

SPM_RDY ; Store Program Memory Ready Handler

rl6,high (RAMEND); Main program start
SPH,rl6 ; Set Stack Pointer to top of RAM
rl6, low (RAMEND)

SPL,rl6
; Enable interrupts

<instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code

.org 0x7000
0x7000
0x7002

0x7004

0x7044
0x7046 RESET:
0x7047
0x7048

0x7049
0x704A

0x704B

jmp
jmp
jmp

jmp
1di
out
1di

out
sei

Comments

RESET ; Reset handler
EXT_INTO ; IRQO Handler

EXT_INT1 ; IRQ1 Handler

SPM_RDY ; Store Program Memory Ready Handler
rl6,high (RAMEND); Main program start

SPH, rl6 ; Set Stack Pointer to top of RAM
rl6, low (RAMEND)

SPL,rl6
; Enable interrupts

<instr> xxx

11.2.1 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

8160C-AVR-07/09

ATMEL e



WL

11.3 Register Description

11.3.1 MCUCR - MCU Control Register

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) | SRE | SRW10 | SE SM1 SMO SM2 | IVSEL | IVCE | MCUCR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support — Read-While-Write
Self-programming” on page 281 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled

in the cycle IVCE is set, and they remain disabled until after the instruction following the write to

IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status

Register is unaffected by the automatic disabling.

Note:  If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section “Boot Loader Support — Read-While-
Write Self-programming” on page 281 for details on Boot Lock bits.

e Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See code examples below.

Assembly Code Example

Move_interrupts:
; Enable change of Interrupt Vectors
1di rlée, (1<<IVCE)
out MCUCR, rlé6
; Move interrupts to boot Flash section
1ldi rl6, (1<<IVSEL)
out MCUCR, rlé6

ret

C Code Example

void Move_interrupts (void)

{
/* Enable change of Interrupt Vectors */
MCUCR = (1<<IVCE) ;
/* Move interrupts to boot Flash section */

MCUCR = (1<<IVSEL) ;

ATMEL o

8160C-AVR-07/09



WL

12. External Interrupts

The External Interrupts are triggered by the INT7:0 pins. Observe that, if enabled, the interrupts
will trigger even if the INT7:0 pins are configured as outputs. This feature provides a way of gen-
erating a software interrupt. The external interrupts can be triggered by a falling or rising edge or
a low level. This is set up as indicated in the specification for the External Interrupt Control Reg-
isters — EICRA (INT3:0) and EICRB (INT7:4). When the External Interrupt is enabled and is
configured as level triggered, the interrupt will trigger as long as the pin is held low. Note that
recognition of falling or rising edge interrupts on INT7:4 requires the presence of an 1/O clock,
described in “Clock Systems and their Distribution” on page 37. Low level interrupts and the
edge interrupt on INT3:0 are detected asynchronously. This implies that these interrupts can be
used for waking the part also from sleep modes other than Idle mode. The 1/O clock is halted in
all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. This makes the MCU less sensitive to
noise. The changed level is sampled twice by the Watchdog Oscillator clock. The period of the
Watchdog Oscillator is 1 ps (nominal) at 5.0V and 25-C. The frequency of the Watchdog Oscilla-
tor is voltage dependent as shown in the “Electrical Characteristics” on page 327. The MCU will
wake up if the input has the required level during this sampling or if it is held until the end of the
start-up time. The start-up time is defined by the SUT Fuses as described in “Clock Systems and
their Distribution” on page 37. If the level is sampled twice by the Watchdog Oscillator clock but
disappears before the end of the start-up time, the MCU will still wake up, but no interrupt will be
generated. The required level must be held long enough for the MCU to complete the wake up to
trigger the level interrupt.

12.1 Register Description

12.1.1 EICRA — External Interrupt Control Register A

Bit 7 6 5 4 3 2 1 0

(0xBA) | 'scat | iscao | 1Isc21 | Isc20 ISC11 ISC10 ISCo1 ISC00 | EICRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

This Register can not be reached in ATmega103 compatibility mode, but the Initial Value defines
INT3:0 as low level interrupts, as in ATmega103.

e Bits 7:0 — ISC31, ISC30 - ISC00, ISC00: External Interrupt 3 - 0 Sense Control Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 12-1 on page 66. Edges on INT3:INTO are registered
asynchronously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 12-2
on page 66 will generate an interrupt. Shorter pulses are not guaranteed to generate an inter-
rupt. If low level interrupt is selected, the low level must be held until the completion of the
currently executing instruction to generate an interrupt. If enabled, a level triggered interrupt will
generate an interrupt request as long as the pin is held low. When changing the ISCn bit, an
interrupt can occur. Therefore, it is recommended to first disable INTn by clearing its Interrupt
Enable bit in the EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt
flag should be cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Regis-
ter before the interrupt is re-enabled.

ATMEL o

8160C-AVR-07/09



WL

Table 12-1.  Interrupt Sense Control"
ISCn1 ISCn0 | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Reserved
1 0 The falling edge of INTn generates asynchronously an interrupt request.
1 1 The rising edge of INTn generates asynchronously an interrupt request.

Note: 1. n=3,2,1or0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

Table 12-2.  Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition Min Typ Max | Units

IUNT Minimum pulse width for asynchronous 50 ns

External Interrupt

12.1.2 EICRB - External Interrupt Control Register B

Bit 7 6 5 4 3 2 1 0
0x3A (0x5A) | 1sc71 | ISC70 | ISC61 | 1SC60 ISC51 1SC50 ISC41 ISC40 | EICRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7:0 - ISC71, ISC70 - ISC41, ISC40: External Interrupt 7 - 4 Sense Control Bits

The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 12-3. The value on the INT7:4 pins are sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one
clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an inter-
rupt. Observe that CPU clock frequency can be lower than the XTAL frequency if the XTAL
divider is enabled. If low level interrupt is selected, the low level must be held until the comple-
tion of the currently executing instruction to generate an interrupt. If enabled, a level triggered

8160C-AVR-07/09

interrupt will generate an interrupt request as long as the pin is held low.

Table 12-3.  Interrupt Sense Control"
ISCn1 ISCn0 | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Any logical change on INTn generates an interrupt request
1 0 The falling edge between two samples of INTn generates an interrupt request.
1 1 The rising edge between two samples of INTn generates an interrupt request.

Note: 1. n=7,6,5o0r4.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

ATMEL .




WL

12.1.3 EIMSK - External Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

0x39 (0x59) | INT7 | INT6 | INT5 INT4 INT3 INT2 INT1 INTO | EIMsK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7:4 — INT7 - INTO: External Interrupt Request 7 - 0 Enable

When an INT7 - INT4 bit is written to one and the I-bit in the Status Register (SREG) is set (one),
the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the Exter-
nal Interrupt Control Registers — EICRA and EICRB defines whether the External Interrupt is
activated on rising or falling edge or level sensed. Activity on any of these pins will trigger an
interrupt request even if the pin is enabled as an output. This provides a way of generating a
software interrupt.

1214 EIFR — External Interrupt Flag Register

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0

0x38 (0x58) I INTF7 | INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTFO I EIFR
Read/Write R/W R/IW R/W R/W R/IW R/W R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

e Bits 7:0 — INTF7 - INTFO: External Interrupt Flags 7 - 0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0 becomes
set (one). If the I-bit in SREG and the corresponding Interrupt Enable bit, INT7:0 in EIMSK, are
set (one), the MCU will jump to the Interrupt Vector. The flag is cleared when the interrupt rou-
tine is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags
are always cleared when INT7:0 are configured as level interrupt. Note that when entering sleep
mode with the INT3:0 interrupts disabled, the input buffers on these pins will be disabled. This
may cause a logic change in internal signals which will set the INTF3:0 flags. See “Digital Input
Enable and Sleep Modes” on page 72 for more information.

ATMEL o



WL

13. 1/0 Ports

13.1 Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital 1/0O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply voltage invariant resistance. All /0 pins have
protection diodes to both V- and Ground as indicated in Figure 13-1. Refer to “Electrical Char-
acteristics” on page 327 for a complete list of parameters.

Figure 13-1. 1/O Pin Equivalent Schematic

by

pu

Logic

See Figure
"General Digital /0" for
Details

M
Y]

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used (i.e., PORTB3
for bit no. 3 in Port B, here documented generally as PORTxn). The physical /O Registers and
bit locations are listed in “Register Description” on page 88.

Three 1/0 memory address locations are allocated for each port, one each for the Data Register
— PORTYX, Data Direction Register — DDRXx, and the Port Input Pins — PINx. The Port Input Pins
I/0 location is read only, while the Data Register and the Data Direction Register are read/write.
In addition, the Pull-up Disable — PUD bit in SFIOR disables the pull-up function for all pins in all
ports when set.

Using the I/O port as general digital 1/0 is described in “Ports as General Digital 1/0” on page 69.
Most port pins are multiplexed with alternate functions for the peripheral features on the device.
How each alternate function interferes with the port pin is described in “Alternate Port Functions”
on page 73. Refer to the individual module sections for a full description of the alternate

functions.
Y )

8160C-AVR-07/09



WL

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital 1/O.

13.2 Ports as General Digital I/0
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 13-2 shows a func-
tional description of one 1/O-port pin, here generically called Pxn.

Figure 13-2. General Digital /0"

le»—oQ = A

MV
:U
o
x

9]
o)
Pxn 1 Q D e o
\I PORTxn <
T <—|_ |<TZ
I WPx a
RESET

SYNCHRONIZER
|
|
- |
|

WDx: WRITE DDRx

PUD: PULLUP DISABLE RDx: READ DDRXx

SLEEP: SLEEP CONTROL WPx: WRITE PORTx

clk;o: 1/0 CLOCK RRx: READ PORTx REGISTER
RPx: READ PORTXx PIN

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,, SLEEP,
and PUD are common to all ports.

13.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description” on page 88, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTXx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input

pin.
If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when a reset condition becomes
active, even if no clocks are running.

ATMEL L

8160C-AVR-07/09



WL

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn } = 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01)
or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully
acceptable, as a high-impedant environment will not notice the difference between a strong high
driver and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can be written to
one to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state({DDxn,
PORTxn} = 0b11) as an intermediate step.

Table 13-1 summarizes the control signals for the pin value.

Table 13-1.  Port Pin Configurations

DDxn PORTxn (in |;ll!::())F{) /0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-2)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

13.2.2 Reading the Pin Value

8160C-AVR-07/09

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 13-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 13-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted t,g m,y @and tyg min respectively.

ATMEL 1



WL

Figure 13-3. Synchronization when Reading an Externally Applied Pin Value

SYSTEM CLK
INSTRUCTIONS X XXX X XKX X iz e X

SYNC LATCH i v
PINxn
17 i 0x00 | i X oxFF
:‘ tpd, max I ‘;
: : tpd, min

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH?” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows toq max @and t,y min, @ single signal transition on the pin will be delayed
between 2 and 1-%2 system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 13-4. The out instruction sets the “SYNC LATCH?” signal at the positive edge of
the clock. In this case, the delay t,4 through the synchronizer is one system clock period.

Figure 13-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

16 ; OXFF

INSTRUCTIONS > out PORTx, r16 >< nop >< inr17,pix
SYNC LATCH | ;

PINxn

7 0x00 X o

The following code example show how to set Port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin

ATMEL g

8160C-AVR-07/09



WL

13.2.3

8160C-AVR-07/09

values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Assembly Code Example("

; Define pull-ups and set outputs high

; Define directions for port pins

1di rl6, (1<<PB7) | (1<<PB6) | (1<<PBL1) | (1<<PB0)

1di rl7, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB, rl6

out DDRB, rl17

; Insert nop for synchronization

nop

; Read port pins

in rl6,PINB

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_NOP() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep Modes

As shown in Figure 13-2, the digital input signal can be clamped to ground at the input of the
Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, Standby mode, and Extended Standby mode to avoid
high power consumption if some input signals are left floating, or have an analog signal level
close to Vc/2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 73.

If a logic high level (“one”) is present on an asynchronous External Interrupt pin configured as
“Interrupt on Any Logic Change on Pin” while the External Interrupt is not enabled, the corre-
sponding External Interrupt Flag will be set when resuming from the above mentioned sleep
modes, as the clamping in these sleep modes produces the requested logic change.

ATMEL 7



WL

13.24 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin
is accidentally configured as an output.

13.3 Alternate Port Functions

8160C-AVR-07/09

Most port pins have alternate functions in addition to being general digital I/Os. Figure 13-5
shows how the port pin control signals from the simplified Figure 13-2 can be overridden by
alternate functions. The overriding signals may not be present in all port pins, but the figure
serves as a generic description applicable to all port pins in the AVR microcontroller family.

Figure 13-5. Alternate Port Functions'"

PUOExn A
PUOVxn
d
PUD

DDOExn

a

DDOVxn

AN
VWV

PVOExn

PVOVxn : RDx

DIEOExn Se

DATA BUS

DIEOVxn

<
1 SLEEP

PUOExn:  Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE

PUOVxn:  Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx

DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx

DDOVxn:  Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER

PVOExn:  Pxn PORT VALUE OVERRIDE ENABLE WPx: WRITE PORTx

PVOVxn:  Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE clk,o: 1/0 CLOCK

DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE Dixn: DIGITAL INPUT PIN n ON PORTx

SLEEP:  SLEEP CONTROL AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

Note: 1. WPx, WDx, RLx, RPx, and RDx are common to all pins within the same port. clk;,o, SLEEP,
and PUD are common to all ports. All other signals are unique for each pin.

ATMEL 7



WL

Table 13-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 13-5 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

Table 13-2.  Generic Description of Overriding Signals for Alternate Functions

Signal
Name Full Name Description
PUOE Pull-up Override If this signal is set, the pull-up enable is controlled by the PUOV

Enable signal. If this signal is cleared, the pull-up is enabled when {DDxn,
PORTxn, PUD} = 0b010.

PUOV Pull-up Override Value | If PUOE is set, the pull-up is enabled/disabled when PUQV is
set/cleared, regardless of the setting of the DDxn, PORTxn, and
PUD Register bits.

DDOE Data Direction If this signal is set, the Output Driver Enable is controlled by the
Override Enable DDOQV signal. If this signal is cleared, the Output driver is enabled
by the DDxn Register bit.
DDOV Data Direction If DDOE is set, the Output Driver is enabled/disabled when DDOV
Override Value is set/cleared, regardless of the setting of the DDxn Register bit.
PVOE Port Value Override If this signal is set and the Output Driver is enabled, the port value
Enable is controlled by the PVQV signal. If PVOE is cleared, and the

Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV Port Value Override If PVOE is set, the port value is set to PVOV, regardless of the
Value setting of the PORTxn Register bit.
DIEOE Digital Input Enable If this bit is set, the Digital Input Enable is controlled by the DIEOV
Override Enable signal. If this signal is cleared, the Digital Input Enable is
determined by MCU state (Normal mode, sleep modes).
DIEQV Digital Input Enable If DIEOE is set, the Digital Input is enabled/disabled when DIEQV
Override Value is set/cleared, regardless of the MCU state (Normal mode, sleep
modes).
DI Digital Input This is the Digital Input to alternate functions. In the figure, the

signal is connected to the output of the Schmitt Trigger but before
the synchronizer. Unless the Digital Input is used as a clock
source, the module with the alternate function will use its own
synchronizer.

AlIO Analog Input/output This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

ATMEL z

8160C-AVR-07/09



WL

13.3.1 Alternate Functions of Port A

The Port A has an alternate function as the address low byte and data lines for the External

Memory Interface.

Table 13-3. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 AD7 (External memory interface address and data bit 7)
PA6 ADG6 (External memory interface address and data bit 6)
PA5 ADS5 (External memory interface address and data bit 5)
PA4 AD4 (External memory interface address and data bit 4)
PA3 ADS3 (External memory interface address and data bit 3)
PA2 AD2 (External memory interface address and data bit 2)
PA1 AD1 (External memory interface address and data bit 1)
PAO ADO (External memory interface address and data bit 0)

Table 13-4 and Table 13-5 relates the alternate functions of Port A to the overriding signals

shown in Figure 13-5 on page 73.

Table 13-4.  Overriding Signals for Alternate Functions in PA7:PA4

ﬁla?l:zl PA7/AD7 PA6/AD6 PA5/AD5 PA4/AD4
PUOE SRE SRE SRE SRE
PUOV ~(WR | ADA() o ~(WR | ADA) « ~(WR | ADA) « ~(WR | ADA) «
PORTA7 « PUD PORTAG « PUD PORTAS5 « PUD PORTA4 « PUD
DDOE SRE SRE SRE SRE
DDOV WR | ADA WR | ADA WR | ADA WR | ADA
PVOE SRE SRE SRE SRE
PVOV A7 * ADA | D7 OUTPUT A6 * ADA | D6 A5« ADA | D5 A4« ADA | D4
*WR OUTPUT « WR OUTPUT « WR OUTPUT « WR
DIEOE 0 0 0 0
DIEQV 0 0 0 0
DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT
AIO - - - -

ATMEL

8160C-AVR-07/09

75



WL

Table 13-5.  Overriding Signals for Alternate Functions in PA3:PA0(")

Signal

Name PA3/AD3 PA2/AD2 PA1/AD1 PAO/ADO

PUOE SRE SRE SRE SRE

PUOV ~(WR | ADA) « ~(WR | ADA) « ~(WR | ADA) « ~(WR | ADA) «
PORTA3 » PUD PORTA2 « PUD PORTA1 « PUD PORTAO « PUD

DDOE SRE SRE SRE SRE

DDOV WR | ADA WR | ADA WR | ADA WR | ADA

PVOE SRE SRE SRE SRE

PVOV A3 ADA | D3 A2+ ADA | D2 A1+ ADA|D1 A0+ ADA | DO
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR

DIEOCE 0 0 0 0

DIEQV 0 0 0 0

DI D3 INPUT D2 INPUT D1 INPUT DO INPUT

AIO - - - -

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-
nal Memory Interface” on page 23 for details.

13.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 13-6.
Table 13-6.
Port Pin

PB7 0C2/0C1C!" (Output Compare and PWM Output for Timer/Counter2 or Output Compare
and PWM Output C for Timer/Counter1)

PB6 OC1B (Output Compare and PWM Output B for Timer/Counter1)
PB5 OC1A (Output Compare and PWM Output A for Timer/Counter1)
PB4 OCO (Output Compare and PWM Output for Timer/CounterQ)
PB3 MISO (SPI Bus Master Input/Slave Output)

PB2 MOSI (SPI Bus Master Output/Slave Input)

PB1 SCK (SPI Bus Serial Clock)

PBO SS (SPI Slave Select input)

Port B Pins Alternate Functions

Alternate Functions

Note: 1. OC1C not applicable in ATmega103 compatibility mode.
The alternate pin configuration is as follows:

e 0C2/0C1C, Bit7

OC2, Output Compare Match output: The PB7 pin can serve as an external output for the
Timer/Counter2 Output Compare. The pin has to be configured as an output (DDB7 set (one)) to
serve this function. The OC2 pin is also the output pin for the PWM mode timer function.

OC1C, Output Compare Match C output: The PB7 pin can serve as an external output for the
Timer/Counter1 Output Compare C. The pin has to be configured as an output (DDB7 set (one))
to serve this function. The OC1C pin is also the output pin for the PWM mode timer function.

ATMEL 7

8160C-AVR-07/09



WL

8160C-AVR-07/09

e OC1B, Bit 6

OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

e OC1A,Bit5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

e OCO, Bit4

OCO0, Output Compare Match output: The PB4 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB4 set (one)) to
serve this function. The OCO pin is also the output pin for the PWM mode timer function.

e MISO - Port B, Bit 3

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB3. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTB3 bit.

e MOSI - Port B, Bit 2

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB2. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB2 bit.

e SCK-Port B, Bit 1

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB1. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB1 bit.

e SS - Port B, Bit 0

SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured as an
input regardless of the setting of DDBO. As a Slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDBO.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTBO bit.

Table 13-7 and Table 13-8 relate the alternate functions of Port B to the overriding signals
shown in Figure 13-5 on page 73. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

ATMEL L



WL

8160C-AVR-07/09

Table 13-7.  Overriding Signals for Alternate Functions in PB7:PB4
Signal
Name PB7/0C2/0C1C PB6/0C1B PB5/OC1A PB4/0C0
PUOCE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0OC2/0C1C ENABLE( OC1B ENABLE OC1A ENABLE OCO0 ENABLE
PVOV ocz/oc1c™ OC1B OC1A ocoB
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AIO - - - -
Note: 1. See “Output Compare Modulator (OCM1C2)” on page 162 for details. OC1C does not exist in
ATmega103 compatibility mode.
Table 13-8.  Overriding Signals for Alternate Functions in PB3:PB0
Signal __
Name PB3/MISO PB2/MOSI PB1/SCK PB0/SS
PUOE SPE ¢ MSTR SPE « MSTR SPE ¢ MSTR SPE « MSTR
PUOV PORTB3 « PUD PORTB2 « PUD PORTB1+PUD | PORTBO* PUD
DDOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV 0 0 0 0
PVOE SPE « MSTR SPE « MSTR SPE « MSTR 0
PVOV SPI SLAVE OUTPUT SPI MSTR OUTPUT SCK OUTPUT 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI SPI MSTR INPUT SPI SLAVE INPUT SCK INPUT SPISS
AlIO - - - -

ATMEL

78



WL

13.3.3 Alternate Functions of Port C

In ATmega103 compatibility mode, Port C is output only. The Port C has an alternate function as

the address high byte for the External Memory Interface

Table 13-9.  Port C Pins Alternate Functions
Port Pin Alternate Function

PC7 A15
PC6 Al4
PC5 A13
PC4 A12
PC3 A1
PC2 A10
PC1 A9

PCO A8

Table 13-10 and Table 13-11 relate the alternate functions of Port C to the overriding signals

shown in Figure 13-5 on page 73.

Table 13-10. Overriding Signals for Alternate Functions in PC7:PC4

8160C-AVR-07/09

Signal Name | PC7/A15 PC6/A14 PC5/A13 PC4/A12
PUOE SRE * (XMM("<1) SRE ¢ (XMM<2) SRE  (XMM<3) SRE ¢ (XMM<4)
PUOV 0 0 0 0

DDOE SRE * (XMM<1) SRE * (XMM<2) SRE * (XMM<3) SRE « (XMM<4)
DDOV 1 1 1 1

PVOE SRE ¢ (XMM<1) SRE « (XMM<2) SRE * (XMM<3) SRE « (XMM<4)
PVOV A1 A10 A9 A8

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - - - -

AlO - - - -

ATMEL

79



WL

Table 13-11. Overriding Signals for Alternate Functions in PC3:PC0(")

Signal Name PC3/A11 PC2/A10 PC1/A9 PCO/A8
PUOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE ¢ (XMM<7) SRE ¢ (XMM<7)
PUOV 0 0 0 0
DDOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE ¢ (XMM<7) SRE ¢ (XMM<7)
DDOV 1 1 1 1
PVOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE ¢ (XMM<7) SRE ¢ (XMM<7)
PVOV Al1 A10 A9 A8
DIEOE 0 0 0 0
DIEQV 0 0 0 0
DI - - - -
AlIO - - - -
Note: 1. XMM = 0 in ATmega103 compatibility mode.

13.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 13-12.

Table 13-12. Port D Pins Alternate Functions

8160C-AVR-07/09

Port Pin Alternate Function
PD7 T2 (Timer/Counter2 Clock Input)
PD6 T1 (Timer/Counter1 Clock Input)
PD5 XCK1™M (USART1 External Clock Input/Output)
PD4 ICP1 (Timer/Counter1 Input Capture Pin)
PD3 INT3/TXD1" (External Interrupt3 Input or UART1 Transmit Pin)
PD2 INT2/RXD1(") (External Interrupt2 Input or UART1 Receive Pin)
PD1 INT1/SDA™ (External Interrupt1 Input or TWI Serial DAta)
PDO INTO/SCL(" (External InterruptO Input or TWI Serial CLock)
Note: 1. XCK1, TXD1, RXD1, SDA, and SCL not applicable in ATmega103 compatibility mode.

The alternate pin configuration is as follows:

e T2 -PortD, Bit7
T2, Timer/Counter2 Counter Source.

e T1-PortD, Bit 6
T1, Timer/Counter1 Counter Source.

e XCK1 - Port D, Bit 5

XCK1, USART1 External Clock. The Data Direction Register (DDD5) controls whether the clock
is output (DDD5 set) or input (DDD5 cleared). The XCK1 pin is active only when the USART1
operates in synchronous mode.

e ICP1-Port D, Bit4
ICP1 — Input Capture Pin1: The PD4 pin can act as an Input Capture pin for Timer/Counter1.

ATMEL 2



WL

8160C-AVR-07/09

* INT3/TXD1 - Port D, Bit 3

INT3, External Interrupt Source 3: The PD3 pin can serve as an External Interrupt source to the
MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 transmitter is
enabled, this pin is configured as an output regardless of the value of DDD3.

* INT2/RXD1 - Port D, Bit 2

INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt source to the
MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is enabled
this pin is configured as an input regardless of the value of DDD2. When the USART forces this
pin to be an input, the pull-up can still be controlled by the PORTD2 bit.

* INT1/SDA - Port D, Bit 1

INT1, External Interrupt Source 1. The PD1 pin can serve as an External Interrupt source to the
MCU.

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PD1 is disconnected from the port and becomes the serial data I/O
pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress
spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

* INTO/SCL - Port D, Bit 0

INTO, External Interrupt Source 0. The PDO pin can serve as an External Interrupt source to the
MCU.

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PDO is disconnected from the port and becomes the serial clock
I/0 pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation.

Table 13-13 and Table 13-14 relates the alternate functions of Port D to the overriding signals
shown in Figure 13-5 on page 73.

ATMEL o



WL

8160C-AVR-07/09

Table 13-13. Overriding Signals for Alternate Functions PD7:PD4

Signal Name PD7/T2 PD6/T1 PD5/XCK1 PD4/ICP1
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 UMSELA1 0
PVOV 0 0 XCK1 OUTPUT 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI T2 INPUT T1 INPUT XCK1 INPUT ICP1 INPUT
AIO - - - -

Table 13-14. Overriding Signals for Alternate Functions in PD3:PD0(")
Signal Name PD3/INT3/TXD1 PD2/INT2/RXD1 PD1/INT1/SDA PDO/INTO/SCL
PUOE TXENT RXEN1 TWEN TWEN
PUOV 0 PORTD2 « PUD PORTD1+PUD | PORTDO ¢ PUD
DDOE TXENT RXEN1 TWEN TWEN
DDOV 1 0 SDA_OUT SCL_OUT
PVOE TXENT1 0 TWEN TWEN
PVOV TXD1 0 0 0
DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE
DIEOV 1 1 1 1
DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INTO INPUT
AlIO - - SDA INPUT SCL INPUT

Note: 1. When enabled, the Two-wire Serial Interface enables Slew-rate controls on the output pins

ATMEL

PDO and PD1. This is not shown on the figure. In addition, spike filters are connected between
the AIO outputs shown in the port figure and the digital logic of the TWI module.

82



WL

13.3.5 Alternate Functions of Port E
The Port E pins with alternate functions are shown in Table 13-15.

Table 13-15. Port E Pins Alternate Functions

Port Pin | Alternate Function

PE7 INT7/ICP3") (External Interrupt 7 Input or Timer/Counter3 Input Capture Pin)

PE6 INT6/ T3V (External Interrupt 6 Input or Timer/Counter3 Clock Input)

PE5 INT5/0C3C™ (External Interrupt 5 Input or Output Compare and PWM Output C for
Timer/Counter3)

PE4 INT4/0C3B") (External Interrupt 4 Input or Output Compare and PWM Output B for

Timer/Counter3)

PE3 AIN1/0C3A ) (Analog Comparator Negative Input or Output Compare and PWM Output A
for Timer/Counter3)

PE2 AINO/XCKO™" (Analog Comparator Positive Input or USARTO external clock input/output)
PE1 PDO/TXDO0 (Programming Data Output or UARTO Transmit Pin)
PEO PDI/RXDO0 (Programming Data Input or UARTO Receive Pin)

Note: 1. ICP3, T3, OC3C, OC3B, OC3B, OC3A, and XCKO not applicable in ATmega103 compatibility
mode.

e INT7/ICP3 - Port E, Bit 7
INT7, External Interrupt Source 7: The PE7 pin can serve as an External Interrupt source.

ICP3 — Input Capture Pin3: The PE7 pin can act as an Input Capture pin for Timer/Counter3.

* INT6/T3 — Port E, Bit 6
INT6, External Interrupt Source 6: The PE6 pin can serve as an External Interrupt source.

T3, Timer/Counter3 Counter Source.

¢ INT5/0C3C - Port E, Bit 5
INT5, External Interrupt Source 5: The PE5 pin can serve as an External Interrupt source.

OC3C, Output Compare Match C output: The PE5 pin can serve as an external output for the
Timer/Counter3 Output Compare C. The pin has to be configured as an output (DDES5 set — one)
to serve this function. The OC3C pin is also the output pin for the PWM mode timer function.

¢ INT4/0C3B - Port E, Bit 4
INT4, External Interrupt Source 4: The PE4 pin can serve as an External Interrupt source.

0OC3B, Output Compare Match B output: The PE4 pin can serve as an external output for the
Timer/Counter3 Output Compare B. The pin has to be configured as an output (DDE4 set — one)
to serve this function. The OC3B pin is also the output pin for the PWM mode timer function.

e AIN1/OC3A - Port E, Bit 3
AIN1 — Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

OCS3A, Output Compare Match A output: The PE3 pin can serve as an external output for the
Timer/Counter3 Output Compare A. The pin has to be configured as an output (DDES set — one)
to serve this function. The OC3A pin is also the output pin for the PWM mode timer function.

ATMEL .

8160C-AVR-07/09



WL

8160C-AVR-07/09

* AINO/XCKO — Port E, Bit 2

AINO — Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

XCKO, USARTO External Clock. The Data Direction Register (DDE2) controls whether the clock
is output (DDE2 set) or input (DDE2 cleared). The XCKO pin is active only when the USARTO
operates in synchronous mode.

e PDO/TXDO - Port E, Bit 1
PDO, SPI Serial Programming Data output. During Serial Program Downloading, this pin is used
as data output line for the ATmega64A.

TXDO, UARTO Transmit Pin.

* PDI/RXDO - Port E, Bit 0

PDI, SPI Serial Programming Data input. During serial program downloading, this pin is used as
data input line for the ATmega64A.

RXDO0, USARTO Receive pin. Receive Data (Data Input pin for the USARTO0). When the
USARTO Receiver is enabled this pin is configured as an input regardless of the value of
DDREO. When the USARTO forces this pin to be an input, a logical one in PORTEOQ will turn on
the internal pull-up.

Table 13-16 and Table 13-17 relates the alternate functions of Port E to the overriding signals
shown in Figure 13-5 on page 73.

Table 13-16. Overriding Signals for Alternate Functions PE7:PE4

ﬁfm"Z' PE7/INT7/ICP3 PE6/INT6/T3 PE5/INT5/0C3C PE4/INT4/0C3B

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 OC3C ENABLE OC3B ENABLE

PVOV 0 0 oc3c 0C3B

DIEOE | INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE

DIEOV | 1 1 1 1

DI INT7 INPUT/ICP3 | INT7 INPUT/T3 INT5 INPUT INT4 INPUT
INPUT INPUT

AlO - - - -

ATMEL

84



WL

Table 13-17. Overriding Signals for Alternate Functions in PE3:PEOQ

ﬁfm"Z' PE3/AIN1/0OC3A PE2/AINO/XCKO PE1/PDO/TXDO PEO/PDI/RXDO
PUOE 0 0 TXENO RXENO

PUOV 0 0 0 PORTEO « PUD
DDOE 0 0 TXENO RXENO

DDOV 0 0 1 0

PVOE OC3B ENABLE UMSELO TXENO 0

PVOV 0C3B XCKO OUTPUT TXDO 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI 0 XCKO INPUT - RXDO

AIO AINT INPUT AINO INPUT - -

13.3.6 Alternate Functions of Port F

8160C-AVR-07/09

The Port F has an alternate function as analog input for the ADC as shown in Table 13-18. If
some Port F pins are configured as outputs, it is essential that these do not switch when a con-
version is in progress. This might corrupt the result of the conversion. In ATmega103
compatibility mode Port F is input only. If the JTAG interface is enabled, the pull-up resistors on
pins PF7(TDI), PF5(TMS) and PF4(TCK) will be activated even if a reset occurs.

Table 13-18. Port F Pins Alternate Functions

Port Pin Alternate Function
PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)
PF6 ADCG6/TDO (ADC input channel 6 or JTAG Test Data Output)
PF5 ADC5/TMS (ADC input channel 5 or JTAG Test mode Select)
PF4 ADC4/TCK (ADC input channel 4 or JTAG Test Clock)
PF3 ADC3 (ADC input channel 3)
PF2 ADC2 (ADC input channel 2)
PF1 ADC1 (ADC input channel 1)
PFO ADCO (ADC input channel 0)

e TDI, ADC7 — Port F, Bit 7
ADC?7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.
e TDO, ADC6 - Port F, Bit 6

ADCB6, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an I/O pin.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

ATMEL L



WL

8160C-AVR-07/09

* TMS, ADC5 - Port F, Bit 5

ADCS5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test mode Select: This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an 1/O pin.

* TCK, ADC4 - Port F, Bit 4

ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is
enabled, this pin can not be used as an I/O pin.

e ADC3 - ADCO - Port F, Bit 3:0
Analog to Digital Converter, Channel 3:0.

Table 13-19. Overriding Signals for Alternate Functions in PF7:PF4

ﬁf’n'li' PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK
PUOE | JTAGEN JTAGEN JTAGEN JTAGEN
PUOV | 1 0 1 1
DDOE | JTAGEN JTAGEN JTAGEN JTAGEN
DDOV | 0 SHIFT_IR + 0 0
SHIFT_DR
PVOE |0 JTAGEN 0 0
PVOV |0 TDO 0 0
DIEOE | JTAGEN JTAGEN JTAGEN JTAGEN
DIEOV | 0 0 0 0
DI - - - -
AIO TDIADC7 INPUT | ADC6 INPUT TMS/ADC5 INPUT | TCKADC4 INPUT

ATMEL

86



WL

Table 13-20. Overriding Signals for Alternate Functions in PF3:PFO

Signal
Name

PF3/ADC3

PF2/ADC2

PF1/ADC1

PFO/ADCO

PUOE

PUOV

DDOE

DDOV

PVOE

PVOV

DIEOE

DIEQV

ol ojlojojlo| o |o|o

O|lo|jloo|jo|o o |o

o/ ojlojo|lo| o |o|o

ol ojlojojlo|lo|o|o

DI

AIO

ADCS3 INPUT

ADC2 INPUT

ADC1 INPUT

ADCO INPUT

13.3.7 Alternate Functions of Port G
In ATmega103 compatibility mode, only the alternate functions are the defaults for Port G, and
Port G cannot be used as General Digital Port Pins. The alternate pin configuration is as follows:

Table 13-21. Port G Pins Alternate Functions
Port Pin Alternate Function
PG4 TOSC1 (RTC Oscillator Timer/Counter0Q)
PG3 TOSC2 (RTC Oscillator Timer/CounterQ)
PG2 ALE (Address Latch Enable to external memory)
PG1 RD (Read strobe to external memory)
PGO WR (Write strobe to external memory)

e TOSC1-Port G, Bit4

TOSC2, Timer Oscillator pin 1: When the ASO bit in ASSR is set (one) to enable asynchronous
clocking of Timer/Counter0, pin PG4 is disconnected from the port, and becomes the inverting
output of the Oscillator amplifier. In this mode, a crystal Oscillator is connected to this pin, and
the pin can not be used as an 1/O pin.

* TOSC2 - Port G, Bit 3

TOSC2, Timer Oscillator pin 2: When the ASO bit in ASSR is set (one) to enable asynchronous
clocking of Timer/Counter0, pin PG3 is disconnected from the port, and becomes the input of the
inverting Oscillator amplifier. In this mode, a crystal Oscillator is connected to this pin, and the
pin cannot be used as an I/O pin.

e ALE - Port G, Bit 2
ALE is the external data memory Address Latch Enable signal.

* RD - Port G, Bit 1

RD is the external data memory read control strobe.

8160C-AVR-07/09

ATMEL

87



WL

 WR-Port G, Bit0
WR is the external data memory write control strobe.

Table 13-22 and Table 13-23 relates the alternate functions of Port G to the overriding signals
shown in Figure 13-5 on page 73.

Table 13-22. Overriding Signals for Alternate Functions in PG4:PG1

Signal Name PG4/TOSCH1 PG3/TOSC2 PG2/ALE PG1/RD
PUOE ASO ASO SRE SRE
PUOV 0 0 0 0
DDOE ASO ASO SRE SRE
DDOV 0 0 1 1
PVOE 0 0 SRE SRE
PVOV 0 0 ALE RD
DIEOE ASO ASO 0 0
DIEOV 0 0 0 0

DI - - - -
AIO T/CO OSC INPUT T/CO OSC OUTPUT - -

Table 13-23. Overriding Signals for Alternate Functions in PGO

13.4 Register Description

13.4.1

8160C-AVR-07/09

PORTA - Port A Data Register

Signal Name PGO/WR

PUOE SRE

PUOV 0

DDOE SRE

DDOV 1

PVOE SRE

PVOV WR

DIEOE 0

DIEQV 0

DI -

AlO -

Bit 7 6 5 4 3 2 1 0
0x1B (0x38) | PORTA7 | PORTAG | PORTA5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 | PORTA0 | PORTA
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value

0

0

0

ATMEL

0

0

0

0

0

88



WL

13.4.2

13.4.3

13.4.4

13.45

13.4.6

13.4.7

13.4.8

13.4.9

8160C-AVR-07/09

DDRA - Port A Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x1A(0x3A) | DDA7 | DDA6 | DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 | DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

PINA — Port A Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x19 (0x39) I PINA7 | PINAG6 PINA5 PINA4 PINA3 PINA2 PINA1 PINAO I PINA
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

PORTB - Port B Data Register

Bit 7 6 5 4 3 2 1 0

0x18 (0x38) I PORTB7 | PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO I PORTB
Read/Write R/W R/IW R/W R/IW R/W R/W R/IW R/W

Initial Value 0 0 0 0 0 0 0 0

DDRB - Port B Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x17 (0x37) | DDB7 | DDB6 | DDB5 DDB4 DDB3 DDB2 DDB1 pbBo | DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

PINB - Port B Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) I PINB7 | PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

PORTC - Port C Data Register

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) I PORTC7 | PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

DDRC - Port C Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x14 (0x34) | DDC7 | DDC6 | DDC5 DDC4 DDC3 DDC2 DDC1 pbco | DDRc
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

PINC - Port C Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x13 (0x33) I PINC7 | PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

In ATmega103 compatibility mode, DDRC and PINC Registers are initialized to being Push-pull
Zero Output. The port pins assumes their Initial Value, even if the clock is not running. Note that

ATMEL L



WL

13.4.10

13.4.11

13.4.12

13.4.13

13.4.14

13.4.15

13.4.16

13.4.17

8160C-AVR-07/09

the DDRC and PINC registers are available in ATmega103 compatibility mode, and should not

be used for 100% backward compatibility.

PORTD - Port D Data Register

Bit 7 6 5 4 3 2 1 0
0x12 (0x32) I PORTD7 | PORTD6 PORTDS5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO I PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
DDRD - Port D Data Direction Register
Bit 7 6 5 4 3 2 1 0
0x11(0x31) | DDD7 | DDD6 | DDD5 DDD4 DDD3 DDD2 DDD1 pbbo | DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
PIND — Port D Input Pins Address
Bit 7 6 5 4 3 2 1 0
0x10 (0x30) | PIND7 | PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO | PIND
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
PORTE - Port E Data Register
Bit 7 6 5 4 3 2 1 0
0x03 (0x23) I PORTE7 | PORTEG6 PORTES PORTE4 PORTE3 PORTE2 PORTE1 PORTEO I PORTE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
DDRE - Port E Data Direction Register
Bit 7 6 5 4 3 2 1 0
0x02(0x22) | DDE7 | DDE6 | DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 | DDRE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
PINE - Port E Input Pins Address
Bit 7 6 5 4 3 2 1 0
0x01(0x21) | PINE7 | PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINEO | PINF
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
PORTF - Port F Data Register
Bit 7 6 5 4 3 2 1 0
(0x62) I PORTF7 | PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTFO I PORTF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
DDRF - Port F Data Direction Register
Bit 7 6 5 4 3 2 1 0
(0x61) | ooF7 | DDFs DDF5 DDF4 DDF3 DDF2 DDF1 DDFO | DDRF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
A‘I_“'El. 90
Y )



WL

13.4.18 PINF - Port F Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) I PINF7 | PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO I PINF
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Note that PORTF and DDRF Registers are not available in ATmega103 compatibility mode
where Port F serves as digital input only.

13.4.19 PORTG - Port G Data Register

Bit 7 6 5 4 3 2 1 0
(0x65) I - | - PORTG4 PORTG3 PORTG2 PORTG1 PORTGO I PORTG
Read/Write R R R R/W R/IW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.4.20 DDRG - Port G Data Direction Register

Bit 7 6 5 4 3 2 1 0

(0x64) | - | - | - DDG4 DDG3 DDG2 DDG1 DDGO | DDRG
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

13.4.21 PING - Port G Input Pins Address

Bit 7 6 5 4 3 2 1 0

(0x63) | - | - - PING4 PING3 PING2 PING1 PINGO | PING
Read/Write R R R R R R R R

Initial Value 0 0 0 N/A N/A N/A N/A N/A

Note that PORTG, DDRG, and PING are not available in ATmega103 compatibility mode. In the
ATmega103 compatibility mode Port G serves its alternate functions only (TOSC1, TOSC2, WR,
RD and ALE).

13.4.22 SFIOR - Special Function 10 Register

Bit 7 6 5 4 3 2 1 0
ox0(x40) | TSM | - | - | - | ACME PUD PSRO PSR321 | SFIOR
Read/Write R/W R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 2 — PUD: Pull-up disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 69 for more details about this feature.

ATMEL o

8160C-AVR-07/09



WL

14. 8-bit Timer/Counter0 with PWM and Asynchronous Operation

14.1 Features

Single Channel Counter

Clear Timer on Compare Match (Auto Reload)

Glitch-free, Phase Correct Pulse Width Modulator (PWM)

Frequency Generator

10-bit Clock Prescaler

Overflow and Compare Match Interrupt Sources (TOV0 and OCFO0)

Allows Clocking from External 32 kHz Watch Crystal Independent of the I/0O Clock

14.2 Overview
Timer/Counter0 is a general purpose, single-channel, 8-bit Timer/Counter module. A simplified
block diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual placement of
I/0 pins, refer to “Pin Configuration” on page 2. CPU accessible I/O Registers, including 1/0 bits
and /O pins, are shown in bold. The device-specific /0 Register and bit locations are listed in
the “Register Description” on page 106.

Figure 14-1. 8-bit Timer/Counter Block Diagram.

a

< > TCCRn |
count . Tovn
clear (Int. Req.)
Control Logic
direction clky,
A n TOSCt
BOTTOM .
Prescaler Oscillator
y V

» TOSC2

Timer/Counter
TCNTn |
- (=0]
f $ ocn clkyo
(Int. Req.)

Waveform
< OCRn

| OCn

| Generation

DATABUS

— clk,,
Synchronized Status Flags

% Synchronization Unit

[—clk,gy

Status Flags
< = ASSRn I L)

Asynchronous Mode
Select (ASn)

A
v

Registers

ATMEL o

8160C-AVR-07/09



WL

14.2.1 Definitions

The Timer/Counter (TCNTO) and Output Compare Register (OCRO) are 8-bit registers. Interrupt
request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and
TIMSK are not shown in the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clky).

The double buffered Output Compare Register (OCRO0) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OCO0). See “Output
Compare Unit” on page 94. for details. The Compare Match event will also set the Compare Flag
(OCFO0) which can be used to generate an Output Compare interrupt request.

1]

Many register and bit references in this datasheet are written in general form. A lower case “n
replaces the Timer/Counter number, in this case 0. However, when using the register or bit
defines in a program, the precise form must be used i.e. TCNTO for accessing Timer/Counter0
counter value and so on.

The definitions in Table 14-1 are also used extensively throughout this section.
Table 14-1.  Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCRO Register. The assignment is dependent
on the mode of operation.

14.3 Timer/Counter Clock Sources

14.4 Counter Unit

8160C-AVR-07/09

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkyg is by default equal to the MCU clock, clk;,o. When the ASO
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “ASSR
— Asynchronous Status Register” on page 108. For details on clock sources and prescaler, see
“Timer/Counter Prescaler” on page 105.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
14-2 shows a block diagram of the counter and its surrounding environment.

ATMEL .



ATmega64A

Figure 14-2. Counter Unit Block Diagram

TOVn

DATA BUS (ntea)

- TOSC1

count
| " T/C
clear ’
TCNTn -t Control Logic [ " Prescaler Oscillator

direction

-t P TOSC2

bottom T T top

Signal description (internal signals):

clkyo

count Increment or decrement TCNTO by 1.

direction Selects between increment and decrement.

clear Clear TCNTO (set all bits to zero).

clky Timer/Counter clock.

top Signalizes that TCNTO has reached maximum value.
bottom Signalizes that TCNTO has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkyg). clkrg can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clky is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGMO0O1 and WGMAOO bits located in
the Timer/Counter Control Register (TCCRO). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OCO0. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 97.

The Timer/Counter Overflow Flag (TOVO) is set according to the mode of operation selected by
the WGMO01:0 bits. TOVO can be used for generating a CPU interrupt.

14.5 Output Compare Unit

The 8-bit comparator continuously compares TCNTO with the Output Compare Register
(OCRO0). Whenever TCNTO equals OCRO, the comparator signals a match. A match will set the
Output Compare Flag (OCFO0) at the next timer clock cycle. If enabled (OCIEO = 1), the Output
Compare Flag generates an Output Compare interrupt. The OCFO flag is automatically cleared
when the interrupt is executed. Alternatively, the OCFO flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the WGMO01:0 bits and Compare Output
mode (COMO01:0) bits. The max and bottom signals are used by the Waveform Generator for
handling the special cases of the extreme values in some modes of operation (“Modes of Oper-
ation” on page 97). Figure 14-3 shows a block diagram of the Output Compare unit.

ATMEL o

8160C-AVR-07/09



ATmega64A

Figure 14-3. Output Compare Unit, Block Diagram
DATA BUS

| OCRn | | TCNTn |

1L 1l

| = (8-bit Comparator ) |

OCFn (Int.Req.)
4
top >
bottom .| Waveform Generator »| ocxy
FOCn >

P

WGMn1:0 COMn1:0

The OCRO Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCRO Compare Register
to either top or bottom of the counting sequence. The synchronization prevents the occurrence
of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCRO Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCRO Buffer Register, and if double buffering is disabled
the CPU will access the OCRO directly.

14.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCO) bit. Forcing Compare Match will not set the
OCFO flag or reload/clear the timer, but the OCO pin will be updated as if a real Compare Match
had occurred (the COMO01:0 bits settings define whether the OCO pin is set, cleared or toggled).

14.5.2 Compare Match Blocking by TCNTO Write
All CPU write operations to the TCNTO Register will block any Compare Match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCRO to be initialized
to the same value as TCNTO without triggering an interrupt when the Timer/Counter clock is
enabled.

1453 Using the Output Compare Unit
Since writing TCNTO in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNTO when using the Output Compare
channel, independently of whether the Timer/Counter is running or not. If the value written to
TCNTO equals the OCRO value, the Compare Match will be missed, resulting in incorrect wave-
form generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is
downcounting.

The setup of the OCO should be performed before setting the Data Direction Register for the port
pin to output. The easiest way of setting the OCO value is to use the Force Output Compare

ATMEL s

8160C-AVR-07/09



WL

(FOCO) strobe bit in Normal mode. The OCO Register keeps its value even when changing
between waveform generation modes.

Be aware that the COMO01:0 bits are not double buffered together with the compare value.
Changing the COMO01:0 bits will take effect immediately.

14.6 Compare Match Output Unit

The Compare Output mode (COMO01:0) bits have two functions. The Waveform Generator uses
the COMO1:0 bits for defining the Output Compare (OCO0) state at the next Compare Match.
Also, the COMO01:0 bits control the OCO pin output source. Figure 14-4 shows a simplified sche-
matic of the logic affected by the COMO01:0 bit setting. The I/O Registers, I/O bits, and 1/O pins in
the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and
PORT) that are affected by the COMO01:0 bits are shown. When referring to the OCO state, the
reference is for the internal OCO Register, not the OCO pin.

Figure 14-4. Compare Match Output Unit, Schematic

=D,

COMn1
COMnO Waveform
—D Q-
FOCn Generator
]
OCn
OCn 0 |:> Pin
A
»D Q-
=
m PORT
<
i
Q D Q
Y DDR
clk,o

The general 1/O port function is overridden by the Output Compare (OCO0) from the Waveform
Generator if either of the COMO01:0 bits are set. However, the OCO pin direction (input or output)
is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Regis-
ter bit for the OCO pin (DDR_OCO0) must be set as output before the OCO value is visible on the
pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCO0 state before the out-
put is enabled. Note that some COMO1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 106.

ATMEL s

8160C-AVR-07/09



WL

14.6.1

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMO01:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COMO01:0 = 0 tells the Waveform Generator that no action on the OCO
Register is to be performed on the next Compare Match. For compare output actions in the non-
PWM modes refer to Table 14-3 on page 107. For fast PWM mode, refer to Table 14-4 on page
107, and for phase correct PWM refer to Table 14-5 on page 107.

A change of the COMO01:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCO strobe bits.

14.7 Modes of Operation

14.7.1

14.7.2

Normal Mode

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMO01:0) and Compare Output
mode (COMO01:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMO01:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMO1:0 bits control whether the output should be set, cleared, or toggled at a Compare
Match (See “Compare Match Output Unit” on page 96.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 101.

The simplest mode of operation is the Normal mode (WGMO01:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOVO) will be set in the same
timer clock cycle as the TCNTO becomes zero. The TOVO flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO flag, the timer resolution can be increased by software. There
are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

8160C-AVR-07/09

In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCRO Register is used to manip-
ulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value
(TCNTO) matches the OCRO. The OCRO defines the top value for the counter, hence also its
resolution. This mode allows greater control of the Compare Match output frequency. It also sim-
plifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNTO)
increases until a Compare Match occurs between TCNTO and OCRO, and then counter (TCNTO)
is cleared.

ATMEL o



ATmega64A

Figure 14-5. CTC Mode, Timing Diagram

OCn Interrupt Flag Set

TCNTn

OCn : :
(Toggle)

Period e 1————sfe——2—e s ——a—

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCFO flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCRO is lower than the current
value of TCNTO, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the Compare Match can
occur.

(COMn1:0=1)

For generating a waveform output in CTC mode, the OCO output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COMO01:0 = 1). The OCO value will not be visible on the port pin unless the data direction for the
pin is set to output. The waveform generated will have a maximum frequency of focq = foy 10/2
when OCRO is set to zero (0x00). The waveform frequency is defined by the following equation:

P Jei o
OCn ™ 2.N.(1+OCRn)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOVO flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

14.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OCO) is cleared on the Compare
Match between TCNTO and OCRO, and set at BOTTOM. In inverting Compare Output mode, the
output is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 14-6. The TCNTO value is in the timing diagram shown as a his-

ATMEL L

8160C-AVR-07/09



WL

togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent Com-
pare Matches between OCRO0 and TCNTO.

Figure 14-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRn Update and
TOVn Interrupt Flag Set

TCNTn /

OCn L L (COMn1:0 = 2)

OCn m ’—U—‘ ﬁ (COMn1:0 = 3)
Period F1 a‘&z %3%4%5%6%7%

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Set-
ting the COMO01:0 bits to two will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COMO01:0 to three (See Table 14-4 on page 107). The actual OCO
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by setting (or clearing) the OCO Register at the Compare Match
between OCRO0 and TCNTO, and clearing (or setting) the OCO Register at the timer clock cycle
the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

p _ Jek 1o
JOCnPWM — N—256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCRO Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCRO is set equal to BOTTOM, the output will be
a narrow spike for each MAX+1 timer clock cycle. Setting the OCRO equal to MAX will result in a
constantly high or low output (depending on the polarity of the output set by the COMO01:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCO to toggle its logical level on each Compare Match (COMO01:0 = 1). The waveform
generated will have a maximum frequency of f,., = f ,0/2 when OCRO is set to zero. This fea-
ture is similar to the OCO toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

ATMEL o

8160C-AVR-07/09



WL

1474 Phase Correct PWM Mode
The phase correct PWM mode (WGMO01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OCO) is cleared on the Compare Match
between TCNTO and OCRO while upcounting, and set on the Compare Match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNTO value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-7.
The TCNTO value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNTO slopes represent Compare Matches between OCRO0 and TCNTO.

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt

i i Flag Set

OCRn Update

j

TOVn Interrupt
Flag Set

TCNTn

v

Y Y Y Y
OCn L (COMN1:0 = 2)
OCn ﬁ ﬁ T (COMN1:0 = 3)
Period }47144472444734»‘
The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The

interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OCO pin. Setting the COMO01:0 bits to two will produce a non-inverted PWM. An inverted PWM
output can be generated by setting the COMO01:0 to three (See Table 14-5 on page 107). The
actual OCO value will only be visible on the port pin if the data direction for the port pin is set as
output. The PWM waveform is generated by clearing (or setting) the OCO Register at the Com-

AImEl@ 100

8160C-AVR-07/09



WL

pare Match between OCRO and TCNTO when the counter increments, and setting (or clearing)
the OCO Register at Compare Match between OCRO and TCNTO when the counter decrements.
The PWM frequency for the output when using phase correct PWM can be calculated by the fol-
lowing equation:

_ Jow o
Tocnpcrwm = 3 510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCRO Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRO is set equal to BOTTOM, the out-
put will be continuously low and if set equal to MAX the output will be continuously high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 14-7 OCn has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match.

* OCRO changes its value from MAX, like in Figure 14-7. When the OCRO value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

* The timer starts counting from a higher value than the one in OCRO, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the
way up.

14.8 Timer/Counter Timing Diagrams

8160C-AVR-07/09

Figure 14-8 and Figure 14-9 contain timing data for the Timer/Counter operation. The
Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a clock
enable signal. The figure shows the count sequence close to the MAX value. Figure 14-10 and
Figure 14-11 show the same timing data, but with the prescaler enabled. The figures illustrate
when interrupt flags are set.

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clky)
is therefore shown as a clock enable signal. In asynchronous mode, clk;, should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when interrupt flags are
set. Figure 14-8 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 14-8. Timer/Counter Timing Diagram, no Prescaling

clk

1/0

clky,

(clk,o/1)

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

AImEl@ 101



ATmega64A

Figure 14-9 shows the same timing data, but with the prescaler enabled.

Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (f, ,,0/8)

o TRV
s T T

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 14-10 shows the setting of OCFO in all modes except CTC mode.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCFO, with Prescaler (f ,0/8)

S
Fou I D

TCNTn OCRn - 1 OCRn OCRn + 1 OCRn + 2

OCRnN OCRn Value

OCFn

Figure 14-11 shows the setting of OCFO and the clearing of TCNTO in CTC mode.

AImEl@ 102

8160C-AVR-07/09



ATmega64A

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Pres-
caler (fox_10/8)

o ||| UIUIIUUYUIUURUUU WU U Uu oL
S | | | |

TCNTn |
(CTC) |

TOP -1 TOP BOTTOM BOTTOM + 1

OCRn TOP

OCFn

14.9 Asynchronous Operation of the Timer/Counter

14.9.1 Asynchronous Operation of Timer/Counter0
When Timer/Counter0Q operates asynchronously, some considerations must be taken.

* Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter0, the timer registers TCNTO, OCRO0, and TCCRO might be corrupted. A safe
procedure for switching clock source is:

1. Disable the Timer/Counter0 interrupts by clearing OCIEO and TOIEO.

Select clock source by setting ASO as appropriate.

Write new values to TCNTO, OCRO0, and TCCRO.
To switch to asynchronous operation: Wait for TCNOUB, OCROUB, and TCROUB.
Clear the Timer/Counter0 interrupt flags.

6. Enable interrupts, if needed.
The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external
clock to the TOSC1 pin may result in incorrect Timer/Counter0 operation. The CPU main
clock frequency must be more than four times the Oscillator frequency.

When writing to one of the registers TCNTO, OCRO, or TCCRO, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not
write a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register, for
example, writing to TCNTO does not disturb an OCRO write in progress. To detect that a
transfer to the destination register has taken place, the Asynchronous Status Register —
ASSR has been implemented.

Al A

* When entering Power-save or Extended Standby mode after having written to TCNTO,
OCRO, or TCCRO, the user must wait until the written register has been updated if
Timer/Counter0 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if the Output Compare0
interrupt is used to wake up the device, since the Output Compare function is disabled during
writing to OCRO or TCNTO. If the write cycle is not finished, and the MCU enters sleep mode
before the OCROUB bit returns to zero, the device will never receive a Compare Match
interrupt, and the MCU will not wake up.

AImEl@ 103

8160C-AVR-07/09



WL

* If Timer/Counter0 is used to wake the device up from Power-save or Extended Standby
mode, precautions must be taken if the user wants to reenter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the
device will fail to wake up. If the user is in doubt whether the time before re-entering Power-
save or Extended Standby mode is sufficient, the following algorithm can be used to ensure
that one TOSC1 cycle has elapsed:

1. Write a value to TCCRO, TCNTO, or OCRO.
2. Wait until the corresponding Update Busy flag in ASSR returns to zero.
3. Enter Power-save or Extended Standby mode.

* When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter0
is always running, except in Power-down and Standby modes. After a Power-up Reset or
wake-up from Power-down or Standby mode, the user should be aware of the fact that this
Oscillator might take as long as one second to stabilize. The user is advised to wait for at
least one second before using Timer/Counter0Q after Power-up or wake-up from Power-down
or Standby mode. The contents of all Timer/Counter0 registers must be considered lost after
a wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no
matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

¢ Description of wake up from Power-save or Extended Standby mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is started
on the following cycle of the timer clock, that is, the timer is always advanced by at least one
before the processor can read the counter value. After wake-up, the MCU is halted for four
cycles, it executes the interrupt routine, and resumes execution from the instruction following
SLEEP.

* Reading of the TCNTO Register shortly after wake-up from Power-save may give an incorrect
result. Since TCNTO is clocked on the asynchronous TOSC clock, reading TCNTO must be
done through a register synchronized to the internal I/O clock domain. Synchronization takes
place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O
clock (clk,,o) again becomes active, TCNTO will read as the previous value (before entering
sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from
Power-save mode is essentially unpredictable, as it depends on the wake-up time. The
recommended procedure for reading TCNTO is thus as follows:

1.  Write any value to either of the registers OCRO or TCCRO.
2. Wait for the corresponding Update Busy Flag to be cleared.
3. Read TCNTO.

* During asynchronous operation, the synchronization of the interrupt flags for the
asynchronous timer takes three processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting of
the interrupt flag. The Output Compare pin is changed on the timer clock and is not
synchronized to the processor clock.

AImEl@ 104

8160C-AVR-07/09



ATmega64A

14.10 Timer/Counter Prescaler

Figure 14-12. Prescaler for Timer/Counter0

clkogc Olkpog
Clear 10-BIT T/C PRESCALER
TOSCH - SEREREEE
5 S5 128 |
ASO S S A A
PSRO 0
i Al F YVY
CS00 k
CSo1 ';X
CSo02

TIMER/COUNTERO CLOCK SOURCE

clkyg

The clock source for Timer/Counter0 is named clkyqg. Clkrog is by default connected to the main
system clock clkpge. By setting the ASO bit in ASSR, Timer/Counter0 is asynchronously clocked
from the TOSC1 pin. This enables use of Timer/Counter0 as a Real Time Counter (RTC). When
ASO is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can then be con-
nected between the TOSC1 and TOSC2 pins to serve as an independent clock source for
Timer/Counter0. The Oscillator is optimized for use with a 32.768 kHz crystal. Applying an exter-
nal clock source to TOSC1 is not recommended.

For Timer/Counter0, the possible prescaled selections are: clkyys/8, Clkros/32, clkys/64,
clkrog/128, clkps/256, and clkrog/1024. Additionally, clkyyg as well as 0 (stop) may be selected.
Setting the PSRO bit in SFIOR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler.

AImEl@ 105

8160C-AVR-07/09



WL

14.11 Register Description

14.11.1 TCCRO - Timer/Counter Control Register

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0
0x33 (0x53) | FOCO | WGMO0O | COMO1 | COMO00 | WGMo1 CS02 CS01 Cs00 | TCCRoO
Read/Write w RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCO: Force Output Compare

The FOCO bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCRO is written when
operating in PWM mode. When writing a logical one to the FOCO bit, an immediate Compare
Match is forced on the waveform generation unit. The OCO output is changed according to its
COMO01:0 bits setting. Note that the FOCO bit is implemented as a strobe. Therefore it is the
value present in the COMO01:0 bits that determines the effect of the forced compare.

A FOCO strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCRO as TOP.

The FOCO bit is always read as zero.

¢ Bit 6,3 — WGMO01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 14-2 and “Modes of Operation”
on page 97.

Table 14-2. Waveform Generation Mode Bit Description("

WGMO1 WGMO00 | Timer/Counter Mode of Update of | TOVO Flag
Mode (CTCoO) (PWMO0) | Operation TOP OCRO at Set on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCRO | Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX

Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit 5:4 — COMO01:0: Compare Match Output Mode

These bits control the Output Compare pin (OCO0) behavior. If one or both of the COMO01:0 bits
are set, the OCO output overrides the normal port functionality of the I/O pin it is connected to.
However, note that the Data Direction Register (DDR) bit corresponding to OCO pin must be set
in order to enable the output driver.

AImEl@ 106



WL

When OCO is connected to the pin, the function of the COMO01:0 bits depends on the WGMO01:0
bit setting. Table 14-3 shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to a

Normal or CTC mode (non-PWM).

Table 14-3. Compare Output Mode, non-PWM Mode
CcoMo1 COMO00 Description
0 0 Normal port operation, OCO disconnected.
0 1 Toggle OCO on Compare Match.
1 0 Clear OCO0 on Compare Match.
1 1 Set OC0 on Compare Match.

Table 14-4 shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to fast PWM

mode.
Table 14-4. Compare Output Mode, Fast PWM Mode("
comMo1 COMO00 Description
0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO0 on Compare Match, set OCO at BOTTOM,

(non-inverting mode).

Set OCO on Compare Match, clear OCO at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCRO equals TOP and COMO01 is set. In this case, the Compare
Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 98
for more details.

Table 14-5 shows the COMO01:0 bit functionality when the WGMO1:0 bits are set to phase cor-

rect PWM mode.

Table 14-5. Compare Output Mode, Phase Correct PWM Mode!"
CcomMo1 COMO00 | Description

0 0 Normal port operation, OCO disconnected.

0 1 Reserved.

1 0 Clear OCO on Compare Match when up-counting. Set OC0 on Compare Match
when downcounting.

1 1 Set OCO0 on Compare Match when up-counting. Clear OCO on Compare Match
when downcounting.

Note: 1. A special case occurs when OCRO equals TOP and COMO1 is set. In this case, the Compare
Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page
100 for more details.

e Bit 2:0 - CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
14-6.

AImEl@ 107

8160C-AVR-07/09



WL

Table 14-6. Clock Select Bit Description

CS02 CSo01 CS00 Description
0 0 0 No clock source (Timer/counter stopped)
0 0 1 clkos/(No prescaling)
0 1 0 clktos/8 (From prescaler)
0 1 1 clkyog/32 (From prescaler)
1 0 0 clkyog/64 (From prescaler)
1 0 1 clkos/128 (From prescaler)
1 1 0 clkros/256 (From prescaler)
1 1 1 clkyps/1024 (From prescaler)

14.11.2 TCNTO - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0
0x32 (0x52) | TCNTO[7:0] | TenTo
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a Compare Match between TCNTO and the OCRO Register.

14.11.3 OCRO - Output Compare Register

Bit 7 6 5 4 3 2 1 0
0x31 (0x51) | OCRO[7:0] | ocro
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCO pin.

14.11.4 ASSR - Asynchronous Status Register

Bit 7 6 5 4 3 2 1 0
oxdoxs50) | - | - | - - ASO TCNOUB | OCROUB | TCRoUB |  AssR
Read/Write R R R R R/W R R R
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 3 - AS0: Asynchronous Timer/Counter0

When ASOQ is written to zero, Timer/Counter0 is clocked from the 1/O clock, clk;,o. When ASO is
written to one, Timer/Counter 0 is clocked from a crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of ASO is changed, the contents of TCNTO, OCRO, and
TCCRO might be corrupted.

AImEl@ 108

8160C-AVR-07/09



WL

e Bit 2 - TCNOUB: Timer/Counter0 Update Busy

When Timer/Counter0 operates asynchronously and TCNTO is written, this bit becomes set.
When TCNTO has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNTO is ready to be updated with a new value.

e Bit 1 — OCROUB: Output Compare Register0 Update Busy

When Timer/Counter0 operates asynchronously and OCRO is written, this bit becomes set.
When OCRO has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCRO is ready to be updated with a new value.

e Bit 0 — TCROUB: Timer/Counter Control Register0 Update Busy

When Timer/Counter0Q operates asynchronously and TCCRO is written, this bit becomes set.
When TCCRO has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCCRO is ready to be updated with a new value.

If a write is performed to any of the three Timer/Counter0 registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNTO, OCRO0, and TCCRO are different. When reading TCNTO,
the actual timer value is read. When reading OCRO or TCCRO, the value in the temporary stor-
age register is read.

14.11.5 TIMSK - Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) I OCIE2 | TOIE2 | TICIE1 OCIE1A OCIE1B TOIE1 OCIEO TOIEO I TIMSK
Read/Write R/W R/W R/W R/IW RIW R/IW R/IW R/IW

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 1 — OCIEO: Timer/Counter0 Output Compare Match Interrupt Enable

When the OCIEOQ bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter0 occurs, i.e., when the OCFO bit is set in the Timer/Counter
Interrupt Flag Register — TIFR.

e Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOVO bit is set in the Timer/Counter Interrupt
Flag Register — TIFR.

14.11.6 TIFR - Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x36 (0x56) I OCF2 | TOV2 | ICF1 OCF1A OCF1B TOV1 OCF0 TOVO I TIFR
Read/Write R/W R/W R/IW R/W R/W R/IW R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — OCFO0: Output Compare Flag 0

The OCFO bit is set (one) when a Compare Match occurs between the Timer/Counter0 and the
data in OCRO — Output Compare Register0. OCFO is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCFO is cleared by writing a logic one to

AImEl@ 109

8160C-AVR-07/09



WL

the flag. When the I-bit in SREG, OCIEO (Timer/Counter0 Compare Match Interrupt Enable), and
OCFO are set (one), the Timer/Counter0O Compare Match Interrupt is executed.

e Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Inter-
rupt Enable), and TOVO are set (one), the Timer/Counter0 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter0 changes counting direction at 0x00.

14.11.7 SFIOR - Special Function 10 Register

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0
0x20 (0x40) | TSM | = = = ACME PUD PSRO PSR321 | sFIOR
Read/Write R/W R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — TSM: Timer/Counter Synchronization Mode

Writing TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to PSR0O and PSR321 bits is kept, hence keeping the corresponding pres-
caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and
can be configured to the same value without the risk of one of them advancing during configura-
tion. When the TSM bit written zero, the PSR0 and PSR321 bits are cleared by hardware, and
the Timer/Counters start counting simultaneously.

e Bit 1 — PSRO: Prescaler Reset Timer/CounterQ

When this bit is one, the Timer/Counter0Q prescaler will be reset. The bit is normally cleared
immediately by hardware. If this bit is written when Timer/Counter0 is operating in Asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set.

AImEl@ 110



WL

15. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)

15.1 Features
* True 16-bit Design (i.e., Allows 16-bit PWM)
¢ Three Independent Output Compare Units
¢ Double Buffered Output Compare Registers
¢ One Input Capture Unit
¢ Input Capture Noise Canceler
* Clear Timer on Compare Match (Auto Reload)
¢ Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period
* Frequency Generator
¢ External Event Counter
¢ Ten Independent Interrupt Sources (TOV1, OCF1A, OCF1B, OCF1C, ICF1, TOV3, OCF3A, OCF3B,
OCF3C, and ICF3)

15.1.1 Restrictions in ATmegai03 Compatibility Mode
Note that in ATmega103 compatibility mode, only one 16-bit Timer/Counter is available
(Timer/Counter1). Also note that in ATmega103 compatibility mode, the Timer/Counter1 has two
compare registers (Compare A and Compare B) only.

15.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. Most register and bit references in this
datasheet are written in general form. A lower case “n” replaces the Timer/Counter number, and
a lower case “x” replaces the Output Compare unit channel. However, when using the register or
bit defines in a program, the precise form must be used (i.e,. TCNT1 for accessing
Timer/Counter1 counter value and so on). The physical I/O Register and bit locations for
ATmega64A are listed in the “16-bit Timer/Counter Register Description” on page 133.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1. CPU accessible
I/0 Registers, including I/O bits and 1/O pins, are shown in bold.

AImEl@ 111

8160C-AVR-07/09



ATmega64A

Figure 15-1. 16-bit Timer/Counter Block Diagram‘"

Count TOVx
-
Clear (Int.Req.)
Control Logic
Direction TCLK Clock Select

Edge
Y Detector [ Tx
TOP | BOTTOM

' v VY

Y ( From Prescaler )
a Timer/Counter T
TCNTX |
L= 1[=0]
* A * OCFxA
I (Int.Req.)
v : Wavefi
= | ‘ aveform »| oCcxA
Generation
————————————— OCRXA------------- g 2
| |
, [ Fixed OCFxB
| TOP (Int.Req.)
| Values
— L - Waveform »| OCxB
| Generation
|
g |
ol OCRXB------------- !
. — !
|<£ ! OCFxC
|
g ‘ r(lnt.Req.)
|
— X Wavefm_‘m »| OCxC
X Generation
|
|
g [T OCRXC----mmmmmoeee ! ( From Analog
il : Comparator Ouput )
| ICFx (Int.Req.)
i |
! Edge Noise
- ICBX Detector [ Canceler
| : ICPx
| TCCRxA | | TCCRxB | | TCCRxC |
v: T

Note: 1. Refer to Figure 1-1 on page 2, Table 13-6 on page 76, and Table 13-15 on page 83 for
Timer/Counter1 and 3 pin placement and description.

15.2.1 Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Capture Reg-
ister (ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 114. The Timer/Counter Control Registers (TCCRnA/B/C) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (shorten as Int.Req.) signals are all visible in the
Timer Interrupt Flag Register (TIFR) and Extended Timer Interrupt Flag Register (ETIFR). All
interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK) and Extended
Timer Interrupt Mask Register (ETIMSK). (E)TIFR and (E)TIMSK are not shown in the figure
since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkt,).

AImEl@ 112

8160C-AVR-07/09



WL

15.2.2

15.2.3

Definitions

Compatibility

8160C-AVR-07/09

The double buffered Output Compare Registers (OCRnA/B/C) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform Gener-
ator to generate a PWM or variable frequency output on the Output Compare Pin (OCnA/B/C).
See “Output Compare Units” on page 120. The Compare Match event will also set the Compare
Match Flag (OCFnA/B/C) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (See
“Analog Comparator” on page 230.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCRNA Register, the ICRn Register, or by a set of fixed values. When using
OCRnNA as TOP value in a PWM mode, the OCRnA Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used
as an alternative, freeing the OCRnA to be used as PWM output.

The following definitions are used extensively throughout this section:
Table 15-1.  Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes 0x0000.
MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be one of the fixed values:
O0x00FF, 0x01FF, or OXO3FF, or to the value stored in the OCRnA or ICRn Reg-
ister. The assignment is dependent of the mode of operation.

The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit
AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version
regarding:

¢ All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt

Registers.

¢ Bit locations inside all 16-bit Timer/Counter registers, including Timer Interrupt Registers.

e Interrupt Vectors.
The following control bits have changed name, but have same functionality and register location:

* PWMnO is changed to WGMnO.
* PWMn1 is changed to WGMn1.
* CTCn is changed to WGMn2.
The following registers are added to the 16-bit Timer/Counter:

* Timer/Counter Control Register C (TCCRnC).
¢ Output Compare Register C, OCRnCH and OCRnCL, combined OCRnC.
The following bits are added to the 16-bit Timer/Counter control registers:

e COM1C1:0 are added to TCCR1A.

AImEl@ 113



WL

* FOCnA, FOCnB, and FOCNC are added in the new TCCRnC Register.
* WGMn3 is added to TCCRnB.
Interrupt flag and mask bits for Output Compare unit C are added.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

15.3 Accessing 16-bit Registers

8160C-AVR-07/09

The TCNTn, OCRnA/B/C, and ICRn are 16-bit registers that can be accessed by the AVR CPU
via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write opera-
tions. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-
bit access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnA/B/C
16-bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit timer registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCRnA/B/C and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Assembly Code Examples!")

; Set TCNTn to OxO0l1FF
1di r17,0x01

1di rl16, OxXFF

out TCNTNH, rl7

out TCNTNL,rl6

; Read TCNTNn into rl7:rlé6
in rl6,TCNTNL

in rl17,TCNTNH

C Code Examples("

unsigned int i;

/* Set TCNTn to Ox01FF */
TCNTNn = O0x1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. See “About Code Examples” on page 8.
The assembly code example returns the TCNTn value in the r17:r16 register pair.

AImEl@ 114



WL

8160C-AVR-07/09

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit timer registers,
then the result of the access outside the interrupt will be corrupted. Therefore, when both the
main code and the interrupt code update the temporary register, the main code must disable the

interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNTn Register contents.

Reading any of the OCRnA/B/C or ICRn Registers can be done by using the same principle.

Assembly Code Example("

TIM16_ReadTCNTN:
; Save global interrupt flag
in rl18, SREG
; Disable interrupts
cli
; Read TCNTNn into rl7:rlé6
in rl16,TCNTNL
in rl17,TCNTNH
; Restore global interrupt flag
out SREG,rl8

ret

C Code Example!")

unsigned int TIM16_ReadTCNTNn( wvoid )
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */
SREG = sreg;

return i;

Note: 1. See “About Code Examples” on page 8.
The assembly code example returns the TCNTn value in the r17:r16 register pair.

ATMEL

115



WL

The following code examples show how to do an atomic write of the TCNTn Register contents.
Writing any of the OCRnA/B/C or ICRn Registers can be done by using the same principle.

Assembly Code Example("

TIM16_WriteTCNTN:
; Save global interrupt flag
in rl18, SREG
; Disable interrupts
cli
; Set TCNTn to rl7:rlé
out TCNTNH,r17
out TCNTNL,rl6
; Restore global interrupt flag
out SREG,rl8

ret

C Code Example!")

void TIM16_WriteTCNTN( unsigned int i )
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNTn to i */
TCNTNn = i;
/* Restore global interrupt flag */
SREG = sreg;

Note: 1. See “About Code Examples” on page 8.

The assembly code example requires that the r17:r16 register pair contains the value to be
written to TCNTn.

15.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

15.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits
located in the Timer/Counter Control Register B (TCCRnB). For details on clock sources and
prescaler, see “Timer/Counter3, Timer/Counter2 and Timer/Counter1 Prescalers” on page 143.

15.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 15-2 shows a block diagram of the counter and its surroundings.

AImEl@ 116

8160C-AVR-07/09



ATmega64A

Figure 15-2. Counter Unit Block Diagram

- DATA BUS (s-bit) >
TOVn
(Int.Req.)
TEMP (8-bit)
Clock Select
P Count Edge ™
[ TONTnH (8-bit) | TCNTnL(8-bit) | | Clear | ok, Detector [
- Control Logic [
TCNTn (16-bit Counter) ¢ rection
( From Prescaler )
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNTn by 1.
Direction Select between increment and decrement.
Clear Clear TCNTn (set all bits to zero).
clky, Timer/counter clock.
TOP Signalize that TCNTn has reached maximum value.
BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnNH is updated with the temporary register value when TCNTnL is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each Timer Clock (clky,). The clky, can be generated from an external or internal clock
source, selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 =
0) the timer is stopped. However, the TCNTn value can be accessed by the CPU, independent
of whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 123.

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

AImEl@ 117

8160C-AVR-07/09



WL

15.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, for the Timer/Counter1 only, via the
Analog Comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle,
and other features of the signal applied. Alternatively the time-stamps can be used for creating a
log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 15-3. Input Capture Unit Block Diagram")

DATA BUS (s-bit)
= t A >
[ TEMP @b |
| ICRnH@bi) | ICRnL(8biy | [ TCNTnH (8bit) [  TCNTnL (8-bit
» WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
- Aco~ AcIC* ICNC ICES
P Analog ¢ ¢
Comparator o -
Noise Edge _
Canceler »1 Detector p ICFn (Int.Req.)
ICPn >

Note: 1. The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 ICP — not
Timer/Counter3.

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (TICIEn =
1), the Input Capture Flag generates an Input Capture interrupt. The ICFn flag is automatically
cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low
byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICRnH I/O location it will
access the TEMP Register.

AImEl@ 118

8160C-AVR-07/09



WL

The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter's TOP value. In these cases the Waveform Genera-
tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH 1/O location
before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 114.

15.6.1 Input Capture Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICPn).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the Tn pin (Figure 16-1 on page 143). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

15.6.2 Noise Canceler
The Noise Canceler improves noise immunity by using a simple digital filtering scheme. The
Noise Canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The Noise Canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRnB). When enabled the Noise Canceler introduces
additional four system clock cycles of delay from a change applied to the input, to the update of
the ICRn Register. The Noise Canceler uses the system clock and is therefore not affected by
the prescaler.

15.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn

AImEl@ 119

8160C-AVR-07/09



WL

Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be
cleared by software (writing a logical one to the 1/O bit location). For measuring frequency only,
the clearing of the ICFn flag is not required (if an interrupt handler is used).

15.7 Output Compare Units

8160C-AVR-07/09

The 16-bit comparator continuously compares TCNTn with the Output Compare Register
(OCRnNx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output
Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCFnx flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writ-
ing a logical one to its 1/0O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of Operation” on page 123.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 15-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = n for Timer/Counter n), and the “x” indicates Output
Compare unit (A/B/C). The elements of the block diagram that are not directly a part of the Out-
put Compare unit are gray shaded.

Figure 15-4. Output Compare Unit, Block Diagram
DATA BUS (s-bit)

-¢ »-
AA A
TEMP (8-bit)
—] ¥ ¥
| oCRnxH But. (8-bit) | OCRnxL But. (8-bit) | [ TONTaH 8y | TCNTNL (8-bit
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
‘
—¥
OCRnxH (8-bi) | OCRnxL (8-bit) |
OCRnNXx (16-bit Register)
| = (16-bit Comparator )
—— OCFnx (Int.Req.)
y
TOP —
Waveform Generator »{ OCnx
BOTTOM ——p»

7

WGMn3:0 COMnx1:0

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-

AImEl@ 120



WL

ble buffering is disabled. The double buffering synchronizes the update of the OCRnx Compare
Register to either TOP or BOTTOM of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCRnx directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNTn — and ICRn Register). Therefore OCRnx is not read via the high
byte temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCRnx registers must be done via the TEMP Regis-
ter since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be
written first. When the high byte 1/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,
the high byte will be copied into the upper eight bits of either the OCRnx Buffer or OCRnx Com-
pare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 114.

15.7.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCnx) bit. Forcing Compare Match will not set the
OCFnx flag or reload/clear the timer, but the OCnx pin will be updated as if a real Compare
Match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set, cleared or
toggled).

15.7.2 Compare Match Blocking by TCNTnh Write
All CPU writes to the TCNTn Register will block any Compare Match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

15.7.3 Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNTn when using any of the Output Com-
pare channels, independent of whether the Timer/Counter is running or not. If the value written
to TCNTn equals the OCRnx value, the Compare Match will be missed, resulting in incorrect
waveform generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP
values. The Compare Match for the TOP will be ignored and the counter will continue to
OxFFFF. Similarly, do not write the TCNTn value equal to BOTTOM when the counter is
downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when
changing between waveform generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value.
Changing the COMnx1:0 bits will take effect immediately.

AImEl@ 121

8160C-AVR-07/09



WL

15.8 Compare Match Output Unit

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses
the COMnNx1:0 bits for defining the Output Compare (OCnx) state at the next Compare Match.
Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 15-5 shows a simplified
schematic of the logic affected by the COMnx1:0 bit setting. The 1/0 Registers, I/O bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR
and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the OCnx
state, the reference is for the internal OCnx Register, not the OCnx pin. If a System Reset occur,
the OCnx Register is reset to “0”.

Figure 15-5. Compare Match Output Unit, Schematic

=D,

COMnx1
COMnNx0 Waveform
D QI
FOCnx Generator
1
OCnx
OCnx 0 <l> Pin
A
D Q-
8
m PORT
<
i
= D Q
Y DDR
clk,q

The general 1/O port function is overridden by the Output Compare (OCnx) from the Waveform
Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 15-2, Table 15-3 and Table 15-4 for
details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-
put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of
operation. See “16-bit Timer/Counter Register Description” on page 133.

The COMnx1:0 bits have no effect on the Input Capture unit.

AImEl@ 122

8160C-AVR-07/09



WL

15.8.1

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMnx1:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the
OCnx Register is to be performed on the next Compare Match. For compare output actions in
the non-PWM modes refer to Table 15-2 on page 133. For fast PWM mode refer to Table 15-3
on page 134, and for phase correct and phase and frequency correct PWM refer to Table 15-4
on page 134.

A change of the COMnx1:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCnx strobe bits.

15.9 Modes of Operation

15.9.1

15.9.2

Normal Mode

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output
mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMnx1:0 bits control whether the output should be set, cleared or toggle at a Compare
Match (See “Compare Match Output Unit” on page 122.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 130.

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = OxFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in
the same timer clock cycle as the TCNTn becomes zero. The TOVn flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOVn flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

8160C-AVR-07/09

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRNnA or ICRn Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 =
12). The OCRNA or ICRn define the top value for the counter, hence also its resolution. This
mode allows greater control of the Compare Match output frequency. It also simplifies the oper-
ation of counting external events.

AImEl@ 123



WL

The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNTn)
increases until a Compare Match occurs with either OCRnA or ICRn, and then counter (TCNTn)
is cleared.

Figure 15-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

; A/ (Interrupt on TOP)
v \
TCNTn
OCnA ! ! _
(Toggle) (COMnAT1:0=1)

Period ‘47144472—»\«3%7444

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCFnA or ICFn flag according to the register used to define the TOP value. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing the TOP to a value close to BOTTOM when the counter is running with none or a low
prescaler value must be done with care since the CTC mode does not have the double buffering
feature. If the new value written to OCRNA or ICRn is lower than the current value of TCNTn, the
counter will miss the Compare Match. The counter will then have to count to its maximum value
(OxFFFF) and wrap around starting at 0x0000 before the Compare Match can occur. In many
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRnNA for defining TOP (WGMn3:0 = 15) since the OCRNA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COMNA1:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OCnA = 1). The waveform generated will have a maximum fre-
quency of fogaa = fok 110/2 when OCRNA is set to zero (0x0000). The waveform frequency is
defined by the following equation:

P o vo
0Cnd ™ 2 N . (1 +OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

15.9.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared
on the Compare Match between TCNTn and OCRnx, and set at BOTTOM. In inverting Compare

AImEl@ 124

8160C-AVR-07/09



WL

Output mode output is set on Compare Match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or
OCRnNA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the max-
imum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

R _ log(ToP +1)
FPWM = "log(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values OxO0FF, OxO1FF, or 0x03FF (WGMn3:0 =5, 6, or 7), the value in ICRn (WGMn3:0 =
14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-7. The figure
shows fast PWM mode when OCRnNA or ICRn is used to define TOP. The TCNTn value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent Compare Matches between OCRnx and TCNTn. The OCnx interrupt flag will
be set when a Compare Match occurs.

Figure 15-7. Fast PWM Mode, Timing Diagram

OCRnx / TOP Update
and TOVn Interrupt Flag
Set and OCnA Interrupt

V: Flag Set or ICFn
Interrupt Flag Set
(Interrupt on TOP)
TCNTn ;
: H
OCnx (COMnx1:0 = 2)
OCnx u (COMNX1:0 = 3)

Period Ff1—b|<f2—+—3—+—4—+5146-|<—7—+—8—>‘

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition
the OCnA or ICFn flag is set at the same timer clock cycle as TOVn is set when either OCRnA or
ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the compare registers. If the TOP value is lower than any of the com-
pare registers, a Compare Match will never occur between the TCNTn and the OCRnx. Note

AImEl@ 125

8160C-AVR-07/09



WL

that when using fixed TOP values the unused bits are masked to zero when any of the OCRnx
Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP
value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICRn value written is lower than the current value of TCNTn. The result will then be that the
counter will miss the Compare Match at the TOP value. The counter will then have to count to
the MAX value (OxFFFF) and wrap around starting at 0x0000 before the Compare Match can
occur. The OCRNA Register however, is double buffered. This feature allows the OCRnA I/0
location to be written anytime. When the OCRNA 1/O location is written the value written will be
put into the OCRNA Buffer Register. The OCRnA Compare Register will then be updated with
the value in the buffer register at the next timer clock cycle the TCNTn matches TOP. The
update is done at the same timer clock cycle as the TCNTn is cleared and the TOVn flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMnx1:0 to three (See Table 15-3 on page 134). The actual
OCnx value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_0OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at
the Compare Match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

p __ Jekuo
OCnxPWM — N(1 + TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCnA to toggle its logical level on each Compare Match (COMnA1:0 = 1). This applies only
if OCRNA is used to define the TOP value (WGMn3:0 = 15). The waveform generated will have
a maximum frequency of foc,a = fok 10/2 when OCRNA is set to zero (0x0000). This feature is
similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

15.9.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is

AImEl@ 126

8160C-AVR-07/09



WL

cleared on the Compare Match between TCNTn and OCRnx while upcounting, and set on the
Compare Match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

R _ log(TOP+1)
PCPWM — W

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, Ox01FF, or 0x03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn
(WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure
shows phase correct PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNTn slopes represent Compare Matches between OCRnx and TCNTn. The OCnx inter-
rupt flag will be set when a Compare Match occurs.

Figure 15-8. Phase Correct PWM Mode, Timing Diagram

OCRnx / TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

T

‘
|
|
|
|
|

| 1

| 1

1 | | 1

| Y |

i | | 3
P

Y Y YvY ¥ ¥ ¥

(COMnx1:0=2)
oo [ T N1 [cowo-y

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When
either OCRNA or ICRn is used for defining the TOP value, the OCnA or ICFn flag is set accord-
ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer
value (at TOP). The interrupt flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

U —

TCNTn

OCnx

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the compare registers. If the TOP value is lower than any of the com-

AImEl@ 127

8160C-AVR-07/09



WL

pare registers, a Compare Match will never occur between the TCNTn and the OCRnx. Note
that when using fixed TOP values, the unused bits are masked to zero when any of the OCRnx
Registers are written. As the third period shown in Figure 15-8 illustrates, changing the TOP
actively while the Timer/Counter is running in the phase correct mode can result in an unsym-
metrical output. The reason for this can be found in the time of update of the OCRnx Register.
Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This implies
that the length of the falling slope is determined by the previous TOP value, while the length of
the rising slope is determined by the new TOP value. When these two values differ the two
slopes of the period will differ in length. The difference in length gives the unsymmetrical result
on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COMnx1:0 to three (See Table 15-4 on page 134).
The actual OCnx value will only be visible on the port pin if the data direction for the port pin is
set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx
Register at the Compare Match between OCRnx and TCNTn when the counter increments, and
clearing (or setting) the OCnx Register at Compare Match between OCRnx and TCNTn when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

_ Jek 1o
Jocaxpcrwr = 57N TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCRDNA is used to define the TOP value (WGMn3:0 = 11) and COMnA1:0 = 1, the OCnA output
will toggle with a 50% duty cycle.

15.95 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OCnx) is cleared on the Compare Match between TCNTn and OCRnx while
upcounting, and set on the Compare Match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 15-
8 and Figure 15-9).

AImEl@ 128

8160C-AVR-07/09



WL

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and
the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can
be calculated using the following equation:

R _ log(TOP +1)
PFCPWM = IOQT

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 15-9. The figure shows phase and frequency correct
PWM mode when OCRnNA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent Compare Matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a
Compare Match occurs.

Figure 15-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx / TOP Update and
4 TOVn Interrupt Flag Set
(Interrupt on Bottom)

/ \//\
TCNTn ! !

vy
OCnx uu (COMNX1:0 = 2)
OCnx ['1 ] 1 (comxio=9

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn
is used for defining the TOP value, the OCnA or ICFn flag set when TCNTn has reached TOP.
The interrupt flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

| e

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the compare registers. If the TOP value is lower than any of the com-
pare registers, a Compare Match will never occur between the TCNTn and the OCRnx.

As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCRnx registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

AImEl@ 129

8160C-AVR-07/09



WL

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table 15-4 on
page 134). The actual OCnx value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing)
the OCnx Register at the Compare Match between OCRnx and TCNTn when the counter incre-
ments, and clearing (or setting) the OCnx Register at Compare Match between OCRnx and
TCNTn when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

_ Jek o
fOCnxPFCPWM - 2 N TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCnA
is used to define the TOP value (WGMn3:0 = 9) and COMnA1:0 = 1, the OCnA output will toggle
with a 50% duty cycle.

15.10 Timer/Counter Timing Diagrams

8160C-AVR-07/09

The Timer/Counter is a synchronous design and the timer clock (clky,) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for
modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCFnx.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

clk,q

clky,

(clk,o/1)

TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRNX + 2

OCRnNx OCRnx Value

OCFnx

Figure 15-11 shows the same timing data, but with the prescaler enabled.

AImEl@ 130



ATmega64A

Figure 15-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (f ,0/8)

S
sl T T

TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnNnx OCRnx Value
OCFnx

Figure 15-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOVn flag at BOTTOM.

Figure 15-12. Timer/Counter Timing Diagram, no Prescaling

clk;q

clkq,
(clk,,/1)

TCNTn
(CTC and FPWM) TOF -1 TOP BOTTOM BOTTOM + 1

TCNTn

(PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP -2

TOVn (FPWM)

and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

Old OCRnx Value New OCRnx Value

Figure 15-13 shows the same timing data, but with the prescaler enabled.

AImEl@ 131

8160C-AVR-07/09



8160C-AVR-07/09

clk,o

clky,
(clk,o/8)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOVn (FPWM)

and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

]
-

LTI
-

UUTTUL
-

Figure 15-13. Timer/Counter Timing Diagram, with Prescaler (f, ,,0/8)

UUTTUUL
-

ATmega64A

UL

TOP -1 TOP BOTTOM BOTTOM + 1
TOP -1 TOP TOP -1 TOP -2
Old OCRnx Value New OCRnx Value

ATMEL

132



WL

15.11 16-bit Timer/Counter Register Description

15.11.1 TCCR1A -Timer/Counter1 Control Register A
Bit 7 6 5 4 3 2 1 0
0x2F (0x4F) | COM1A1 | COM1A0 | COM1B1 COM1B0 | cCOM1C1 COM1CO | WGM11 WGM10 | TCCR1A
Read/Write R/W R/W R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
15.11.2 TCCR3A - Timer/Counter3 Control Register A
Bit 7 6 5 4 3 2 1 0
(0x8B) | COM3A1 | COM3A0 | COM3B1 | COM3B0 COM3C1 COM3C0 | WGM31 WGM30 | TCCR3A
Read/Write R/W RIW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:6 - COMnA1:0: Compare Output Mode for Channel A
¢ Bit 5:4 - COMnB1:0: Compare Output Mode for Channel B

¢ Bit 3:2 - COMnC1:0: Compare Output Mode for Channel C

The COMnA1:0, COMnB1:0, and COMnC1:0 control the Output Compare pins (OCnA, OCnB,
and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are written to one, the
OCnA output overrides the normal port functionality of the 1/0O pin it is connected to. If one or
both of the COMNB1:0 bits are written to one, the OCnB output overrides the normal port func-
tionality of the 1/O pin it is connected to. If one or both of the COMNC1:0 bits are written to one,
the OCnC output overrides the normal port functionality of the 1/O pin it is connected to. How-
ever, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or
OCnC pin must be set in order to enable the output driver.

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0 bits is
dependent of the WGMn3:0 bits setting. Table 15-2 shows the COMnx1:0 bit functionality when
the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 15-2. Compare Output Mode, non-PWM
COMnA1/ COMnAO/
COMnB1/ COMnBO/
COMNC1 COMNnCO Description
0 0 Normal port operation, OCnA/OCnB/OCnC disconnected.
0 1 Toggle OCnA/OCnB/OCnC on Compare Match.
1 0 Clear OCnA/OCnB/OCnC on Compare Match (Set output to low
level).
1 1 Set OCnA/OCnB/OCnC on Compare Match (Set output to high
level).

8160C-AVR-07/09

ATMEL

133



WL

Table 15-3 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast

PWM mode
Table 15-3. Compare Output Mode, Fast PWM(")
COMNnA1/ COMNAO0/
COMnB1/ COMnBo0/
COMNnCO COMNCO Description
0 0 Normal port operation, OCnA/OCnB/OCnC disconnected.
0 1 WGMn3:0 = 15: Toggle OCnA on Compare Match, OCnB/OCnC
disconnected (normal port operation).
For all other WGMn settings, normal port operation,
OCnA/OCnB/OCnC disconnected.
1 0 Clear OCnA/OCnB/OCnC on Compare Match, set
OCnA/OCnB/OCnC at BOTTOM (non-inverting mode).
1 1 Set OCnA/OCnB/OCnC on Compare Match, clear
OCnA/OCnB/OCnC at BOTTOM (inverting mode).
Note: 1. A special case occurs when OCRnA/OCRnB/OCRNC equals TOP and

COMnA1/COMnB1/COMNCH1 is set. In this case the Compare Match is ignored, but the set or
clear is done at BOTTOM. See “Fast PWM Mode” on page 124. for more details.

Table 15-3 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase
correct and frequency correct PWM mode.

Table 15-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM™
COMnA1/ COMnAO/
COMnB1/ COMnBO/
COMNC1 COMNCO Description
0 0 Normal port operation, OCnA/OCnB/OCnC disconnected.
0 1 WGMnN3:0 = 9 or 11: Toggle OCnA on Compare Match, OCnB/OCnC
disconnected (normal port operation).
Forr all other WGMn settings, normal port operation,
OCnA/OCnB/OCnC disconnected.
1 0 Clear OCnA/OCnB/OCnC on Compare Match when up-counting. Set
OCnA/OCnB/OCnC on Compare Match when downcounting.
1 1 Set OCnA/OCnB/OCnC on Compare Match when up-counting. Clear
OCnA/OCnB/OCnC on Compare Match when downcounting.

Note: 1. A special case occurs when OCRnA/OCRnB/OCRNC equals TOP and

COMnA1/COMNnB1/COMNCI1 is set. See “Phase Correct PWM Mode” on page 126. for more
details.

¢ Bit 1:0 - WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 15-5. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types
of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page 123.)

134

ATMEL

8160C-AVR-07/09



WL

Table 15-5. Waveform Generation Mode Bit Description
WGMn2 | WGMn1 WGMnO | Timer/Counter Mode of Update of | TOVn Flag
Mode | WGMn3 | (CTCn) | (PWMn1) | (PWMnO) | Operation TOP OCRnx at | Seton

0 0 0 0 0 Normal OXFFFF | Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF | TOP BOTTOM
4 0 1 0 0 CTC OCRnA | Immediate | MAX

5 0 1 0 1 Fast PWM, 8-bit O0x00FF | BOTTOM | TOP

6 0 1 1 0 Fast PWM, 9-bit O0x01FF | BOTTOM | TOP

7 0 1 1 1 Fast PWM, 10-bit O0x03FF | BOTTOM | TOP

8 1 0 0 0 E\c/)\ill’\g,crhase and Frequency ICRn BOTTOM BOTTOM
9 1 0 0 1 cP:\c/)\ir(/;,cr’hase and Frequency OCRnA | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCRnA | TOP BOTTOM
12 1 1 0 0 CTC ICRn Immediate | MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICRn BOTTOM | TOP

15 1 1 1 1 Fast PWM OCRnA | BOTTOM | TOP

Note:  The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and loca-

tion of these bits are compatible with previous versions of the timer.

15.11.3 TCCR1B - Timer/Counter1 Control Register B

Bit 7 6 5 4 3 2 1 0

O0x2E (0x4E) [ ICNC1 | ICES1 | - | WGM13 | WGM12 cs12 cs11 Cs10 | TCCR1B
Read/Write R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

15.11.4 TCCR3B - Timer/Counter3 Control Register B

Bit 7 6 5 4 3 2 1 0

(0x8A) | icNc3 | icEs3 | - | WGM33 | WGM32 CSs32 CS31 CS30 | TCCR3B
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

8160C-AVR-07/09

e Bit 7 - ICNCn: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICPn) is filtered. The filter function requires four
successive equal valued samples of the ICPn pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

ATMEL

135



WL

¢ Bit 6 — ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a capture
event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the
Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the
TCCRnNA and the TCCRnB Register), the ICPn is disconnected and consequently the Input Cap-
ture function is disabled.

¢ Bit 5 — Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCRnB is written.

¢ Bit 4:3 - WGMn3:2: Waveform Generation Mode
See TCCRnNA Register description.

e Bit 2:0 - CSn2:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
15-10 and Figure 15-11.

Figure 15-14. Clock Select Bit Description

CSn2 CSn1 CSn0 Description
0 0 0 No clock source (Timer/counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk;,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on Tn pin. Clock on falling edge.
1 1 1 External clock source on Tn pin. Clock on rising edge.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

15.11.5 TCCR1C - Timer/Counteri Control Register C

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0
(0x7A) | Focia | FociB | Focic | - - - - - | Tccric
Read/Write w w w R R R
Initial Value 0 0 0 0 0 0 0 0

AImEl@ 136



WL

15.11.6 TCCR3C - Timer/Counter3 Control Register C

Bit 7 6 5 4 3 2 1 0
(0x8C) | Focsa | Focse | Focic | - | Tccrac
Read/Write W W W R R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCnA: Force Output Compare for Channel A
e Bit 6 — FOCnB: Force Output Compare for Channel B

e Bit 5 - FOCnC: Force Output Compare for Channel C

The FOCnA/FOCnB/FOCNC bits are only active when the WGMn3:0 bits specifies a non-PWM
mode. When writing a logical one to the FOCnA/FOCnB/FOCNC bit, an immediate Compare
Match is forced on the waveform generation unit. The OCnA/OCnB/OCnC output is changed
according to its COMnx1:0 bits setting. Note that the FOCnA/FOCnB/FOCNC bits are imple-
mented as strobes. Therefore it is the value present in the COMnx1:0 bits that determine the
effect of the forced compare.

A FOCnA/FOCnB/FOCNC strobe will not generate any interrupt nor will it clear the timer in Clear
Timer on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCNnB/FOCNB bits are always read as zero.

¢ Bit 4:0 — Reserved Bits

These bits are reserved for future use. For ensuring compatibility with future devices, these bits
must be written to zero when TCCRnC is written.

15.11.7 TCNT1H and TCNT1L — Timer/Counter1

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) TCNT1[15:8] TCNT1H
0x2C (0x4C) TCNT1[7:0] TCNTIL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

15.11.8 TCNT3H and TCNT3L — Timer/Counter3

Bit 7 6 5 4 3 2 1 0

(0x89) TCNT3[15:8] TCNT3H
(0x88) TCNT3[7:0] TCNT3L
Read/Write R/W R/W R/IW R/W R/W R/IW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 114.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a Com-
pare Match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the Compare Match on the following timer clock

for all compare units.
ATMEL 137
Y ©)

8160C-AVR-07/09



WL

15.11.9 OCR1AH and OCR1AL —Output Compare Register 1 A

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) OCR1A[15:8] OCR1AH
0x2A (0x4A) OCR1A[7:0] OCR1AL
Read/Write R/W R/W R/IW R/W R/W R/IW R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

15.11.10 OCR1BH and OCR1BL - Output Compare Register 1 B

Bit 7 6 5 4 3 2 1 0
0x29 (0x49) OCR1B[15:8] OCR1BH
0x28 (0x48) OCR1B[7:0] OCR1BL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

15.11.11 OCR1CH and OCR1CL - Output Compare Register 1 C

Bit 7 6 5 4 3 2 1 0
(0x79) OCR1C[15:8] OCR1CH
(0x78) OCR1C[7:0] OCR1ICL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

15.11.12 OCR3AH and OCR3AL - Output Compare Register 3 A

Bit 7 6 5 4 3 2 1 0

(0x87) OCRS3A[15:8] OCR3AH
(0x86) OCR3A[7:0] OCR3AL
Read/Write R/W R/W R/IW R/W R/W R/IW R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

15.11.13 OCR3BH and OCR3BL - Output Compare Register 3 B

Bit 7 6 5 4 3 2 1 0
(0x85) OCR3B[15:8] OCR3BH
(0x84) OCR3B[7:0] OCR3BL
Read/Write RIW RIW RIW RIW RW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

15.11.14 OCR3CH and OCR3CL - Output Compare Register 3 C

Bit 7 6 5 4 3 2 1 0
(0x83) OCR3C[15:8] OCR3CH
(0x82) OCR3C[7:0] OCR3CL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-
bit registers. See “Accessing 16-bit Registers” on page 114.

AImEl@ 138

8160C-AVR-07/09



WL

15.11.15 ICR1H and ICR1L - Input Capture Register 1

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) ICR1[15:8] ICR1H
0x26 (0x46) ICR1[7:0] ICR1L
Read/Write R/W R/W R/IW R/W R/W R/IW R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

15.11.16 ICR3H and ICR3L - Input Capture Register 3

Bit 7 6 5 4 3 2 1 0

(0x81) ICR3[15:8] ICR3H
(0x80) ICR3[7:0] ICR3L
Read/Write R/W R/IW R/W R/W R/IW R/W R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the
ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 114.

15.11.17 TIMSK - Timer/Counter Interrupt Mask Register(")

Bit 7 6 5 4 3 2 1 0
0x37 (0x57) | OCIE2 | TOIE2 | TICIE1 | OCIE1A | OCIE1B TOIE1 OCIEO TOIE0 | TIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timer1 bits are
described in this section. The remaining bits are described in their respective timer sections.

e Bit 5 — TICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 60) is executed when the ICF1 flag, located in TIFR, is set.

e Bit 4 — OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 60) is executed when the OCF1A flag, located in TIFR,
is set.

e Bit 3 — OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 60) is executed when the OCF1B flag, located in TIFR,
is set.

AImEl@ 139

8160C-AVR-07/09



WL

¢ Bit 2 — TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow Interrupt is enabled. The corresponding Interrupt Vector
(see “Interrupts” on page 60) is executed when the TOV1 flag, located in TIFR, is set.

15.11.18 ETIMSK — Extended Timer/Counter Interrupt Mask Register("

Bit 7 6 5 4 3 2 1 0
(0x7D) | - | - | TICIE3 | OCIE3A | OCIE3B TOIE3 OCIE3C OCIE1IC | ETIMsK
Read/Write R R R/W RIW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register is not available in ATmega103 compatibility mode.

¢ Bit 7:6 — Reserved Bits
These bits are reserved for future use. For ensuring compatibility with future devices, these bits
must be set to zero when ETIMSK is written.

¢ Bit 5 — TICIE3: Timer/Counter3, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter3 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 60) is executed when the ICF3 flag, located in ETIFR, is set.

e Bit 4 — OCIE3A: Timer/Counter3, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter3 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 60) is executed when the OCF3A flag, located in
ETIFR, is set.

¢ Bit 3 — OCIE3B: Timer/Counter3, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter3 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 60) is executed when the OCF3B flag, located in
ETIFR, is set.

¢ Bit 2 - TOIE3: Timer/Counter3, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter3 Overflow Interrupt is enabled. The corresponding Interrupt Vector
(see “Interrupts” on page 60) is executed when the TOV3 flag, located in ETIFR, is set.

e Bit 1 — OCIE3C: Timer/Counter3, Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter3 Output Compare C Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 60) is executed when the OCF3C flag, located in
ETIFR, is set.

e Bit 0 — OCIE1C: Timer/Counteri, Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare C Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 60) is executed when the OCF1C flag, located in
ETIFR, is set.

AImEl@ 140

8160C-AVR-07/09



WL

15.11.19 TIFR - Timer/Counter Interrupt Flag Register(")

Bit 7 6 5 4 3 2 1 0
0x36 (0x56) | OCF2 | TOv2 | ICF1 | OCF1A | OCF1B TOV1 OCF0 Tovo | TIFR
Read/Write RIW RIW RIW R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains flag bits for several Timer/Counters, but only Timer1 bits are described
in this section. The remaining bits are described in their respective timer sections.

e Bit 5 - ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGMn3:0 to be used as the TOP value, the ICF1 flag is set when the coun-
ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

e Bit4 — OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

e Bit 3 — OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

e Bit 2 - TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes,
the TOV1 flag is set when the timer overflows. Refer to Table 15-5 on page 135 for the TOV1
flag behavior when using another WGMn3:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

15.11.20 ETIFR - Extended Timer/Counter Interrupt Flag Register

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0
(0x7C) |l - | - | 'cF3 | oCF3A | OCF3B | TOV3 | OCF3C | OCFIC | ETIFR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — Reserved Bits
These bits are reserved for future use. For ensuring compatibility with future devices, these bits
must be set to zero when ETIFR is written.

AImEl@ 141



WL

e Bit 5 — ICF3: Timer/Counter3, Input Capture Flag

This flag is set when a capture event occurs on the ICP3 pin. When the Input Capture Register
(ICR3) is set by the WGMS3:0 to be used as the TOP value, the ICF3 flag is set when the counter
reaches the TOP value.

ICF3 is automatically cleared when the Input Capture 3 Interrupt Vector is executed. Alterna-
tively, ICF3 can be cleared by writing a logic one to its bit location.

e Bit 4 — OCF3A: Timer/Counter3, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT3) value matches the Output
Compare Register A (OCR3A).

Note that a Forced Output Compare (FOC3A) strobe will not set the OCF3A flag.

OCF3A is automatically cleared when the Output Compare Match 3 A Interrupt Vector is exe-
cuted. Alternatively, OCF3A can be cleared by writing a logic one to its bit location.

e Bit 3 - OCF3B: Timer/Counter3, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT3) value matches the Output
Compare Register B (OCR3B).

Note that a Forced Output Compare (FOC3B) strobe will not set the OCF3B flag.

OCF3B is automatically cleared when the Output Compare Match 3 B Interrupt Vector is exe-
cuted. Alternatively, OCF3B can be cleared by writing a logic one to its bit location.

e Bit 2 - TOV3: Timer/Counter3, Overflow Flag

The setting of this flag is dependent of the WGMS3:0 bits setting. In Normal and CTC modes, the
TOVS flag is set when the timer overflows. Refer to Table 14-2 on page 106 for the TOVS3 flag
behavior when using another WGM3:0 bit setting.

TOVS3 is automatically cleared when the Timer/Counter3 Overflow Interrupt Vector is executed.
Alternatively, OCF3B can be cleared by writing a logic one to its bit location.

e Bit 1 — OCF3C: Timer/Counter3, Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the Output
Compare Register C (OCR3C).

Note that a Forced Output Compare (FOC3C) strobe will not set the OCF3C flag.
OCF3C is automatically cleared when the Output Compare Match 3 C Interrupt Vector is exe-

cuted. Alternatively, OCF3C can be cleared by writing a logic one to its bit location.

e Bit 0 — OCF1C: Timer/Counter1, Output Compare C Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register C (OCR1C).

Note that a Forced Output Compare (FOC1C) strobe will not set the OCF1C flag.

OCF1C is automatically cleared when the Output Compare Match 1 C Interrupt Vector is exe-
cuted. Alternatively, OCF1C can be cleared by writing a logic one to its bit location.

AImEl@ 142

8160C-AVR-07/09



WL

16. Timer/Counter3, Timer/Counter2 and Timer/Counter1 Prescalers

Timer/Counter3, Timer/Counter2 and Timer/Counter1 share the same prescaler module, but the
Timer/Counters can have different prescaler settings. The description below applies to all of the
mentioned Timer/Counters.

16.0.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fc « 10)- Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fg « ,0/8, foik 110/64, foLk 110/256, or
foLk 110/1024.

16.0.2 Prescaler Reset

The prescaler is free running, for example, it operates independently of the Clock Select logic of
the Timer/Counter, and it is shared by Timer/Counter1, Timer/Counter2, and Timer/Counter3.
Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the prescaler
will have implications for situations where a prescaled clock is used. One example of prescaling
artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The
number of system clock cycles from when the timer is enabled to the first count occurs can be
from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also use prescaling. A Prescaler Reset will affect the prescaler period for all Timer/Counters it is
connected to.

16.0.3 External Clock Source

8160C-AVR-07/09

An external clock source applied to the Tn pin can be used as Timer/Counter clock
(clkr4/clko/clky3). The Tn pin is sampled once every system clock cycle by the pin synchroniza-
tion logic. The synchronized (sampled) signal is then passed through the edge detector. Figure
16-1 shows a functional equivalent block diagram of the Tn synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clk,q). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clky4/clkry/clky; pulse for each positive (CSn2:0 = 7) or nega-
tive (CSn2:0 = 6) edge it detects.

Figure 16-1. Tn Pin Sampling

™ D Q D Q [ D Q ) | hame
Select Logic)
[ |
clk

/0

Edge Detector

AImEl@ 143



WL

8160C-AVR-07/09

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the Tn pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn has been stable for at least one
system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fecik < foik 10/2) given a 50/50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than f, ,0/2.5.

An external clock source can not be prescaled.

Figure 16-2. Prescaler for Timer/Counter1, Timer/Counter2, and Timer/Counter3"

CK 'b 10-BIT T/C PRESCALER |
Clear

CK/8

CK/64
CK/256
CK/1024

PSR321

TIMER/COUNTERS CLOCK SOURCE TIMER/COUNTER2 CLOCK SOURCE TIMER/COUNTER1 CLOCK SOURCE
clkr, clky, clk,

Note: 1. The synchronization logic on the input pins (T3/T2/T1) is shown in Figure 16-1.

AImEl@ 144



WL

16.1 Register Description

16.1.1 SFIOR - Special Function 10 Register

Bit 7 6 5 4 3 2 1 0
0x20 (0x40) | TSM | = = ACME PUD PSRO PSR321 | SFIOR
Read/Write R/W R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — TSM: Timer/Counter Synchronization Mode

Writing TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to PSR0O and PSR321 bits is kept, hence keeping the corresponding pres-
caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and
can be configured to the same value without the risk of one of them advancing during configura-
tion. When the TSM bit written zero, the PSR0 and PSR321 bits are cleared by hardware, and
the Timer/Counters start counting simultaneously.

¢ Bit 0 — PSR321: Prescaler Reset Timer/Counter3, Timer/Counter2, and Timer/Counter1
When this bit is one, the Timer/Counter3, Timer/Counter2, and Timer/Counter1 prescaler will be
reset. The bit is normally cleared immediately by hardware, except if the TSM bit is set. Note that
Timer/Counter3 Timer/Counter2, and Timer/Counter1 share the same prescaler and a reset of
this prescaler will affect all three timers.

AImEl@ 145

8160C-AVR-07/09



WL

17. 8-bit Timer/Counter2 with PWM

17.1 Features
¢ Single Channel Counter
¢ Clear Timer on Compare Match (Auto Reload)
¢ Glitch-free, Phase Correct Pulse width Modulator (PWM)
* Frequency Generator
¢ External Event Counter
¢ 10-bit Clock Prescaler
¢ Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)

17.2 Overview

Timer/Counter2 is a general purpose, single-channel, 8-bit Timer/Counter module. A simplified
block diagram of the 8-bit Timer/Counter is shown in Figure 17-1. For the actual placement of
I/0 pins, refer to “Pin Configuration” on page 2. CPU accessible /0O Registers, including 1/O bits
and /O pins, are shown in bold. The device-specific /0 Register and bit locations are listed in
the “Register Description” on page 157.

Figure 17-1. 8-bit Timer/Counter Block Diagram

<< > TCCRn
count . TOVn
clear " (Int.Req.)
Control Logic
direction 9 clkry, Clock Select
Edge
X A Detector [ Tn
BOTTOM TOP
wn AR ‘ > ( From Prescaler)
) Timer/Counter A A
m TCNTn =01 [FoeF]
s = =X pOCn
<Qt (Int.Req.)
Waveform
_ Generation B OCn

17.2.1 Registers
The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt
request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag
Register (TIFR). All interrupts are individually masked with the Timer Interrupt Mask Register

AImEl@ 146

8160C-AVR-07/09



WL

17.2.2 Definitions

(TIMSK). TIFR and TIMSK are not shown in the figure since these registers are shared by other
timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T2 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Register (OCR2) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC2). For details, see
“Output Compare Unit” on page 148. The Compare Match event will also set the Compare Flag
(OCF2) which can be used to generate an Output Compare interrupt request.

Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used (i.e., TCNT2 for accessing Timer/Counter2
counter value and so on).

The definitions in Table 17-1 are also used extensively throughout this section.

Table 17-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2 Register. The assignment is dependent
on the mode of operation.

17.3 Timer/Counter Clock Sources

17.4 Counter Unit

8160C-AVR-07/09

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS22:0) bits
located in the Timer/Counter Control Register (TCCR2). For details on clock sources and pres-
caler, see “Timer/Counter3, Timer/Counter2 and Timer/Counter1 Prescalers” on page 143.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
17-2 shows a block diagram of the counter and its surroundings.

AImEl@ 147



ATmega64A

Figure 17-2. Counter Unit Block Diagram

-
DATA BUS >
t Clock Select
nt
TCNTn < C;:ar Control Logic | rn Dgg%?or ) "
_ direction
( From Prescaler )
bottom T Ttop
Signal description (internal signals):
count Increment or decrement TCNT2 by 1.
direction Select between increment and decrement.
clear Clear TCNT2 (set all bits to zero).
clkq, Timer/counter clock, referred to as clky, in the following.
top Signalize that TCNT2 has reached maximum value.
bottom Signalize that TCNT2 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). clky, can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMAOO bits located in
the Timer/Counter Control Register (TCCR2). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC2. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 151.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

17.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2). Whenever TCNT2 equals OCR2, the comparator signals a match. A match will set the
Output Compare Flag (OCF2) at the next timer clock cycle. If enabled (OCIE2 = 1 and Global
Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare inter-
rupt. The OCF2 flag is automatically cleared when the interrupt is executed. Alternatively, the
OCF2 flag can be cleared by software by writing a logical one to its I/O bit location. The Wave-
form Generator uses the match signal to generate an output according to operating mode set by
the WGM21:0 bits and Compare Output mode (COM21:0) bits. The max and bottom signals are
used by the Waveform Generator for handling the special cases of the extreme values in some
modes of operation (see “Modes of Operation” on page 151). Figure 17-3 shows a block dia-
gram of the Output Compare unit.

AImEl@ 148

8160C-AVR-07/09



ATmega64A

Figure 17-3. Output Compare Unit, Block Diagram

DATA BUS
- t t >
OCRn TCNTn
| = (8-bit Comparator) |
OCFn (Int.Req.)
\ 4
Py
bottom _, Waveform Generator OoCn
FOCn — ]

1]

WGMn1:0 COMn1:0

The OCR2 Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCR2 Compare Register
to either top or bottom of the counting sequence. The synchronization prevents the occurrence
of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR2 Buffer Register, and if double buffering is disabled
the CPU will access the OCR2 directly.

17.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2) bit. Forcing Compare Match will not set the
OCF2 flag or reload/clear the timer, but the OC2 pin will be updated as if a real Compare Match
had occurred (the COM21:0 bits settings define whether the OC2 pin is set, cleared or toggled).

17.5.2 Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any Compare Match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2 to be initialized
to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

17.5.3 Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNT2 when using the Output Compare
channel, independently of whether the Timer/Counter is running or not. If the value written to
TCNT2 equals the OCR2 value, the Compare Match will be missed, resulting in incorrect wave-

AImEl@ 149

8160C-AVR-07/09



WL

form generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port
pin to output. The easiest way of setting the OC2 value is to use the Force Output Compare
(FOC2) strobe bits in Normal mode. The OC2 Register keeps its value even when changing
between Waveform Generation modes.

Be aware that the COM21:0 bits are not double buffered together with the compare value.
Changing the COM21:0 bits will take effect immediately.

17.6 Compare Match Output Unit

8160C-AVR-07/09

The Compare Output mode (COM21:0) bits have two functions. The Waveform Generator uses
the COM21:0 bits for defining the Output Compare (OC2) state at the next Compare Match.
Also, the COM21:0 bits control the OC2 pin output source. Figure 17-4 shows a simplified sche-
matic of the logic affected by the COM21:0 bit setting. The I/O Registers, I/O bits, and I/O pins in
the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and
PORT) that are affected by the COM21:0 bits are shown. When referring to the OC2 state, the
reference is for the internal OC2 Register, not the OC2 pin. If a System Reset occur, the OC2
Register is reset to “0”.

Figure 17-4. Compare Match Output Unit, Schematic

=D,

COMN1
COMnNO Waveform
D Q-+
FOCn Generator
)
OCn
OCn 0 |> Pin
A
D Q-
3
m PORT
<
i<
o D Q
Y DDR
clk,q

The general 1/O port function is overridden by the Output Compare (OC2) from the Waveform
Generator if either of the COM21:0 bits are set. However, the OC2 pin direction (input or output)
is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Regis-

AImEl@ 150



WL

17.6.1

ter bit for the OC2 pin (DDR_OC2) must be set as output before the OC2 value is visible on the
pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2 state before the out-
put is enabled. Note that some COM21:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 157.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM21:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COM21:0 = 0 tells the Waveform Generator that no action on the OC2
Register is to be performed on the next Compare Match. For compare output actions in the non-
PWM modes refer to Table 17-3 on page 158. For fast PWM mode, refer to Table 17-4 on page
159, and for phase correct PWM refer to Table 17-5 on page 159.

A change of the COM21:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2 strobe bits.

17.7 Modes of Operation

17.7.1

17.7.2

Normal Mode

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Output
mode (COM21:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM21:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM21:0 bits control whether the output should be set, cleared, or toggled at a Compare
Match (see “Compare Match Output Unit” on page 150).

For detailed timing information refer to Figure 17-8, Figure 17-9, Figure 17-10, and Figure 17-11
in “Timer/Counter Timing Diagrams” on page 155.

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 flag, the timer resolution can be increased by software. There
are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

8160C-AVR-07/09

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to manip-
ulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value
(TCNT2) matches the OCR2. The OCR2 defines the top value for the counter, hence also its
resolution. This mode allows greater control of the Compare Match output frequency. It also sim-
plifies the operation of counting external events.

AImEl@ 151



WL

The timing diagram for the CTC mode is shown in Figure 17-5. The counter value (TCNT2)
increases until a Compare Match occurs between TCNT2 and OCR2, and then counter (TCNT2)
is cleared.

Figure 17-5. CTC Mode, Timing Diagram

OCn Interrupt Flag Set

TCNTn

Y

oCn [ 1 (om0 1)
(Toggle) ——+ L
Period }471 4447244«3%744%

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2 flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2 is lower than the current
value of TCNT2, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the Compare Match can
occur.

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COM21:0 = 1). The OC2 value will not be visible on the port pin unless the data direction for the
pin is set to output. The waveform generated will have a maximum frequency of foc, = foy 10/2
when OCR2 is set to zero (0x00). The waveform frequency is defined by the following equation:

P Jek 1o
OCn ™ 2.N.(1+OCRn)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV2 flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

17.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC2) is cleared on the Compare
Match between TCNT2 and OCR2, and set at BOTTOM. In inverting Compare Output mode, the
output is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited

AImEl@ 152

8160C-AVR-07/09



WL

for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 17-6. The TCNT2 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent Com-
pare Matches between OCR2 and TCNT2.

Figure 17-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

.-| OCRn Update and
i | TOVn Interrupt Flag Set

TCNTn /

Y A\ Y Y A\ 5
OCn R || (COMN1:0 = 2)

OCn ﬁ ﬁ (COMN1:0 = 3)
O VN R N S R

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Set-
ting the COM21:0 bits to two will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM21:0 to three (see Table 17-4 on page 159). The actual OC2
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by setting (or clearing) the OC2 Register at the Compare Match
between OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer clock cycle
the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

p _ Jek 1o
JOCnPWM — N—256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR2 Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be
a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a
constantly high or low output (depending on the polarity of the output set by the COM21:0 bits.)

AImEl@ 153

8160C-AVR-07/09



WL

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2 to toggle its logical level on each Compare Match (COM21:0 = 1). The waveform
generated will have a maximum frequency of foc, =y, ,0/2 when OCR2 is set to zero. This fea-
ture is similar to the OC2 toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

17.7.4 Phase Correct PWM Mode

8160C-AVR-07/09

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2) is cleared on the Compare Match
between TCNT2 and OCR2 while upcounting, and set on the Compare Match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 17-7.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent Compare Matches between OCR2 and TCNT2.

Figure 17-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt

i i Flag Set

OCRn Update

TOVn Interrupt
Flag Set

TCNTn \/

¥

OCn ‘—“ | L(Comm:o =2)
OCn ’—’ ’—’ T(comm:o =3)

AImEl@ 154



WL

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2 pin. Setting the COM21:0 bits to two will produce a non-inverted PWM. An inverted PWM
output can be generated by setting the COM21:0 to three (see Table 17-5 on page 159). The
actual OC2 value will only be visible on the port pin if the data direction for the port pin is set as
output. The PWM waveform is generated by clearing (or setting) the OC2 Register at the Com-
pare Match between OCR2 and TCNT2 when the counter increments, and setting (or clearing)
the OC2 Register at Compare Match between OCR2 and TCNT2 when the counter decrements.
The PWM frequency for the output when using phase correct PWM can be calculated by the fol-
lowing equation:

_ Jawo
Tocnpcrwm = 3 510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2 is set equal to BOTTOM, the out-
put will be continuously low and if set equal to MAX the output will be continuously high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 17-7 OCn has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without a Compare Match.

* OCR2 changes its value from MAX, like in Figure 17-7. When the OCR2 value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

* The timer starts counting from a higher value than the one in OCR2, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the
way up.

17.8 Timer/Counter Timing Diagrams

8160C-AVR-07/09

The Timer/Counter is a synchronous design and the timer clock (clky,) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set. Figure 17-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

AImEl@ 155



WL

Figure 17-8. Timer/Counter Timing Diagram, no Prescaling

clkyo

clkTn

(clk,o/1)

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 17-9 shows the same timing data, but with the prescaler enabled.

Figure 17-9. Timer/Counter Timing Diagram, with Prescaler (f, ,,0/8)

S
s L LT

—

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 17-10 shows the setting of OCF2 in all modes except CTC mode.

AImEl@ 156

8160C-AVR-07/09



ATmega64A

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (f ,0/8)

S 1
sl T T

TCNTn OCRn - 1 OCRn OCRn + 1 OCRn + 2
OCRn OCRn Value
OCFn

Figure 17-11 shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

Figure 17-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Pres-
caler (fox_0/8)

oo [TV
s T T

TCNTn |
(CTC) B TOP -1 TOP BOTTOM BOTTOM + 1

OCRn TOP

OCFn

17.9 Register Description

17.9.1 TCCR2 - Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0
0x25 (0x45) | FOC2 | WGM20 | com21 COM20 | WGM21 Ccs22 cs21 €s20 | TCCR2
Read/Write w R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2: Force Output Compare

The FOC2 bit is only active when the WGM20 bit specifies a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCR2 is written
when operating in PWM mode. When writing a logical one to the FOC2 bit, an immediate Com-
pare Match is forced on the waveform generation unit. The OC2 output is changed according to
its COM21:0 bits setting. Note that the FOC2 bit is implemented as a strobe. Therefore it is the
value present in the COM21:0 bits that determines the effect of the forced compare.

AImEl@ 157

8160C-AVR-07/09



WL

8160C-AVR-07/09

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2 as TOP.

The FOC2 bit is always read as zero.

e Bit 6, 3 - WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 17-2 and “Modes of Operation”
on page 151.

Table 17-2. Waveform Generation Mode Bit Description("

WGM21 WGM20 | Timer/Counter Mode of Update of TOV2 Flag
Mode (CTC2) (PWM2) | Operation TOP OCR2 Set on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2 Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit 5:4 - COM21:0: Compare Match Output Mode

These bits control the Output Compare pin (OC2) behavior. If one or both of the COM21:0 bits
are set, the OC2 output overrides the normal port functionality of the I/O pin it is connected to.
However, note that the Data Direction Register (DDR) bit corresponding to the OC2 pin must be
set in order to enable the output driver.

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the WGM21:0
bit setting. Table 17-3 shows the COM21:0 bit functionality when the WGM21:0 bits are set to a
Normal or CTC mode (non-PWM).

Table 17-3. Compare Output Mode, non-PWM Mode

COM21 COM20 Description
0 0 Normal port operation, OC2 disconnected.
0 1 Toggle OC2 on Compare Match.
1 0 Clear OC2 on Compare Match.
1 1 Set OC2 on Compare Match.

AImEl@ 158



WL

Table 17-4 shows the COM21:0 bit functionality when the WGM21:0 bits are set to fast PWM
mode.

Table 17-4. Compare Output Mode, Fast PWM Mode("

COM21 COM20 Description
0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on Compare Match, set OC2 at BOTTOM,
(non-inverting mode).
1 1 Set OC2 on Compare Match, clear OC2 at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the Compare
Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 152
for more details.

Table 17-5 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase cor-
rect PWM mode.

Table 17-5. Compare Output Mode, Phase Correct PWM Mode'"
COM21 COM20 | Description

0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on Compare Match when up-counting. Set OC2 on Compare Match

when downcounting.

1 1 Set OC2 on Compare Match when up-counting. Clear OC2 on Compare Match
when downcounting.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the Compare
Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page
154 for more details.

e Bit 2:0 — CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 17-6.  Clock Select Bit Description

CS22 CS21 CS20 Description
0 0 0 No clock source (Timer/counter stopped).
0 0 1 clkyo/(No prescaling)
0 1 0 clk;,o/8 (From prescaler)
0 1 1 clk,,o/64 (From prescaler)
1 0 0 clk;,o/256 (From prescaler)
1 0 1 clkyo/1024 (From prescaler)
1 1 0 External clock source on T2 pin. Clock on falling edge.
1 1 1 External clock source on T2 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter2, transitions on the T2 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the

counting.
A|IIIEI. 159
L _______________[G]

8160C-AVR-07/09



WL

17.9.2 TCNT2 - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) | TCNT2[7:0] | TCNT2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNTZ2) while the counter is running,
introduces a risk of missing a Compare Match between TCNT2 and the OCR2 Register.

17.9.3 OCR2 - Output Compare Register

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) | OCR2[7:0] | ocr2
Read/Write R/W R/W R/W R/W R/W RIW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2 pin.

17.9.4 TIMSK - Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
0x37 (0x57) | OCIE2 | TOIE2 | TICIE1 | OCIE1A | OCIE1B TOIE1 OCIEO TOIEO | TIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match Interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter2 occurs, for example, when the OCF2 bit is set in the
Timer/Counter Interrupt Flag Register — TIFR.

e Bit 6 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow Interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, for example, when the TOV2 bit is set in the Timer/Counter
Interrupt Flag Register — TIFR.

17.95 TIFR - Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x36 (0x56) | OCF2 | TOV2 | ICF1 OCF1A | OCF1B | TOV1 OCF0 TOVo | TIFR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a Compare Match occurs between the Timer/Counter2 and the
data in OCR2 — Output Compare Register2. OCF2 is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCF2 is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE2 (Timer/Counter2 Compare Match Interrupt Enable), and
OCF2 are set (one), the Timer/Counter2 Compare match Interrupt is executed.

AImEl@ 160

8160C-AVR-07/09



WL

8160C-AVR-07/09

* Bit 6 — TOV2: Timer/Counter2 Overflow Flag

The bit TOV2 is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2 (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

AImEl@ 161



WL

18. Output Compare Modulator (OCM1C2)

18.1 Overview

18.2 Description

8160C-AVR-07/09

The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier
frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit
Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter2. For more details
about these Timer/Counters see “16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)”
on page 111 and “8-bit Timer/Counter2 with PWM” on page 146. Note that this feature is not
available in ATmega103 compatibility mode.

Figure 18-1. Output Compare Modulator, Block Diagram

Timer/Counter1 oc1c
Pin
ocCc1cC/
Timer/Counter2 0cC2 0OC2/PB7

When the modulator is enabled, the two Output Compare channels are modulated together as
shown in the block diagram (Figure 18-1).

The Output Compare unit 1C and Output Compare unit 2 shares the PB7 port pin for output. The
outputs of the Output Compare units (OC1C and OC2) overrides the normal PORTB7 Register
when one of them is enabled (i.e., when COMnx1:0 is not equal to zero). When both OC1C and
OC2 are enabled at the same time, the modulator is automatically enabled.

The functional equivalent schematic of the modulator is shown on Figure . The schematic
includes part of the Timer/Counter units and the Port B pin 7 output driver circuit.Output Com-
pare Modulator, Schematic.

AImEl@ 162



ATmega64A

com21
COM20 '
comict ~— | e Moduiato
COM1C0 . DI
- 0
1O

( From Waveform Generator) —m D Q

oc1C

% —10
— ocic/

( From Waveform Generator) —= D Q 0Cc2/PB7

sslie

0OC2

D Q F D Q

PORTB7 DDRB7

DATA BUS

When the modulator is enabled the type of modulation (logical AND or OR) can be selected by
the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the
COMnNx1:0 bit setting.

18.2.1 Timing Example
Figure 18-2 illustrates the modulator in action. In this example the Timer/Counter1 is set to oper-
ate in fast PWM mode (non-inverted) and Timer/Counter2 uses CTC waveform mode with toggle
Compare Output mode (COMnx1:0 = 1).

Figure 18-2. Output Compare Modulator, Timing Diagram

R

ocC1C
(FPWM Mode) |

Ml
T T T TN ity
eorrarey (UL [ 1l
-l

(Period) v, 2 3

JUUUUUUTL

In this example, Timer/Counter2 provides the carrier, while the modulating signal is generated
by the Output Compare unit C of the Timer/Counter1.The resolution of the PWM signal (OC1C)
is reduced by the modulation. The reduction factor is equal to the number of system clock cycles
of one period of the carrier (OC2). In this example the resolution is reduced by a factor of two.
The reason for the reduction is illustrated in Figure 18-2 at the second and third period of the
PB7 output when PORTB7 equals zero. The period 2 high time is one cycle longer than the
period three high time, but the result on the PB7 output is equal in both periods.

AImEl@ 163

8160C-AVR-07/09



WL

19. SPI - Serial Peripheral Interface

19.1 Features

19.2 Overview

8160C-AVR-07/09

¢ Full-duplex, Three-wire Synchronous Data Transfer
* Master or Slave Operation

* LSB First or MSB First Data Transfer

¢ Seven Programmable Bit Rates

* End of Transmission Interrupt Flag

* Write Collision Flag Protection

* Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

Figure 19-1. SPI Block Diagram("

0 R e
MISO|
y =
M MOSI
XTAL MSB LSB O -
- RS ° s O
l 8 BIT SHIFT REGISTER S
READ DATA BUFFER 3
DIVIDER ¥
12/4/8/16/32/64/128 . . E
¥ o
o
¥y N C =
SPI CLOCK (MASTER CLOCK T
SELECT * CLOCK S ScK
LOGIC M
><‘ =t ot Iy 7y 'y —
oy x SS
- 55|
x [m]
=l ow| X
258
1MSTR
SPI CONTROL +SPE
1 Ql x| 4 < | o
(o]
o o LB EEPEEsg
o = ‘ ‘ ‘ ‘ ‘35 nl »n QA = O O u o
A A
[ SPI STATUS REGISTER | [ SPI CONTROL REGISTER
8 8,

1

v v

SPIINTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to Figure 1-1 on page 2, and Table 13-6 on page 76 for SPI pin placement.

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega64A and peripheral devices or between several AVR devices. The interconnection
between Master and Slave CPUs with SPI is shown in Figure 19-2. The system consists of two
Shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle
when pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the
data to be sent in their respective Shift Registers, and the Master generates the required clock
pulses on the SCK line to interchange data. Data is always shifted from Master to Slave on the

ATMEL

164



WL

Master Out — Slave In, MOSI, line, and from Slave to Master on the Master In — Slave Out,
MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the
Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the buffer register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the buffer register for later use.

Figure 19-2. SPI Master-Slave Interconnection

MSB MASTER SLAVE LSB

MISO  MISO!
| 8 BIT SHIFT REGISTER PH| 8 BIT SHIFT REGISTER }T
T A 'mosl  Mosl! A
>» I I '
SHIFT
| ; ENABLE
SPI ol o1SCK SCK:
LOCK GENERATOR [ » ¢ »T __ —
CLOCK G 0 = =
Vee !

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high period should be:

Low periods: Longer than 2 CPU clock cycles.
High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 19-1. For more details on automatic port overrides, refer to “Alternate Port
Functions” on page 73.

AImEl@ 165

8160C-AVR-07/09



WL

Table 19-1.  SPI Pin Overrides!"

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined

SCK User Defined Input

SS User Defined Input

Note: 1. See “Alternate Functions of Port B” on page 76 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a

simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction

Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the

actual data direction bits for these pins. For example, if MOSI is placed on pin PB5, replace

DD_MOSI with DDB5 and DDR_SPI with DDRB.

AImEl@ 166

8160C-AVR-07/09



WL

8160C-AVR-07/09

Assembly Code Example("

SPI_MasterInit:
; Set MOSI and SCK output, all others input

1di rl7, (1<<DD_MOSTI) | (1<<DD_SCK)

out DDR_SPI,rl7

; Enable SPI, Master, set clock rate fck/16

1di rl7, (1<<SPE) | (1<<MSTR) | (1<<SPRO)

out SPCR, rl7

ret

SPI_MasterTransmit:
; Start transmission of data (rl6)
out SPDR,rl6

Wait_Transmit:

; Wait for transmission complete
sbis SPSR, SPIF

rjmp Wait_Transmit

ret

C Code Example("

void SPI_MasterInit (void)

{
/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (L<<SPRO) ;

void SPI_MasterTransmit (char cData)
{
/* Start transmission */

SPDR = cData;
/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

7

Note: 1. See “About Code Examples” on page 8.

ATMEL

167



WL

8160C-AVR-07/09

The following code examples show how to initialize the SPI as a Slave and how to perform a

simple reception.

Assembly Code Example("

SPI_SlaveInit:
; Set MISO output, all others input
1di rl7, (1<<DD_MISO)
out DDR_SPTI, rl7
; Enable SPI
1di rl7, (1<<SPE)
out SPCR,r17

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rl6, SPDR

ret

C Code Example!")

void SPI_SlavelInit (void)
{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE);

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return data register */

return SPDR;

Note: 1. See “About Code Examples” on page 8.

ATMEL

168



WL

19.3 SS Pin Functionality

19.3.1 Slave Mode

19.3.2 Master Mode

19.4 Data Modes

8160C-AVR-07/09

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs except MISO which can be user
configured as an output, and the SPI is passive, which means that it will not receive incoming
data. Note that the SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the Master clock generator. When the SS pin is driven high, the SPI Slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another Master selecting the SPI as a
Slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.
2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.
Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
19-3 and Figure 19-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-
nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing
Table 19-3 and Table 19-4, as done below:

Table 19-2. CPOL and CPHA Functionality

Leading Edge Trailing Edge SPI Mode
CPOL=0,CPHA =0 Sample (Rising) Setup (Falling) 0
CPOL =0, CPHA =1 Setup (Rising) Sample (Falling) 1
CPOL=1,CPHA=0 Sample (Falling) Setup (Rising)
CPOL=1,CPHA =1 Setup (Falling) Sample (Rising)

AImEl@ 169



ATmega64A

Figure 19-3. SPI Transfer Format with CPHA =0

Elhacauinipininininin
AR EREREE

SCK (CPOL=1)"" ]
| mode 2

[ SAMPLE |
| MOSI/MISO

[ CHANGE 0 \
MOSI PIN

D anenans
gmse OO H OO
IR

MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD =1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB

HCOC
HH

=9

Figure 19-4. SPI Transfer Format with CPHA = 1

Foastaininininininini
Lm0 L L L L L L L L

[ SAMPLE |
| MOSI/MISO

[ CHANGE 0 ><
MOSI PIN <
CHANGE 0 4<:>< ><

| MISO PIN

(s

MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB

K OCOHK
HHHHH

O
H

~ T ™

AllllEI.@ 170

8160C-AVR-07/09



WL

19.5 Register Description

SPCR - SPI Control Register

Bit 7 6 5 4 3 2 1 0

0x0D (0x2D) I SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO I SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

¢ Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

¢ Bit 5 - DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

¢ Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

e Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 19-3 on page 170 and Figure 19-4 on page 170 for an example. The
CPOL functionality is summarized below:

Table 19-3. CPOL Functionality
CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

e Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 19-3 on page 170 and Figure 19-4 on page 170 for an
example. The CPHA functionality is summarized below:

Table 19-4. CPHA Functionality
CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

8160C-AVR-07/09

ATMEL

171



WL

19.5.2

8160C-AVR-07/09

¢ Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and SPRO have
no effect on the slave. The relationship between SCK and the Oscillator Clock frequency f. is
shown in Table 19-5.

Table 19-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPRO SCK Frequency

0 0 0 fosc/4

0 1 fosc/16

0 1 0 fo/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fsc/8

1 1 0 foec/32

1 1 1 fosc/64

SPSR - SPI Status Register

Bit 7 6 5 4 3 2 1 0
OxOE (0x2E) | SPIF WCOL - - spPi2x | sPsR
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

e Bit 6 — WCOL: Write COLIlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

¢ Bit 5:1 — Res: Reserved Bits
These bits are reserved bits in the ATmega64A and will always read as zero.

* Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 19-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f /4
or lower.

The SPI interface on the ATmega64A is also used for program memory and EEPROM down-
loading or uploading. See page 309 for SPI Serial Programming and verification.

AImEl@ 172



WL

19.5.3 SPDR - SPI Data Register

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0

OXOF (0x2F) | MSB LSB | SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

AIMEL 173



WL

20. USART

20.1 Features
¢ Full Duplex Operation (Independent Serial Receive and Transmit Registers)
¢ Asynchronous or Synchronous Operation
* Master or Slave Clocked Synchronous Operation
¢ High Resolution Baud Rate Generator
* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
* Odd or Even Parity Generation and Parity Check Supported by Hardware
¢ Data OverRun Detection
* Framing Error Detection
* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
* Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
¢ Multi-processor Communication Mode
* Double Speed Asynchronous Communication Mode

20.11 Dual USART

The ATmega64A has two USART’s, USARTO and USART1. The functionality for both USART’s
is described below. USARTO and USART1 have different I/O Registers as shown in “Register
Summary” on page 373. Note that in ATmega103 compatibility mode, USART1 is not available,
neither is the UBRROH or UCRSOC registers. This means that in ATmega103 compatibility
mode, the ATmega64A supports asynchronous operation of USARTO only.

20.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device.

A simplified block diagram of the USART Transmitter is shown in Figure 20-1. CPU accessible
I/0 Registers and I/O pins are shown in bold.

AImEl@ 174

8160C-AVR-07/09



ATmega64A

Figure 20-1. USART Block Diagram("

A

*********** ¥ T T T T T T T 7T T TGiock Generator|

| UBRR[H:L] | o0sG

[

I
I I
I I
I I
| I
| BAUD RATE GENERATOR |
I I
I
I
|

Y

['sync Loaic PIN ‘
Y »| coNTROL ek
|
i) -
| UDR (Transmit) | CONT'I)'<HOL

I I

I I

‘ * PARITY ‘

I GENERATOR |

| PIN |

‘ TRANSMIT SHIFT REGISTER CONTROL ‘ TxD
|

I

‘ =i CLOCK RX
I R

I

|

| RECEIVE SHIFT REGISTER

I

| ]

I

I

DATA BUS

L
I
DATA PIN R
RECOVERY CONTROL
I

I
PARITY |
CHECKER |

I

ECOVERY CONTROL
I UDR (R ) |

f
=
=
=
y

Note: 1. Refer to Figure 1-1 on page 2, Table 13-12 on page 80, and Table 13-15 on page 83 for
USART pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock generator, Transmitter and Receiver. Control registers are shared by all units.
The Clock Generation logic consists of synchronization logic for external clock input used by
synchronous slave operation, and the baud rate generator. The XCK (Transfer Clock) pin is only
used by synchronous transfer mode. The Transmitter consists of a single write buffer, a serial
Shift Register, Parity Generator and Control Logic for handling different serial frame formats.
The write buffer allows a continuous transfer of data without any delay between frames. The
Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control Logic, a Shift Register and a two level
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

20.2.1 AVR USART vs. AVR UART - Compatibility

8160C-AVR-07/09

The USART is fully compatible with the AVR UART regarding:

¢ Bit locations inside all USART Registers
* Baud Rate Generation.

¢ Transmitter Operation.

* Transmit Buffer Functionality.

* Receiver Operation.

AImEl@ 175



WL

However, the receive buffering has two improvements that will affect the compatibility in some
special cases:

¢ A second buffer register has been added. The two buffer registers operate as a circular FIFO
buffer. Therefore the UDRn must only be read once for each incoming data! More important
is the fact that the error flags (FEn and DORnN) and the ninth data bit (RXB8n) are buffered
with the data in the receive buffer. Therefore the status bits must always be read before the
UDRnN Register is read. Otherwise the error status will be lost since the buffer state is lost.

* The Receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register (see Figure 20-1) if the buffer registers are
full, until a new start bit is detected. The USART is therefore more resistant to Data Over Run
(DORN) error conditions.

The following control bits have changed name, but have same functionality and register location:
* CHR9 is changed to UCSZn2.
* OR is changed to DORn.

20.3 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART
Control and Status Register n C (UCSRNC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRnNB Register. When using synchronous mode (UMSELnN = 1), the Data Direction Register
for the XCK pin (DDR_XCK) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCK pin is only active when using synchronous mode.

Figure 20-2 shows a block diagram of the Clock Generation logic.

Figure 20-2. Clock Generation Logic, Block Diagram

UBRR U2x
fosc

P li UBRR+1
Down-Gounter o I e B e B g
A
OSC — txclk
DDR_XCK
Y ;
S - Ed oy
xcki r’ Regyir;fer Detegc?or 0
XCK UMSEL
Pin xcko v 1
DDR_XCK UcCPOL
rxclk
Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcki Input from XCK pin (internal Signal). Used for synchronous slave

operation.

AIMEL 176

8160C-AVR-07/09



WL

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.
fosc XTAL pin frequency (System Clock).
20.3.1 Internal Clock Generation — The Baud Rate Generator
Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 20-2.
The USART Baud Rate Register n (UBRRn) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc). is loaded with the UBRRn value each time the counter has counted down to zero or when
the UBRRnNL Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= fogc/(UBRRN+1)). The transmitter divides the
baud rate generator clock output by 2, 8, or 16 depending on mode. The baud rate generator
output is used directly by the receiver’s clock and data recovery units. However, the recovery
units use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELn, U2Xn and DDR_XCK bits.
Table 20-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRRnN value for each mode of operation using an internally generated clock source.
Table 20-1.  Equations for Calculating Baud Rate Register Setting
Equation for Calculating Equation for Calculating
Operating Mode Baud Rate(" UBRR Value
Asynchronous Normal f 7,
mode (U2Xn = 0) BAUD = ——=95¢ | UBRRn = =93¢ ___
16(UBRR + 1n) 16BAUD
Asynchronous Double 7, 7,
Speed mode (U2Xn=1) | BAUD = ——95C UBRRn = —-95¢__
8(UBRRn + 1) 8BAUD
Synchronous Master 7, 7,
mode BAUD = ——95C UBRRn = —-95¢__
2(UBRR + 1n) 2BAUD
Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).
BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRR Contents of the UBRRnH and UBRRnL Registers, (0 - 4095)
Some examples of UBRRn values for some system clock frequencies are found in Table 20-4 on
page 192 to Table 20-7 on page 195.
20.3.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnB. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

AImEl@ 177

8160C-AVR-07/09



WL

20.3.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 20-2 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCK clock frequency
is limited by the following equation:

fOSC

Txck <3

Note that f,. depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

20.3.4  Synchronous Clock Operation

When synchronous mode is used (UMSELnN = 1), the XCK pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxD) is sampled at the
opposite XCK clock edge of the edge the data output (TxD) is changed.

Figure 20-3. Synchronous Mode XCK Timing

UCPOLn=1  XCK \—/—®—/—\—/—\

RxD / TxD X kX X ><
UCPOLn =0 XCK

RxD / TxD X MX X ><

The UCPOLN bit UCRSNC selects which XCK clock edge is used for data sampling and which is
used for data change. As Figure 20-3 shows, when UCPOLn is zero the data will be changed at
rising XCK edge and sampled at falling XCK edge. If UCPOLn is set, the data will be changed at
falling XCK edge and sampled at rising XCK edge.

20.4 Frame Formats

8160C-AVR-07/09

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

* 1 start bit

* 5,6, 7, 8, or 9 data bits

* no, even or odd parity bit

* 1 or 2 stop bits

AIMEL 178



WL

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 20-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 20-4. Frame Formats

v

} FRAME

(DLE) |\ st/ 0o >< 1 >< 2 >< 3 >< 4 ><[5] >< 6] >< 7 >< [8]><[P] Spt [Sp2]\ (St/IDLE)

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must
be high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnNnB and UCSRNC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character Size (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select n (USBSn) bit. The receiver ignores
the second stop bit. An FEn (Frame Error n) will therefore only be detected in the cases where
the first stop bit is zero.

20.41 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows::

even = dn_1@...@d3@d2@d1®do@o
Poyy=d 1 ®. @d®d,®d, ®dy®1

Peven Parity bit using even parity
Poad Parity bit using odd parity
d, Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

20.5 USART Initialization

8160C-AVR-07/09

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the

AIMEL 179



WL

8160C-AVR-07/09

Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn flag can be used
to check that the Transmitter has completed all transfers, and the RXCn flag can be used to
check that there are no unread data in the receive buffer. Note that the TXCn flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
registers.

Assembly Code Example("

USART_Init:
; Set baud rate
out UBRRnH, rl7
out UBRRnL, rlé6
; Enable receiver and transmitter
1di rl6, (1<<RXENn) | (1<<TXENn)
out UCSRnB, rl6
; Set frame format: 8data, 2stop bit
1di rl6, (1<<USBSn) | (3<<UCSZn0)
out UCSRnC, rl6

ret

C Code Example!"

#define FOSC 1843200// Clock Speed
#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main( void )

{

USART Init ( MYUBRR ) ;

}

void USART_Init( unsigned int ubrr )

{
/* Set baud rate */
UBRRnH = (unsigned char) (ubrr>>8) ;
UBRRnL = (unsigned char)ubrr;
/* Enable receiver and transmitter */
UCSRnB = (1<<RXENn) | (1<<TXENn) ;
/* Set frame format: 8data, 2stop bit */
UCSRnC = (1<<USBSn) | (3<<UCSZn0) ;

Note: 1. See “About Code Examples” on page 8.

AImEl@ 180



WL

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I1/O modules.

20.6 Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXENN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxD pin is overrid-
den by the USART and given the function as the transmitter’s serial output. The baud rate, mode
of operation and frame format must be set up once before doing any transmissions. If synchro-
nous operation is used, the clock on the XCK pin will be overridden and used as transmission
clock.

20.6.1 Sending Frames with 5 to 8 Data Bits

8160C-AVR-07/09

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn 1/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the baud register,
U2Xn bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDRER) flag. When using frames with less than eight bits, the most signif-
icant bits written to the UDRn are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in register R16

Assembly Code Example!"

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART Transmit
; Put data (rl6) into buffer, sends the data
out UDRn, rlé

ret

C Code Example("

void USART_Transmit( unsigned char data )
{
/* Wait for empty transmit buffer */
while ( ! ( UCSRnA & (1<<UDREn)) )

/* Put data into buffer, sends the data */
UDRn = data;

Note: 1. See “About Code Examples” on page 8.
For I/O Registers located in extended I/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

AImEl@ 181



WL

The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before
loading it with new data to be transmitted. If the Data Register Empty Interrupt is utilized, the
interrupt routine writes the data into the buffer.

20.6.2 Sending Frames with 9 Data Bits
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in
UCSRnNB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers r17:r16.

Assembly Code Example"

USART_ Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART Transmit
; Copy ninth bit from rl7 to TXBS8
cbi UCSRnB, TXB8n
sbrc rl7,0
sbi UCSRnB, TXB8n
; Put LSB data (rl6) into buffer, sends the data
out UDRn, rlé

ret

C Code Example"

void USART_Transmit( unsigned int data )
{
/* Wait for empty transmit buffer */
while ( ! ( UCSRnA & (1<<UDREn)) )

/* Copy ninth bit to TXB8 */

UCSRnB &= ~(1<<TXBS8n) ;
if ( data & 0x0100 )
UCSRnB |= (1<<TXBS8n);

/* Put data into buffer, sends the data */
UDRn = data;

Note: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRNB is static. For example, only the TXB8n bit of the UCSRnB Register is
used after initialization.

For I/O Registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended 1/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR".

The ninth bit can be used for indicating an address frame when using Multi-processor Communi-

cation mode or for other protocol handling as for example synchronization.

20.6.3 Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREN) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

AImEl@ 182

8160C-AVR-07/09



WL

The Data Register Empty (UDRERN) flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register empty Interrupt Enable (UDRIEnN) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDRERn is set (provided that
global interrupts are enabled). UDRERn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty Interrupt routine must either write new data to
UDRn in order to clear UDREn or disable the Data Register Empty Interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete n (TXCn) flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
Receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn flag, this is done automatically when the interrupt
is executed.

20.6.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the Transmitter Control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

20.6.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXENnN to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the transmitter
will no longer override the TxD pin.

20.7 Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable n (RXENnN) bit in the UCSRnB
Register to one. When the Receiver is enabled, the normal pin operation of the RxD pin is over-
ridden by the USART and given the function as the receiver’s serial input. The baud rate, mode
of operation and frame format must be set up once before any serial reception can be done. If
synchronous operation is used, the clock on the XCK pin will be used as transfer clock.

20.71 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCK clock, and shifted into the Receive Shift Register until
the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver. When
the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift Register,
the contents of the Shift Register will be moved into the receive buffer. The receive buffer can
then be read by reading the UDRn I/O location.

AImEl@ 183

8160C-AVR-07/09



WL

The following code example shows a simple USART receive function based on polling of the
Receive Complete n (RXCn) flag. When using frames with less than eight bits the most signifi-
cant bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

Assembly Code Example("

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get and return received data from buffer
in rl6, UDRn

ret

C Code Example"

unsigned char USART Receive( void )

{
/* Wait for data to be received */

while ( ! (UCSRnA & (1<<RXCn)) )

/* Get and return received data from buffer */

return UDRn;

Note: 1. See “About Code Examples” on page 8.
The function simply waits for data to be present in the receive buffer by checking the RXCn flag,
before reading the buffer and returning the value.

20.7.2 Receiving Frames with 9 Data Bits

8160C-AVR-07/09

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in
UCSRnNB before reading the low bits from the UDR. This rule applies to the FEn, DORn, and
UPE status flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn
I/0 location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,
DORn, and UPERn bits, which all are stored in the FIFO, will change. The following code example
shows a simple USART receive function that handles both nine bit characters and the status
bits.

AImEl@ 184



WL

8160C-AVR-07/09

Assembly Code Example!"

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get status and ninth bit, then data from buffer
in rl8, UCSRnA
in rl7, UCSRnB
in rl6, UDRn
; If error, return -1
andi r18, (1<<FEn) | (1<<DORn) | (1<<UPEnN)
breq USART_ReceiveNoError
1di rl17, HIGH(-1)
1di rl16, LOwW(-1)
USART_ReceiveNoError:
; Filter the ninth bit, then return
1sr rl7
andi rl7, 0x01

ret

C Code Example"

unsigned int USART Receive( void )
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while ( ! (UCSRnA & (1<<RXCn)) )
/* Get status and ninth bit, then data */
/* from buffer */
status = UCSRnA;
resh = UCSRnB;
resl = UDRn;
/* If error, return -1 */
if ( status & (1<<FEn) | (1<<DORn) | (1<<UPEn) )
return -1;
/* Filter the ninth bit, then return */
resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

Note: 1. See “About Code Examples” on page 8.

The receive function example reads all the 1/0 Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will

be free to accept new data as early as possible.

ATMEL

185



WL

20.7.3 Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the receiver state.

The Receive Complete n (RXCn) flag indicates if there are unread data present in the receive
buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e. does not contain any unread data). If the receiver is disabled (RXENn = 0),
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable n (RXCIEn) in UCSRNB is set, the USART
Receive Complete Interrupt will be executed as long as the RXCn flag is set (provided that
global interrupts are enabled). When interrupt-driven data reception is used, the receive com-
plete routine must read the received data from UDRn in order to clear the RXCn flag, otherwise
a new interrupt will occur once the interrupt routine terminates.

20.7.4 Receiver Error Flags
The USART Receiver has three error flags: Frame Error n (FEn), Data OverRun n (DORn) and
USART Parity Error n (UPEN). All can be accessed by reading UCSRnA. Common for the error
flags is that they are located in the receive buffer together with the frame for which they indicate
the error status. Due to the buffering of the error flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the error flags is that they can not be altered by software doing a write to the
flag location. However, all flags must be set to zero when the UCSRnNA is written for upward
compatibility of future USART implementations. None of the error flags can generate interrupts.

The Frame Error n (FEn) flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn flag is zero when the stop bit was correctly read (as one),
and the FEn flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn flag
is not affected by the setting of the USBSn bit in UCSRNC since the Receiver ignores all, except
for the first, stop bits. For compatibility with future devices, always set this bit to zero when writ-
ing to UCSRNA.

The Data OverRun n (DORn) flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRnN. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORN flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The USART Parity Error n (UPEn) flag indicates that the next frame in the receive buffer had a
Parity Error when received. If parity check is not enabled the UPEn bit will always be read zero.
For compatibility with future devices, always set this bit to zero when writing to UCSRnA. For
more details see “Parity Bit Calculation” on page 179 and “Parity Checker” on page 186.

20.7.5 Parity Checker
The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of par-
ity check to be performed (odd or even) is selected by the UPMnO bit. When enabled, the Parity
Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error n (UPEN) flag can then be read by software
to check if the frame had a Parity Error.

AImEl@ 186

8160C-AVR-07/09



WL

The UPERN bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the parity checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.

20.7.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e. the RXENn is set to zero) the receiver will
no longer override the normal function of the RxD port pin. The receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

20.7.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn 1/O location until the RXCn flag
is cleared. The following code examples show how to flush the receive buffer.

Assembly Code Example("

USART_Flush:
sbis UCSRnA, RXCn
ret
in rl6, UDRn
rjmp USART_Flush

C Code Example"

void USART_Flush( void )
{

unsigned char dummy;

while ( UCSRnA & (1<<RXCn) ) dummy = UDRn;

Note: 1. See “About Code Examples” on page 8.

20.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxD pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

20.8.1 Asynchronous Clock Recovery
The Clock Recovery logic synchronizes internal clock to the incoming serial frames. Figure 20-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxD line is idle (i.e., no communication activity).

AImEl@ 187

8160C-AVR-07/09



ATmega64A

Figure 20-5. Start Bit Sampling

RxD IDLE START BITO

!

R [ e

(u2x =1) 0 1

When the Clock Recovery logic detects a high (idle) to low (start) transition on the RxD line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The Clock Recovery logic then uses samples 8, 9 and 10 for Normal mode, and sam-
ples 4, 5 and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

20.8.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 20-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 20-6. Sampling of Data and Parity Bit

RxD BITn

Sample |<1>1 T

(U2X = 0) 102

f
Sample P—T—H I

(U2x = 1) 1

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxD pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the receiver only uses the first stop bit of a frame. Figure 20-7 shows the sampling of
the stop bit and the earliest possible beginning of the start bit of the next frame.

AImEl@ 188

8160C-AVR-07/09



ATmega64A

Figure 20-7. Stop Bit Sampling and Next Start Bit Sampling

RxD STOP 1 (A) (B) ©)

Sample Hi’{ T T
(U2X=0) 1 2 3
2

Sample P—T—H

(U2X =1) 1

5 6 nn 10 ] o1 0/1 01
3

SN

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error n (FEn) flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 20-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

20.8.3 Asynchronous Operational Range
The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the receiver does not have a similar (see
Table 20-2) base frequency, the Receiver will not be able to synchronize the frames to the start
bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

R _ (D+1)S R - _(D+2)S
slow = §T1XD - S+5, fast T (D+ 1S +S),
D Sum of character size and parity size (D = 5 to 10 bit)
S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.
S¢ First sample number used for majority voting. Sg = 8 for Normal Speed and Sg = 4
for Double Speed mode.
Sy Middle sample number used for majority voting. Sy, = 9 for Normal Speed and
Sy = 5 for Double Speed mode.
Rsiow is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate. Ry, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 20-2 and Table 20-3 list the maximum Receiver baud rate error that can be tolerated. Note
that Normal Speed mode has higher toleration of baud rate variations.

AImEl@ 189

8160C-AVR-07/09



WL

Table 20-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode

(U2Xn =0)
D Max Total Error | Recommended Max Receiver
# (Data+Parity Bit) Rgiow (%) Riast (%) (%) Error (%)
5 93.20 106.67 +6.67/-6.8 +3.0
6 94.12 105.79 +5.79/-5.88 +2.5
7 94.81 105.11 +5.11/-5.19 +2.0
8 95.36 104.58 +4.58/-4.54 +2.0
9 95.81 104.14 +4.14/-4.19 +1.5
10 96.17 103.78 +3.78/-3.83 +1.5

Table 20-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode

(U2xXn =1)
D Max Total Error | Recommended Max Receiver
# (Data+Parity Bit) Rgiow (%) Riast (%) (%) Error (%)
5 94.12 105.66 +5.66/-5.88 +2.5
6 94.92 104.92 +4.92/-5.08 +2.0
7 95.52 104.35 +4.35/-4.48 +1.5
8 96.00 103.90 +3.90/-4.00 1.5
9 96.39 103.53 +3.53/-3.61 1.5
10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRR value
that gives an acceptable low error can be used if possible.

20.9 Multi-processor Communication Mode

Setting the Multi-processor Communication mode n (MPCMn) bit in UCSRnA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the Receiver is set up to receive frames that contain five to eight data bits, then the first stop bit
indicates if the frame contains data or address information. If the receiver is set up for frames
with nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames.

AImEl@ 190

8160C-AVR-07/09



WL

20.9.1 Using MPCM

8160C-AVR-07/09

When the frame type bit (the first stop or the ninth bit) is one, the frame contains an address.
When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several Slave MCUs to receive data from a
Master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular Slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

For an MCU to act as a Master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXBn = 0) is being transmitted. The Slave MCUs must in this case be set to use a 9-bit charac-
ter frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRNA is
set).
2. The Master MCU sends an address frame, and all slaves receive and read this frame. In
the Slave MCUs, the RXCn flag in UCSRnA will be set as normal.
3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so,
it clears the MPCMn bit in UCSRNA, otherwise it waits for the next address byte and
keeps the MPCMn setting.
4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.
5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from Master. The process then
repeats from 2.
Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSnN = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The
MPCMn bit shares the same I/O location as the TXCn flag and this might accidentally be cleared
when using SBI or CBI instructions.

AImEl@ 191



WL

20.10 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRRn settings in Table 20-4 on page 192 to
Table 20-7 on page 195. UBRRn values which yield an actual baud rate differing less than 0.5%
from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the
receiver will have less noise resistance when the error ratings are high, especially for large serial
frames (see “Asynchronous Operational Range” on page 189). The error values are calculated
using the following equation:

BaudRate
Ertor(%] = (———_dlsestiatch _q) 4 1009,
Table 20-4. Examples of UBRR Settings for Commonly Used Oscillator Frequencies
fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

g:;’ed U2X =0 U2X = 1 U2X =0 U2X = 1 U2X =0 U2X = 1
(bps) UBRRnN Error | UBRRn | Errorn | UBRRn Error | UBRRn | Error | UBRRn Error | UBRRn | Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max ) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1.

UBRR =0, Error = 0.0%

8160C-AVR-07/09

AImEl@ 192



WL

Table 20-5. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

f,sc = 3.6864 MHz fosc = 4.0000 MHz foec = 7.3728 MHz
ﬁ::‘ed U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1
(bps) UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
1M - - - - - - - - - - 0 -7.8%
Max (! 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR =0, Error = 0.0%

AImEl@ 193

8160C-AVR-07/09



WL

Table 20-6. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

f,s = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz
ﬁ::‘ed U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1
(bps) UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error
2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%
115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
1M - - 0 0.0% - - - - 0 -7.8% 1 -7.8%
Max (! 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps
1. UBRR =0, Error = 0.0%

AImEl@ 194

8160C-AVR-07/09



WL

Table 20-7. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

f,sc = 16.0000 MHz foc = 18.4320 MHz f.sc = 20.0000 MHz
ﬁ::‘ed U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1
(bps) UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error | UBRRn | Error
2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%
4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%
9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%
14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%
19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%
28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%
38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%
57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%
76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%
115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%
230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%
250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%
0.5M 1 0.0% 3 0.0% - - 4 -7.8% - - 4 0.0%
1M 0 0.0% 1 0.0% - - - - - - - -
Max ) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR =0, Error = 0.0%

AImEl@ 195

8160C-AVR-07/09



WL

20.11 Register Description

20.11.1  UDRn - USART /O Data Register

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDNR (Read)
TXB[7:0] UDnNR (Write)
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same |/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXBn) will be the destination for data written to the UDRn Register location. Reading the
UDRnN Register location will return the contents of the Receive Data Buffer Register (RXBn).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDRER flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn flag is not set, will be ignored by the USART transmitter.
When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter will
load the data into the Transmit Shift Register when the Shift Register is empty. Then the data
will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use read modify
write instructions (SBI and CBI) on this location. Be careful when using bit test instructions (SBIC
and SBIS), since these also will change the state of the FIFO.

20.11.2 UCSRnNnA - USART Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| RXCn | TXCn | UDREn | FEn DORn UPEn U2Xn MPCMn | UCSRnA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

e Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

e Bit 6 — TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDR). The TXC flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXC flag can generate a Transmit Complete interrupt (see descrip-
tion of the TXCIE bit).

e Bit 5 — UDREnNn: USART Data Register Empty

The UDRERN flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDREn is
one, the buffer is empty, and therefore ready to be written. The UDRER flag can generate a Data
Register Empty interrupt (see description of the UDRIEnN bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

AImEl@ 196

8160C-AVR-07/09



WL

¢ Bit 4 — FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. For
example, when the first stop bit of the next character in the receive buffer is zero. This bit is valid
until the receive buffer (UDR) is read. The FE bit is zero when the stop bit of received data is
one. Always set this bit to zero when writing to UCSRA.

¢ Bit 3 — DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRnA.

e Bit 2 - UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

e Bit 1 — U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

e Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication Mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address infor-
mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed
information see “Multi-processor Communication Mode” on page 190.

20.11.3 UCSRnNB - USART Control and Status Register B

Bit 7 6 5 4 3 2 1 0
| RXCIEn | TXCIEn | UDRIEn | RXENn | TXENn | UCSZn2 | RXB8n | TXB8n | UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRNA is set.

e Bit 6 — TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnNA is set.

¢ Bit 5 — UDRIEn: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDRERn bit in UCSRnNA is set.

AImEl@ 197

8160C-AVR-07/09



WL

¢ Bit 4 — RXENn: Receiver Enable
Writing this bit to one enables the USART receiver. The Receiver will override normal port oper-

ation for the RxD pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORnN, and UPEn flags.

* Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero)
will not become effective until ongoing and pending transmissions are completed, i.e., when the
Transmit Shift Register and Transmit Buffer Register do not contain data to be transmitted.
When disabled, the Transmitter will no longer override the TxD port.

e Bit 2 - UCSZn2: Character Size
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRC sets the number of data bits
(Character Size) in a frame the Receiver and Transmitter use.

* Bit 1 — RXB8n: Receive Data Bit 8
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

¢ Bit 0 — TXB8n: Transmit Data Bit 8
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

20.11.4 UCSRNC - USART Control and Status Register C!

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0
| - | umsELn | UPMn1 | UPMnO | USBSn | UCSZn1 | UCSZn0 | UCPOLn | UCSRnC

Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Note: 1. This register is not available in ATmega103 compatibility mode.

¢ Bit 7 — Reserved Bit
This bit is reserved for future use. For compatibility with future devices, this bit must be written to
zero when UCSRC is written.

¢ Bit 6 —- UMSELn: USART Mode Select
This bit selects between asynchronous and synchronous mode of operation.

Table 20-8. UMSEL Bit Settings

UMSELnN Mode
0 Asynchronous Operation
1 Synchronous Operation

e Bit 5:4 — UPMn1:0: Parity Mode
These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The

AImEl@ 198



WL

Receiver will generate a parity value for the incoming data and compare it to the UPMnO setting.
If a mismatch is detected, the UPEn flag in UCSRnB will be set.

Table 20-9. UPM Bits Settings

UPMn1 UPMnO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

¢ Bit 3 — USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

Table 20-10. USBS Bit Settings

USBSn Stop Bit(s)
0 1-bit
1 2-bit

e Bit 2:1 — UCSZn1:0: Character Size
The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data bits
(Character Size) in a frame the Receiver and Transmitter use.

Table 20-11. UCSZ Bits Settings

UCSZn2 UCSZn1 UCSzZno Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

* Bit 0 — UCPOLN: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLRN bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCK).

Table 20-12. UCPOL Bit Settings

Transmitted Data Changed Received Data Sampled
UCPOLN (Output of TxD Pin) (Input on RxD Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge

AImEl@ 199

8160C-AVR-07/09



WL

20.11.5 UBRRnL and UBRRnH — USART Baud Rate Registers'"

Bit 15 14 13 12 11 10 9 8
- | - | - | - | UBRRn[11:8] UBRRnH
UBRRN[7:0] UBRRnL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Note: 1. UBRRH is not available in mega103 compatibility mode

¢ Bit 15:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRH is written.

e Bit 11:0 — UBRRn11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four
most significant bits, and the UBRRnL contains the eight least significant bits of the USART
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud
rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

AImEl@ 200

8160C-AVR-07/09



WL

21. TWI — Two-wire Serial Interface

21.1 Features

21.2 Overview

8160C-AVR-07/09

¢ Simple yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed
* Both Master and Slave Operation Supported

* Device can Operate as Transmitter or Receiver

¢ 7-bit Address Space allows up to 128 Different Slave Addresses

¢ Multi-master Arbitration Support

¢ Up to 400 kHz Data Transfer Speed

¢ Slew-rate Limited Output Drivers

* Noise Suppression Circuitry Rejects Spikes on Bus Lines

¢ Fully Programmable Slave Address with General Call Support

¢ Address Recognition Causes Wake-up when AVR is in Sleep Mode

The TWI module is comprised of several submodules, as shown in Figure 21-1. All registers
drawn in a thick line are accessible through the AVR data bus.

Figure 21-1. Overview of the TWI Module

SCL SDA
Slew-rate Spike Slew-rate Spike
Control Filter Control Filter
A A
A /
Bus Interface Unit Bit Rate Generator
START / STOP . )
Control Spike Suppression Prescaler
Ll | .
_ . Address/Data Shift Bit Rate Register
Arbitration Detection Register (TWDR) Ack (TWBR)
A A A
/ A /
Address Match Unit Control Unit
=
C
Address Register Status Register Control Register D
(TWAR) i g (TWSR) (TWCR) §
-
State Machine and
Address Comparator Status Control

AImEl@ 201



WL

21.2.1 SCL and SDA Pins
These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the 1/0 Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

21.2.2 Bit Rate Generator Unit
This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the slave must be at least 16 times higher than the SCL frequency. Note
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

CPU Clock frequency

SCL frequency = =7 pS
16 + 2(TWBR) - 4

* TWBR = Value of the TWI Bit Rate Register.
* TWPS = Value of the prescaler bits in the TWI Status Register.

Note:  Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus
line load. See Table 28-4 on page 331 for value of pull-up resistor."

21.2.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

21.24 Address Match Unit
The Address Match unit checks if received address bytes match the 7-bit address in the TWI
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.

AImEl@ 202

8160C-AVR-07/09



WL

21.2.5 Control Unit

The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake-up if addressed by a Master.

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI interrupt flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT flag is set in the following situations:

* After the TWI has transmitted a START/REPEATED START condition.

¢ After the TWI has transmitted SLA+R/W.

¢ After the TWI has transmitted an address byte.

¢ After the TWI has lost arbitration.

» After the TWI has been addressed by own slave address or general call.

o After the TWI has received a data byte.

* After a STOP or REPEATED START has been received while still addressed as a Slave.
When a bus error has occurred due to an illegal START or STOP condition.

21.3 Two-wire Serial Interface Bus Definition

8160C-AVR-07/09

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 21-2. TWI Bus Interconnection

cc

Device 1 Device 2 Device3 | ........ Device n R1 R2

SDA =

\/

SCL =

\/

AImEl@ 203



WL

21.31 TWI Terminology

The following definitions are frequently encountered in this section.

Table 21-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also generates the
SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

21.3.2 Electrical Interconnection

As depicted in Figure 21-2, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 331. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.

21.4 Data Transfer and Frame Format

21.41 Transferring Bits

8160C-AVR-07/09

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 21-3. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change

AImEl@ 204



WL

21.4.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other Master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this data sheet, unless otherwise noted.
As depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 21-4. START, REPEATED START, and STOP Conditions

START STOP START REPEATED START STOP

2143 Address Packet Format

8160C-AVR-07/09

All address packets transmitted on the TWI bus are nine bits long, consisting of seven address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read
operation is to be performed, otherwise a write operation should be performed. When a slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter's request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

AImEl@ 205



ATmega64A

Figure 21-5. Address Packet Format

Addr MSB AddrLSB R/W ACK
(§
)
XX
)
)

START

2144 Data Packet Format
All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 21-6. Data Packet Format

Data MSB Data LSB  ACK

SDA

Aggregate %

Transmitter

G
soAtn !
!

SDA from Y o
Receiver  /

SCL from
Master % B
STOP, REPEATED

I I
| |

SLA+R/W | Data Byte i START, or Next
' ' Data Byte

2145 Combining Address and Data Packets Into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 21-7 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

AImEl@ 206

8160C-AVR-07/09



WL

Figure 21-7. Typical Data Transmission

Addr MSB AddrLSB  RW ACK Data MSB DataLSB  ACK

AVAVANIVAVAVANE EVAVANYAVAVANY I

1 2 7 8 9 1 2 7 8 9

START SLA+R/W Data Byte

21.5 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

* An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves
(i.e., the data being transferred on the bus must not be corrupted).

* Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the master with the shortest high period. The low period of the combined clock is equal to
the low period of the master with the longest low period. Note that all masters listen to the SCL

line, effectively starting to count their SCL high and low Time-out periods when the combined
SCL line goes high or low, respectively.

AImEl@ 207

8160C-AVR-07/09



ATmega64A

Figure 21-8. SCL Synchronization between Multiple Masters

\ TA ., } } TA high |
I I I I
| I | J
SCL from ! L, ! !
Master A | X | |
I I
I I
,,,,,, | I,
SCL from | % L/ ! ™
Master B | \ /| | B
[ | I
| . )
| |
SCL bus | L ! |
Line \ /| | \
[ 1 } ! I
I I I
| By o TBhign |
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the master had output, it has
lost the arbitration. Note that a master can only lose arbitration when it outputs a high SDA value
while another master outputs a low value. The losing master should immediately go to Slave
mode, checking if it is being addressed by the winning master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one master remains, and this may take many
bits. If several masters are trying to address the same slave, arbitration will continue into the
data packet.

Figure 21-9. Arbitration between Two Masters

START Master A Loses

spafom || Mrbitration, SDA,* SDA
Master A

SDA from
M A\
\

Synchronized

Note that arbitration is not allowed between:
¢ A REPEATED START condition and a data bit.
¢ A STOP condition and a data bit.
* A REPEATED START and a STOP condition.

AI“"E',® 208

8160C-AVR-07/09



WL

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

21.6 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in
order to detect actions on the TWI bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR registers.

Figure 21-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Figure 21-10. Interfacing the Application to the TWI in a Typical Transmission

c 1. Application writes 3. Check TWSR to see if START was 5. Check TWSR to see if SLA+W was 7.Check TWSR to see if data was sent
2 < | to TWCR to initiate sent. Application loads SLA+W into sent and ACK received. and ACK received. Application loads
_S -% transmission of TWDR, and loads appropriate control Application loads data into TWDR, appropriate control signals to send
_g < START signals into TWCR, making sure that and loads appropriate control signals STOP into TWCR, making sure that
< TWINT is written to one, and into TWCR, making sure that TWINT is written to one
TWSTA is written to zero. TWINT is written to one
y
TWI bus START SLA+W A Data A STOP
Indicates
(]
_&¢ 2. TWINT set. 4. TWINT set. 6. TWINT set. . TWINT set
==28 L Status code indicates R
= © 5 | Statuscode indicates SLA+W sent. ACK Status code indicates
% < START condition sent receiveé data sent, ACK received

8160C-AVR-07/09

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will

AImEl@ 209



WL

not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a slave acknowledged the packet or
not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Inmediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.

These can be summarized as follows:

* When the TWI has finished an operation and expects application response, the TWINT flag is
set. The SCL line is pulled low until TWINT is cleared.

* When the TWINT flag is set, the user must update all TWI registers with the value relevant for
the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.

AImEl@ 210

8160C-AVR-07/09



WL

o After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made for example by using include-files.

Assembly code example!" C example!" Comments
1 1di rl6, (1<<TWINT) | (1<<TWSTA) | TWCR = (1<<TWINT) | (1<<TWSTA) | Send START condition
(1<<TWEN) (1<<TWEN)

out TWCR, rl6

2 waitl: while (! (TWCR & (1<<TWINT))) Wait for TWINT flag set. This
in rl6, TWCR ; indicates that the START
sbrs rl6, TWINT condition has been transmitted
rjmp waitl
3 in rl6, TWSR if ((TWSR & OxF8) != START) Check value of TWI Status
andi rl6, OxF8 ERROR () ; Register. Mask prescaler bits. If
cpi rl6, START status different from START go to
brne ERROR ERROR
4 1di rlé6, SLA W TWDR = SLA_W; Load SLA W into TWDR
out TWDR, rlé6 TWCR = (1<<TWINT) | (1<<TWEN) ; Register. C_)Iear TWINT bit in
1di rl6, (1<<TWINT) | (1<<TWEN) TWCR to start transmission of
out TWCR, rl6 address
wait2: while (! (TWCR & (1<<TWINT))) Wait for TWINT flag set. This
in r16, TWCR ; indicates that the SLA+W has
sbrs rl6, TWINT been transmitted, and
rimp wait2 ACK/NACK has been received.
5 in  rl6,TWSR if ((TWSR & OxF8) != MT_SLA_ACK) Check value of TWI Status
andi rl6, OxF8 ERROR () ; Register. Mask prescaler bits. If
cpi rl6, MT_SLA_ACK status different from
brne ERROR MT_SLA_ACK go to ERROR
ldi  rl6, DATA TWDR = DATA; Load DATA into TWDR Register.
out TWDR, rlé6 TWCR = (1<<TWINT) | (1<<TWEN) ; Clear TWINT bit in TWCR to
1di rl6, (1<<TWINT) | (1<<TWEN) start transmission of data
out TWCR, rlé6
6 wait3: while (! (TWCR & (1<<TWINT))) Wait for TWINT flag set. This
in rl6, TWCR ; indicates that the DATA has been
sbrs rl6, TWINT transmitted, and ACK/NACK has

rjmp wait3 been received.

7 in  rl6, TWSR if ((TWSR & 0xF8) != MT_DATA_ACK) | Check value of TWI Status
andi rl6, OxF8 ERROR () ; Register. Mask prescaler bits. If
epi rl6, MT_DATA_ACK status different from
brne ERROR MT_DATA_ACK go to ERROR
1di rl6, (1<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) | (1<<TWEN) | Transmit STOP condition

(1<<TWSTO) (1<<TWSTO) ;

out TWCR, rl6

Note: 1. For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced
with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and
“CBR!).

AImEl@ 211

8160C-AVR-07/09



WL

21.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

Ww: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 21-12 to Figure 21-18, circles are used to indicate that the TWINT flag is set. The num-
bers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At
these points, actions must be taken by the application to continue or complete the TWI transfer.
The TWI transfer is suspended until the TWINT flag is cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 21-2 to Table 21-5. Note that the prescaler bits are masked to zero in
these tables.

21.71 Master Transmitter Mode

8160C-AVR-07/09

In the Master Transmitter mode, a number of data bytes are transmitted to a slave receiver (see
Figure 21-11). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

AImEl@ 212



WL

Figure 21-11. Data Transfer in Master Transmitter Mode

Vee
Device 1 Device 2 .
MASTER SLAVE Device3 | ........ Device n R1 R2
TRANSMITTER RECEIVER
A A
spa —Y
\

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT flag. The TWI
will then test the Two-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT flag is set by hard-
ware, and the status code in TWSR will be 0x08 (see Table 21-2). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 21-2.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 1 X 1 0 X

AImEl@ 213

8160C-AVR-07/09



WL

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR
Value

TWINT TWEA TWSTA

TWSTO

TWWC TWEN - TWIE

1 X 1

X 1 0 X

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control of the bus.

Table 21-2.  Status Codes for Master Transmitter Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial
Prescaler Bits Bus and Two-wire Serial Inter- To TWER
are 0 face Hardware Tol/from TWDR STA | STO TWINT TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x28 Data byte has been transmit- Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ted; be received
ACK has been received No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x30 Data byte has been transmit- | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ted; be received
NOT ACK has been received No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x38 Arbitration lost in SLA+W or | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not ad-
data bytes dressed slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free

8160C-AVR-07/09

ATMEL

214



ATmega64A

Figure 21-12. Formats and States in the Master Transmitter Mode

MT

| SLA | W A DATA A B |

Successfull
transmission
to a slave
receiver

$08 $18 $28

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
n =

received after a data

byte
Arbitration lost in slave AorK Other master AorA Other master
address or data byte or continues or continues

MR

> ]

$38 $38

Arbitration lost and Other master
addressed as slave A continues

To corresponding
states in slave mode

T Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
I:I From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

prescaler bits are zero or masked to zero

21.7.2 Master Receiver Mode
In the Master Receiver mode, a number of data bytes are received from a slave transmitter (see
Figure 21-13). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

AImEl@ 215

8160C-AVR-07/09



WL

Figure 21-13. Data Transfer in Master Receiver Mode

Vee
Device 1 Device 2 . )
MASTER SLAVE Device3 | ........ Device n R1 R2
RECEIVER TRANSMITTER

SDA

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT flag. The TWI will
then test the Two-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT flag is set by hardware, and the
status code in TWSR will be 0x08 (see Table 21-2). In order to enter MR mode, SLA+R must be
transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-

ing value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
Value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 21-5. Received data can be read from the TWDR Register when the TWINT
flag is set high by hardware. This scheme is repeated until the last byte has been received. After
the last byte has been received, the MR should inform the ST by sending a NACK after the last
received data byte. The transfer is ended by generating a STOP condition or a repeated START
condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START

AImEl@ 216

8160C-AVR-07/09



WL

enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control over the bus.

Table 21-3.  Status Codes for Master Receiver Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial To TWCR
Prescaler Bits | Bus and Two-wire Serial Inter- °
are 0 face Hardware Tolfrom TWDR STA | STO | TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to Master Transmitter mode
0x38 Arbitration lost in SLA+R or | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not ad-
NOT ACK bit dressed Slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO flag
will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO flag
will be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

8160C-AVR-07/09

ATMEL

217




21.7.3

MR

Figure 21-14. Formats and States in the Master Receiver Mode

ATmega64A

Successfull
reception

S | SLA

"R A|

DATA

A | DATA | A

from a slave
receiver

$08

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

$40

»_|

$48

Aor7¥|

Other master
continues

continues

MT

Other master
&3 |

Other master
continues

$38

To corresponding
states in slave mode

[ ]
[ ]

Slave Receiver Mode

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Slave Receiver mode, a number of data bytes are received from a master transmitter (see
Figure 21-15). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

Figure 21-15. Data Transfer in Slave Receiver Mode

........ Device n R1 R2

Device 1 Device 2 )
SLAVE MASTER Device 3
RECEIVER TRANSMITTER
A A
SDA y
SCL v

8160C-AVR-07/09

218



WL

8160C-AVR-07/09

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWAG \ TWA5 | TWA4 \ TWA3 | TWA2 | TWA1 | TWAO TWGCE
Value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 21-4.
The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see states Ox68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the Two-wire Serial Bus is still monitored and address recognition may
resume at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily
isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake-up from sleep
and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is cleared
(by writing it to one). Further data reception will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte
present on the bus when waking up from these Sleep modes.

AImEl@ 219



WL

Table 21-4.  Status Codes for Slave Receiver Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial Bus
Prescaler Bits | and Two-wire Serial Interface To TWCR
Are 0 Hardware Tolfrom TWDR STA | STO | TWINT | TWEA | Next Action Taken by TWI Hardware
0x60 Own SLA+W has been received; No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x88 Previously addressed with own Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0xA0 A STOP condition or repeated No Action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free

8160C-AVR-07/09

ATMEL

220




ATmega64A

Figure 21-16. Formats and States in the Slave Receiver Mode

Reception of the own 0
slave address and one or S SLA W A DATA A DATA A PorS

more data bytes. All are
acknowledged
$60 $80
Last data byte received
is not acknowledged A

$88

Arbitration lost as master
and addressed as slave A

$68

Reception of the general call
address and one or more data General Call A DATA A DATA A PorS

bytes - ==

(s70) $90 s90) (A0
Last data byte received is
not acknowledged A

$98

Arbitration lost as master and

addressed as slave by general call A

$78
T Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
I:I From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

prescaler bits are zero or masked to zero

21.74 Slave Transmitter Mode
In the Slave Transmitter mode, a number of data bytes are transmitted to a master receiver (see
Figure 21-17). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

AI“]EL@ 221

8160C-AVR-07/09



WL

Figure 21-17. Data Transfer in Slave Transmitter Mode

Vee
Device 1 Device 2 . .
SLAVE MASTER Device 3 | ........ Device n R1 R2
TRANSMITTER RECEIVER
A A
spA—Y
SCL Y

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 \ TWAS5 \ TWA4 \ TWA3 | TWA2 \ TWA1 | TWAO TWGCE

Value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 21-5.
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the
Master mode (see state 0xBO0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xCO or state 0xC8 will be entered, depending on whether the master receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the master if it continues the transfer. Thus the master receiver receives
all “1” as serial data. State 0xC8 is entered if the master demands additional data bytes (by
transmitting ACK), even though the slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the Two-wire
Serial Bus.

AImEl@ 222

8160C-AVR-07/09



WL

Table 21-5.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the
AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the
SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register —- TWDR — does not reflect the last byte
present on the bus when waking up from these sleep modes.

Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler
Bits are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

To TWCR

To/from TWDR STA | sTO | TWINT

TWEA

Next Action Taken by TWI Hardware

0xA8

Own SLA+R has been received;
ACK has been returned

Load data byte or X 0 1

Load data byte X 0 1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xBO

Arbitration lost in SLA+R/W as
master; own SLA+R has been
received; ACK has been returned

Load data byte or X 0 1

Load data byte X 0 1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xB8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or X 0 1

Load data byte X 0 1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xCO0

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or 0 0 1

No TWDR action or 0 0 1

No TWDR action or 1 0 1

No TWDR action 1 0 1

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

0xC8

Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or 0 0 1

No TWDR action or 0 0 1

No TWDR action or 1 0 1

No TWDR action 1 0 1

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

8160C-AVR-07/09

ATMEL

223



ATmega64A

Figure 21-18. Formats and States in the Slave Transmitter Mode

Reception of the own

slave address and one or S | SLA . R A DATA | A | DATA A | PorS |
more data bytes -
$A8 $B8
Arbitration lost as master
and addressed as slave A
$BO
Last data byte transmitted. - _. -
Switched to not addressed A | All 1's | PorS |

slave (TWEA ='0")

$C8

- Any number of data bytes
I:I From master to slave DATA and their associated acknowledge bits
I:I From slave to master @ This number (contained in TWSR) corresponds

to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

21.7.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 21-6.

Status OxF8 indicates that no relevant information is available because the TWINT flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO flag (no other bits in TWCR
are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.

Table 21-6. Miscellaneous States
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial To TWCR

Prescaler Bits
are 0

Bus and Two-wire Serial Inter-
face hardware

To/from TWDR

STA ‘ STO ‘ TWINT ‘ TWEA

Next Action Taken by TWI Hardware

START or STOP condition

0xF8 No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”
0x00 Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-

tion is sent on the bus. In all cases, the bus is released

and TWSTO is cleared.

21.7.6 Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

PoODbd -

8160C-AVR-07/09

The transfer must be initiated.
The EEPROM must be instructed what location should be read.
The reading must be performed.
The transfer must be finished.

ATMEL

224



WL

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomic operation. If this principle is violated in a multimaster system,
another master can alter the data pointer in the EEPROM between steps 2 and 3, and the mas-
ter will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 21-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver
/—/\ /—/R
S SLA+W A ADDRESS A | Rs SLA+R A DATA Al P
S = START Rs = REPEATED START P =STOP
Transmitted from master to slave Transmitted from slave to master

21.8 Multi-master Systems and Arbitration

8160C-AVR-07/09

If multiple masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a slave receiver.

Figure 21-20. An Arbitration Example

Vee
Device 1 Device 2 Device 3 .
MASTER MASTER SLAVE | ceeunnns Device n R1 R2
TRANSMITTER TRANSMITTER RECEIVER

A

SDA =

SCL =

Several different scenarios may arise during arbitration, as described below:
* Two or more masters are performing identical communication with the same slave. In this
case, neither the slave nor any of the masters will know about the bus contention.

* Two or more masters are accessing the same slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters
trying to output a one on SDA while another master outputs a zero will lose the arbitration.

AImEl@ 225



WL

Losing masters will switch to not addressed Slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.

* Two or more masters are accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are
being addressed by the winning master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed Slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

This is summarized in Figure 21-21. Possible status values are given in circles.

Figure 21-21. Possible Status Codes Caused by Arbitration

| START | SLA Data | STOP |

Arbitration lost in SLA Arbitration lost in Data
‘Address / General Call No 38 w| TWI bus will be released and not addressed slave mode will be entered
received A START condition will be transmitted when the bus becomes free

Write 68/78 Jﬁa byte will be received and NOT ACK will be returned

Direction v | Data byte will be received and ACK will be returned

Read Last data byte will be transmitted and NOT ACK should be received
>
@' Data byte will be transmitted and ACK should be received

21.9 TWI Register Description

21.9.1 TWBR -TWI Bit Rate Register

Bit 7 6 5 4 3 2 1 0

(0x70) I TWBR7 | TWBR6 TWBRS5 TWBR4 TWBR3 TWBR2 TWBR1 TWBRO I TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 202 for calculating bit rates.

21.9.2 TWCR - TWI Control Register

Bit 7 6 5 4 3 2 1 0

(0x74) I TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE I TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

AImEl@ 226

8160C-AVR-07/09



WL

8160C-AVR-07/09

e Bit 7 — TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT flag is set, the SCL low period is stretched. The TWINT
flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

e Bit 6 — TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR s set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire

Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

e Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the Two-
wire Serial Bus. The TWI hardware checks if the bus is available, and generates a START con-
dition on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition
is detected, and then generates a new START condition to claim the Bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

e Bit4 — TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

e Bit 3 - TWWC: TWI Write Collision Flag
The TWWOC bit is set when attempting to write to the TWI Data Register - TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

e Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the 1/0 pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

e Bit 1 — Res: Reserved Bit
This bit is a reserved bit and will always read as zero.

AImEl@ 227



WL

2193

2194

8160C-AVR-07/09

¢ Bit 0 — TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT flag is high.

TWSR - TWI Status Register

Bit 7 6 5 4 3 2 1 0

(0x71) I TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 I TWSR
Read/Write R R R R R R R/W R/IW

Initial Value 1 1 1 1 1 0 0 0

e Bits 7:3 — TWS: TWI Status

These five bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different sta-
tus codes are described later in this section. Note that the value read from TWSR contains both
the 5-bit status value and the 2-bit prescaler value. The application designer should mask the
prescaler bits to zero when checking the status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

¢ Bit 2 — Res: Reserved Bit
This bit is reserved and will always read as zero.

* Bits 1:0 — TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 21-7. TWI Bit Rate Prescaler

TWPSH1 TWPSO Prescaler Value
0 0 1
0 1 4
1 0 16
1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 202. The value of TWPS1:0 is used
in the equation.

TWDR - TWI Data Register

Bit 7 6 5 4 3 2 1 0

(0x73) I TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO I TWDR
Read/Write R/W R/W R/W RIW R/IW R/IW R/W R/IW

Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the data register
cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains sta-
ble as long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted
in. TWDR always contains the last byte present on the bus, except after a wake-up from a sleep
mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case of a lost
bus arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit is
controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

AImEl@ 228



WL

¢ Bits 7:0 - TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the Two-wire Serial Bus.

21.9.5 TWAR - TWI (Slave) Address Register

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0

(0x72) I TWA6 | TWAS TWA4 TWA3 TWA2 TWA1 TWAO TWGCE I TWAR
Read/Write R/IW R/W RIW R/W R/W R/IW R/W R/W

Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a slave transmitter or Receiver, and
not needed in the Master modes. In multimaster systems, TWAR must be set in masters which
can be addressed as slaves by other masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

e Bits 7:1 — TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.

e Bit 0 - TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.

AImEl@ 229



WL

22. Analog Comparator

The Analog Comparator compares the input values on the positive pin AINO and negative pin
AIN1. When the voltage on the positive pin AINO is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 22-1.

Figure 22-1. Analog Comparator Block Diagram"®

BANDGAP
REFERENCE VCC
ACBG l
ACD
—>
ACIE
AINO

A

+ L] ANALOG
- INTERRUPT COMPARATOR
SELECT IRQ

——— > ACI

ACIS1  ACISO ACIC
—
TO T/C1 CAPTURE
ACO TRIGGER MUX

ADC MULTIPLEXER
OUTPUT Y

»
>

Note: 1. See Table 22-1 on page 231.

2. Refer to Figure 1-1 on page 2 and Table 13-6 on page 76 for Analog Comparator pin
placement.

22.1 Analog Comparator Multiplexed Input

8160C-AVR-07/09

It is possible to select any of the ADC7:0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
SFIOR) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2:0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
22-1 on page 231. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the
Analog Comparator.

AImEl@ 230



WL

Table 22-1.  Analog Comparator Multiplexed Input

ACME ADEN MUX2:0 Analog Comparator Negative Input

0 X XXX AIN1

1 1 XXX AIN1

1 0 000 ADCO
1 0 001 ADCA1
1 0 010 ADC2
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7

22.2 Register Description

22.21 SFIOR - Special Function 10 Register

Bit 7 6 5 4 3 2 1 0

0x20 TSM - - - ACME PUD PSR2 PSR10 SFIOR
(0x40)

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 3 - ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog Comparator Multiplexed Input” on page 230.

22.2.2 ACSR - Analog Comparator Control and Status Register

Bit 7 6 5 4 3 2 1 0
0x08(0x28) | ACD | ACBG | ACO | AClI | ACE ACIC ACIS1 Aciso | AcsR
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

e Bit 7 - ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

e Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AINO is applied to the positive input of the Analog Compar-
ator. See “Internal Voltage Reference” on page 55.

AImEl@ 231

8160C-AVR-07/09



WL

8160C-AVR-07/09

e Bit 5 - ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

e Bit 4 — ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACl is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACl is cleared by writing a logic one to the flag.

e Bit 3 — ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

e Bit 2 — ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
Input Capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the Input Capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the TICIE1 bit in the Timer Interrupt Mask
Register (TIMSK) must be set.

e Bits 1, 0 - ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 22-2.

Table 22-2. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.
1 1 Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACISO0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

AImEl@ 232



WL

23. Analog to Digital Converter

23.1 Features
* 10-bit Resolution
¢ 0.75 LSB Integral Non-linearity
¢ +1.5 LSB Absolute Accuracy
* 13 - 260 ps Conversion Time
¢ Up to 15 kSPS at Maximum Resolution
¢ Eight Multiplexed Single Ended Input Channels
¢ Seven Differential Input Channels
¢ Two Differential Input Channels with Optional Gain of 10x and 200x
¢ Optional Left Adjustment for ADC Result Readout
® 0-Vcc ADC Input Voltage Range
® 2.7 -V Differential ADC Voltage Range
¢ Selectable 2.56V ADC Reference Voltage
* Free Running or Single Conversion Mode
* ADC Start Conversion by Auto Triggering on Interrupt Sources
¢ Interrupt on ADC Conversion Complete
¢ Sleep Mode Noise Canceler

23.2 Overview
The ATmega64A features a 10-bit successive approximation ADC. The ADC is connected to an
8-channel Analog Multiplexer which allows eight single-ended voltage inputs constructed from
the pins of Port F. The single-ended voltage inputs refer to OV (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs
(ADC1, ADCO and ADCS3, ADC2) are equipped with a programmable gain stage, providing
amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage
before the A/D conversion. Seven differential analog input channels share a common negative
terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x
or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can be
expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 23-1.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than
+0.3V from V. See the paragraph “ADC Noise Canceler’ on page 241 on how to connect this

pin.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

AImEl@ 233

8160C-AVR-07/09



ATmega64A

Figure 23-1. Analog to Digital Converter Block Schematic

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS

ADTS[2:0]
__ 8-BIT DATA BUS

) v v s 1

ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)

w o \
E 3

Y

ADIF
ADIE

A A 4

REFS1
REFSO
ADLAR
MUX4
MUX3
MUx2
MUX1
MUxo

ADEN
ADSC
ADIF
ADPS1
ADPSO

<| o
5 =)
<| <

»| TRIGGER
SELECT

ADCIS0] \ |

Y VY YV VY
’ MUX DECODER ‘ Y

PRESCALER |€¢——
START
A 2 4 A,

CONVERSION LOGIC

GAIN SELECTION

CHANNEL SELECTION

AVCC I:'i 3
¥

COMPARATOR

INTERNAL 2.56V
REFERENCE L~ \ 4 SAMPLE & HOLD

AREFD .
GND I:'T £

BANDGAP
REFERENCE
ADC7 I:li
[
ADC6
POS. ADC MULTIPLEXER
ADCS5 INPUT . ¢ » ouTPUT
MUX L
ADC4 I:'i
ADC3 I:li GAIN
NY AMPLIFIER
A
ADC2
ADC1
ADCO

10-BIT DAC

‘\ SINGLE ENDED / DIFFERENTIAL SELECTION

/T\

NEG.
INPUT
MUX

\

23.3 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on
the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V reference voltage may be
connected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can
be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as
positive and negative inputs to the differential gain amplifier.

If differential channels are selected, the differential gain stage amplifies the voltage difference
between the selected input channel pair by the selected gain factor. This amplified value then

AImEl@ 234

8160C-AVR-07/09



WL

becomes the analog input to the ADC. If single ended channels are used, the gain amplifier is
bypassed altogether.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the data
registers belongs to the same conversion. Once ADCL is read, ADC access to data registers is
blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the data registers is prohibited between reading of ADCH and ADCL, the interrupt will
trigger even if the result is lost.

23.4 Starting a Conversion

8160C-AVR-07/09

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (see description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an interrupt flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the interrupt flag must be cleared in order to
trigger a new conversion at the next interrupt event.

AImEl@ 235



WL

Figure 23-2. ADC Auto Trigger Logic

ADTS[2:0]
——» PRESCALER
START CLK oc
ADIF — ADATE
SOURCE1 —— L
***** 5 } CONVERSION
,,,,, LOGIC
S EDGE
SOURCE n DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

23.5 Prescaling and Conversion Timing

8160C-AVR-07/09

Figure 23-3. ADC Prescaler

ADEN
START Reset
7-BIT ADC PRESCALER

CK — >
oo]
(\Iﬁ'OOE%%ﬁ
A RIS Rv4 ISR,
O| O ©| ©| Y| O] ©
YY VY VYV VY
ADPS0
ADPS1
ADPS2
ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.

AImEl@ 236



WL

8160C-AVR-07/09

The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. See “Differential Gain Channels” on
page 239 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of a first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

When using Differential mode, along with auto trigging from a source other that the ADC Conver-
sion Complete, each conversion will require 25 ADC clocks. This is because the ADC must be
disabled and re-enabled after every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 23-1.

Figure 23-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next
Conversion
<

First Conversion

I ‘ ‘ I I I
Cycle Number [ 1] 2, ‘12\13\“\15\16\17\18\19\20\21\22\23\24\25{ |1 ]21]3s
| | |

aocoos A LT TLILIY L LML L L L L L L L LA Lt

‘ [ ‘ !
ADEN ' | | ! [ [
| | | |
ADSC ! [ I ' 7
! | | ! 1 |
ADIF ' ‘ : i |
| | I 1
ADCH  / / 4 / /> MSB of Result
| I 1
AabcL /‘ / LSB of Result

A A
. I . . .
\ MUX and REFS \ Conversion /> \ MUX and REFS
Sample & Hold

Update Complete Update

AImEl@ 237



WL

Figure 23-5. ADC Timing Diagram, Single Conversion

One Conversion _ Next Conversion
<
| | | |
Cycle Number | 112l s ¢ s e 7] 8] o] tof nf 23] | 1] z2]3s
ADC Clock

ADIF : : —

won 7777777777777 TTTTTT 77777777777 7777777777777 )X vt i mesan
woL 77777777777 [T 77T 7T 77T T 77T T 7777777777770 st o

Sample & Hold Conversion /) \ MUX and REFS

MUX and REFS Complete

Update Update
Figure 23-6. ADC Timing Diagram, Auto Triggered Conversion
One Conversion _ Next Conversion

[ | | |
Cycle Number | | 1 2 | s 4| 5| 6| 7| 8] 9| 10 1] 12 13| | | 1] 2|
ADC Clock

[ | | |
T
somee — A 1 | Vg
roate _/ | | | | |
ADIF L | |

ADCH ////////I//I//////:////////////////////////////////////////////):( MSB%fResuh

soc [/ TR LD LT T L T LT T LT T T K LsB o Resu
/N \ %\ Sample & />I l(\ Prescaler

P ! Conversion
Rl:secta er Hold Complete Reset
° MUX and REFS
Update

Figure 23-7. ADC Timing Diagram, Free Running Conversion

One Conversion Next Conversion

Cycle Number

ADC Clock

ADSC | |

ADIF

ADCH 17////////PK MSB of Resuit
ADCL ///////////p:< L5 f Resul

Conversion f) 4\ Sample & Hold

Complete MUX and REFS
Update

AImEl@ 238

8160C-AVR-07/09



WL

Table 23-1. ADC Conversion Time

Sample & Hold (Cycles from Start Conversion Time
Condition of Conversion) (Cycles)
First conversion 13.5 25
Normal conversions, single ended 1.5 13
Auto Triggered conversions 2 135
Normal conversions, differential 1.5/2.5 13/14

23.5.1 Differential Gain Channels
When using differential gain channels, certain aspects of the conversion need to be taken into
consideration.

Differential conversions are synchronized to the internal clock CK,pco equal to half the ADC
clock. This synchronization is done automatically by the ADC interface in such a way that the
sample-and-hold occurs at a specific phase of CK,pcp. A conversion initiated by the user (i.e., all
single conversions, and the first free running conversion) when CK,pc, is low will take the same
amount of time as a single ended conversion (13 ADC clock cycles from the next prescaled
clock cycle). A conversion initiated by the user when CK,p¢, is high will take 14 ADC clock
cycles due to the synchronization mechanism. In Free Running mode, a new conversion is initi-
ated immediately after the previous conversion completes, and since CK,pc, is high at this time,
all automatically started (i.e., all but the first) free running conversions will take 14 ADC clock
cycles.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequencies may
be subjected to non-linear amplification. An external low-pass filter should be used if the input
signal contains higher frequency components than the gain stage bandwidth. Note that the ADC
clock frequency is independent of the gain stage bandwidth limitation. For example, the ADC
clock period may be 6 ps, allowing a channel to be sampled at 12 kSPS, regardless of the band-
width of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC
must be switched off between conversions. When Auto Triggering is used, the ADC prescaler is
reset before the conversion is started. Since the gain stage is dependent of a stable ADC clock
prior to the conversion, this conversion will not be valid. By disabling and then re-enabling the
ADC between each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended con-
versions are performed. The result from the extended conversions will be valid. See “Prescaling
and Conversion Timing” on page 236 for timing details.

23.6 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

AImEl@ 239

8160C-AVR-07/09



WL

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Special care should be taken when changing differential channels. Once a differential channel
has been selected, the gain stage may take as much as 125 ps to stabilize to the new value.
Thus conversions should not be started within the first 125 ps after selecting a new differential
channel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing
ADC reference (by changing the REFS1:0 bits in ADMUX).

If the JTAG interface is enabled, the function of ADC channels on PORTF7:4 is overridden.
Refer to Table 13-18, “Port F Pins Alternate Functions,” on page 85.

23.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accu-
racy due to the required settling time for the automatic offset cancellation circuitry. The user
should preferably disregard the first conversion result.

23.6.2 ADC Voltage Reference
The reference voltage for the ADC (Vggg) indicates the conversion range for the ADC. Single
ended channels that exceed Vzge Will result in codes close to 0x3FF. Vzer can be selected as
either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is gener-
ated from the internal bandgap reference (Vgg) through an internal amplifier. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. Vgge can
also be measured at the AREF pin with a high impedant voltmeter. Note that Vi is a high
impedant source, and only a capacitive load should be connected in a system.

AImEl@ 240

8160C-AVR-07/09



WL

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 2.56V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than
indicated in Table 28-7 on page 336.

23.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be
enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in Active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption. If the ADC is enabled in such
sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.

23.71 Analog Input Circuitry

8160C-AVR-07/09

The analog input circuitry for single ended channels is illustrated in Figure 23-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kQ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (fopc/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised

AImEl@ 241



ATmega64A

to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 23-8. Analog Input Circuitry

1..100 kQ

ADCn — MN L

CS/H: 14 pF

23.7.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the
ground plane, and keep them well away from high-speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital V¢ supply voltage
via an LC network as shown in Figure 23-9.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

AImEl@ 242

8160C-AVR-07/09



WL

Figure 23-9. ADC Power Connections

(ADO) PAO [51]
vee [

(ADC7) PF7 [54]
(ADC6) PF6 |55
(ADCS) PF5 |56
(ADC4) PF4 [57|
(ADC3) PF3 58]
(ADC2) PF2 [59)]

(ADC1) PF1 |60

(ADCO) PFO [61]

10 uH
K AREF @

= O

1%4]

2

__________ . b
o

23.7.3 Offset Compensation Schemes
The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential mea-
surements as much as possible. The remaining offset in the analog path can be measured
directly by selecting the same channel for both differential inputs. This offset residue can be then
subtracted in software from the measurement results. Using this kind of software based offset
correction, offset on any channel can be reduced below one LSB.

23.7.4 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and Vggr in 2" steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2" - 1.

Several parameters describe the deviation from the ideal behavior:

» Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

AImEl@ 243

8160C-AVR-07/09



WL

Figure 23-10. Offset Error
Output Coded

fffff Ideal ADC
—— Actual ADC

Offset
< Error >

Vgeg Input Voltage

* Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (Ox3FE to Ox3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

Figure 23-11. Gain Error

Output Code A Gain
Error
————— Ideal ADC
Actual ADC
Vger Input Voltage

* Integral Non-linearity (INL): After adjusting for Offset and Gain Error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

AImEl@ 244

8160C-AVR-07/09



WL

Figure 23-12. Integral Non-linearity (INL)
Output Code A

NI

77777 Ideal ADC

Actual ADC

[

Vgeg Input Voltage

¢ Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 23-13. Differential Non-linearity (DNL)

Output Code A
O0x3FF

] |
_rse
k “on>
0X000

|

0 Vgrer Input Voltage

¢ Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
a range of input voltages (1 LSB wide) will code to the same value. Always +0.5 LSB.

¢ Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of Offset, Gain Error, Differential
Error, Non-linearity, and Quantization Error. Ideal value: +0.5 LSB.

23.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result registers (ADCL, ADCH).

For single ended conversion, the result is

V.- 1024
ADC = N "7

REF

AImEl@ 245

8160C-AVR-07/09



WL

where V, is the voltage on the selected input pin and Vg the selected voltage reference (see
Table 23-3 on page 247 and Table 23-4 on page 248). 0x000 represents ground, and Ox3FF
represents the selected reference voltage minus one LSB.

If differential channels are used, the result is

b - Vpos=Vieg) - GAIN - 512

VREF

where Vpqg is the voltage on the positive input pin, Vygg the voltage on the negative input pin,
GAIN the selected gain factor, and Vger the selected voltage reference. The result is presented
in two’s complement form, from 0x200 (-512d) through Ox1FF (+511d). Note that if the user
wants to perform a quick polarity check of the results, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If this bit is one, the result is negative, and if this bit is zero, the result is posi-
tive. Figure 23-14 shows the decoding of the differential input range.

Table 23-2 shows the resulting output codes if the differential input channel pair (ADCn - ADCm)
is selected with a gain of GAIN and a reference voltage of Vggr.

Figure 23-14. Differential Measurement Range

Output Code

Ox1FF .

0x000
\ \ <><> \ \ \ \ <>2—v—v—v—>
- Vpe/GAIN OX3FF 0 V._/GAIN Differential Input

T
REF Voltage (Volts)

=
)
((

- 0x200

| AImEl@ 246

8160C-AVR-07/09



WL

Table 23-2.  Correlation Between Input Voltage and Output Codes

Vancn Read Code Corresponding Decimal Value
Vapcm + Vrer/GAIN Ox1FE -

Vapcm + 511/512 Vgee/GAIN Ox1FF 511

Vapom + 510/512 Viee/GAIN OX1FE 510

Vapcm + 1/512 Vgee/GAIN 0x001 1

Vaocm 0x000 o

Vapcm - 1/512 Vgee/GAIN Ox3FF A

Vapcm - 511/512Veee/GAIN 0x201 511

Vaocm - Veer/GAIN 0x200 1o

Example:

ADMUX = OxED (ADCS3 - ADC2, 10x gain, 2.56V reference, left adjusted result).
Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
ADCR =512 * 10 * (300 - 500) / 2560 = -400 = 0x270.

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right adjusts the
result: ADCL = 0x70, ADCH = 0x02.

23.9 Register Description

23.9.1 ADMUX — ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0
0x07 (0x27) | REFS1 | REFSO | ADLAR MUX4 MUX3 MUX2 MUX1 muxo | ADmux
Read/Write R/W R/W R/W R/W R/W RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 23-3. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

Table 23-3. Voltage Reference Selections for ADC

REFS1 REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off.
0 1 AVCC with external capacitor at AREF pin.
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin.

AImEl@ 247

8160C-AVR-07/09



WL

8160C-AVR-07/09

e Bit5 - ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see “ADCL and ADCH — The ADC Data Register” on

page 250.

¢ Bits 4:0 — MUX4:0: Analog Channel and Gain Selection Bits
The value of these bits selects which combination of analog inputs are connected to the ADC.
These bits also select the gain for the differential channels. See Table 23-4 for details. If these
bits are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set).

Table 23-4. Input Channel and Gain Selections

MUX4:0 | Single Ended Input | Positive Differential Input | Negative Differential Input | Gain

00000 ADCO

00001 ADC1

00010 ADC2

00011 ADC3 N/A

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000 ADCO ADCO 10x

01001 ADCH1 ADCO 10x

01010 ADCO ADCO 200x

01011 ADC1 ADCO 200x

01100 ADC2 ADC2 10x

01101 ADC3 ADC2 10x

01110 ADC2 ADC2 200x

01111 ADC3 ADC2 200x

10000 ADCO ADCH1 1x

10001 ADC1 ADCA1 1x

10010 N/A ADC2 ADCA1 1x

10011 ADC3 ADC1 1x

10100 ADC4 ADC1 1x

10101 ADC5 ADCA1 1x

10110 ADC6 ADCA1 1x

10111 ADC7 ADCA1 1x

11000 ADCO ADC2 1x

11001 ADC1 ADC2 1x
ATMEL 248
L _______________[G]



WL

23.9.2

8160C-AVR-07/09

Table 23-4. Input Channel and Gain Selections (Continued)

MUX4:0 | Single Ended Input | Positive Differential Input | Negative Differential Input | Gain
11010 ADC2 ADC2 1x
11011 ADC3 ADC2 1x
11100 ADC4 ADC2 1x
11101 ADC5 ADC2 1x
11110 1.22V (Vgg) N/A

11111 0V (GND)

ADCSRA - ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0
0x06 (0x26) | ADEN | ADSC | ADATE | ADIF ADIE ADPS2 ADPS1 ADPSO | ADCSRA
Read/Write R/W R/W R/W R/W R/W RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

e Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

e Bit 5 - ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

e Bit 4 — ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the data registers are updated. The ADC
Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on
ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions
are used.

e Bit 3 — ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

AImEl@ 249



WL

* Bits 2:0 — ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the

ADC.
Table 23-5. ADC Prescaler Selections
ADPS2 ADPS1 ADPSO Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
23.9.3 ADCL and ADCH - The ADC Data Register
23.9.3.1 ADLAR =0
Bit 15 14 13 12 11 10 9 8
0x05 (0x25) - - - - - - ADC9 ADC8 ADCH
0x04 (0x24) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
23.9.3.2 ADLAR =1
Bit 15 14 13 12 1" 10 9 8
0x05 (0x25) ADC9 ADCS8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
0x04 (0x24) ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers. If differential

channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read

ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

8160C-AVR-07/09

ATMEL

250



WL

e ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 245.

2394 ADCSRB - ADC Control and Status Register B

Bit 7 6 5 4 3 2 1 0
(OX8E) | - | - | - | - - ADTS2 ADTS1 ADTS0 | ADCSRB
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:3 — Res: Reserved Bits
These bits are reserved bits in the ATmega64A and will always read as zero.

e Bit 2:0 - ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion
will be triggered by the rising edge of the selected interrupt flag. Note that switching from a trig-
ger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Table 23-6. ADC Auto Trigger Source Selections

ADTS2 ADTSH1 ADTSO Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event

AImEl@ 251

8160C-AVR-07/09



WL

24. JTAG Interface and On-chip Debug System

24.1 Features
* JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:
— All Internal Peripheral Units
- Internal and External RAM
— The Internal Register File
— Program Counter
— EEPROM and Flash Memories
¢ Extensive On-chip Debug Support for Break Conditions, Including
— AVR Break Instruction
— Break on Change of Program Memory Flow
— Single Step Break
— Program Memory Break Points on Single Address or Address Range
— Data Memory Break Points on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* On-chip Debugging Supported by AVR Studio®

24.2 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:

¢ Testing PCBs by using the JTAG Boundary-scan capability.

* Programming the non-volatile memories, Fuses and Lock bits.

* On-chip debugging.
A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan chain can be found in the sections “Program-
ming Via the JTAG Interface” on page 314 and “IEEE 1149.1 (JTAG) Boundary-scan” on page

259, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.

Figure 24-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several data registers as the scan chain
(Shift Register) between the TDI — input and TDO — output. The Instruction Register holds JTAG
instructions controlling the behavior of a data register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the data registers used for
board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual data registers) is used for serial programming via the JTAG interface. The Internal
Scan Chain and Break Point Scan Chain are used for On-chip debugging only.

24.3 TAP - Test Access Port

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port — TAP. These pins are:

AImEl@ 252

8160C-AVR-07/09



WL

8160C-AVR-07/09

* TMS: Test mode select. This pin is used for navigating through the TAP-controller state
machine.

¢ TCK: Test clock. JTAG operation is synchronous to TCK.

* TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register
(Scan Chains).

¢ TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not
provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the
TAP controller is in reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP
input signals are internally pulled high and the JTAG is enabled for Boundary-scan and program-
ming. In this case, the TAP output pin (TDO) is left floating in states where the JTAG TAP
controller is not shifting data, and must therefore be connected to a pull-up resistor or other
hardware having pull-ups (for instance the TDI-input of the next device in the scan chain). The
device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect External Reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

AImEl@ 253



WL

Figure 24-1. Block Diagram

1/0 PORT 0

L] L] L]
A
DEVICE BOUNDARY Y
={ BOUNDARY SCAN CHAIN
™ —
D0 < _ »| JTAG PROGRAMMING
- ' TAP INTERFACE
TCK » 1 CONTROLLER Y
™S >
| AVR CPU
_ INTERNAL | _
FLASH Address < SCAN [€ PC
INSTRUCTION MEMORY Data > CHAIN Instructi
REGISTER { : nstruction
D |
REGISTER BREAKPOINT < >
UNIT
M »| FLOW CONTROL[ |
—Hu BYPASS A UNIT 2
X REGISTER { DIGITAL < ANALOG 2
< PEHJZ'I"TESRAL < “>| PERIPHERIAL <3
< UNITS ]
BREAKPOINT <
SCAN CHAIN
N9 f Y , COMMUNICATION
ADDRESS INTERFACE °
DECODER q OCD STATUS - = @
AND CONTROL h ” £
<
[5]
Ke]
< < ©
o3
=
v £
Q
r o
|
A
Y
L] L] L]
1/0 PORT n

8160C-AVR-07/09



ATmega64A

Figure 24-2. TAP Controller State Diagram

1 C Test-Logic-Reset

0

Select-IR Scan

0 C; Run-Test/Idle 1 P Select-DR Scan

y

A 4

0 0
A h 4
1 Capture-DR 1 Capture-IR
0 0
v
»  shiftDR D 0 »  ShiftIR D 0
1 1
h 4 h 4
P Exit1-DR 1 P Exit1-IR L
0 0
y y
Pause-DR :) 0 Pause-IR D 0
1 1
h 4 v
O Exite-DR 0 Exit2-IR
1 1
4 4
Update-DR 4 Update-IR <
1 0 1 0

24.4 TAP Controller

8160C-AVR-07/09

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 24-2 depends on the signal present on TMS (shown adjacent to each state
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

¢ At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register — Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG instruction register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR

AImEl@ 255



WL

state. The MSB of the instruction is shifted in when this state is left by setting TMS high.
While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on
the TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI
and TDO and controls the circuitry surrounding the selected data register.

* Apply the TMS sequence 1, 1, 0 to reenter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR,
Pause-IR, and Exit2-IR states are only used for navigating the state machine.

* At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift
Data Register — Shift-DR state. While in this state, upload the selected data register (selected
by the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the
rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low
during input of all bits except the MSB. The MSB of the data is shifted in when this state is left
by setting TMS high. While the data register is shifted in from the TDI pin, the parallel inputs
to the data register captured in the Capture-DR state is shifted out on the TDO pin.

* Apply the TMS sequence 1, 1, 0 to reenter the Run-Test/Idle state. If the selected data
register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using data registers, and some JTAG instructions may select certain func-
tions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note:  Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”
on page 258.

24.5 Using the Boundary -scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1
(JTAG) Boundary-scan” on page 259.

24.6 Using the On-chip Debug system

As shown in Figure 24-1, the hardware support for On-chip Debugging consists mainly of:

¢ A scan chain on the interface between the internal AVR CPU and the internal peripheral
units.

* Break Point unit.
* Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an 1/0

memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

* 4 Single Program Memory Break Points.
* 3 Single Program Memory Break Points + 1 Single Data Memory Break Point.
* 2 Single Program Memory Break Points + 2 Single Data Memory Break Points.

AImEl@ 256

8160C-AVR-07/09



WL

* 2 Single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

e 2 Single Program Memory Break Points + 1 Data Memory Break Point with mask (“range
Break Point”).

A debugger, like the AVR Studio®, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG
Instructions” on page 257.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip Debug system
to work. As a security feature, the On-chip Debug system is disabled when any Lock bits are set.
Otherwise, the On-chip Debug system would have provided a back-door into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio supports source level execution of Assembly programs assembled with Atmel AVR
Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000/XP/NT®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

24.7 On-chip Debug Specific JTAG Instructions

24.7.1

24.7.2

24.7.3

24.7.4

8160C-AVR-07/09

The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

PRIVATEO; 0x8
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE1; 0x9
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE2; 0xA
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE3; 0xB
Private JTAG instruction for accessing On-chip Debug system.

AImEl@ 257



WL

24.8 Using the JTAG Programming Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUSR Register must be cleared to enable the
JTAG Test Access Port.

The JTAG programming capability supports:

* Flash Programming and verifying

* EEPROM Programming and verifying
¢ Fuse Programming and verifying

e Lock bit Programming and verifying

The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a Chip Erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section “Programming Via the JTAG Interface” on page 314.

24.9 On-chip Debug Related Register in /O Memory

24.91 OCDR - On-chip Debug Register

24.10 Bibliography

8160C-AVR-07/09

Bit 7 6 5 4 3 2 1 0
0x22 (0x42) | MSB/IDRD | LsB8 | ocDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty — IDRD — is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard 1/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard 1/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

For more information about general Boundary-scan, the following literature can be consulted:

e |EEE: IEEE Std 1149.1 - 1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993.

¢ Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison —Wesley,
1992.

AImEl@ 258



WL

25. IEEE 1149.1 (JTAG) Boundary-scan

25.1 Features

JTAG (IEEE std. 1149.1 Compliant) Interface

* Boundary-scan Capabilities According to the JTAG Standard

Full Scan of all Port Functions as well as Analog Circuitry Having Off-chip Connections
* Supports the Optional IDCODE Instruction

Additional Public AVR_RESET Instruction to Reset the AVR

25.2 Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be
used for testing the printed circuit board. Initial scanning of the data register path will show the
ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to
have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-
mined by the scan operations, and the internal software may be in an undetermined state when
exiting the test mode. Entering reset, the outputs of any Port Pin will instantly enter the high
impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction
can be issued to make the shortest possible scan chain through the device. The device can be
set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the 1/0 Register MCUCSR must be
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher
than the internal chip frequency is possible. The chip clock is not required to run.

25.3 Data Registers
The data registers relevant for Boundary-scan operations are:

¢ Bypass Register

* Device Identification Register
* Reset Register

¢ Boundary-scan Chain

AImEl@ 259

8160C-AVR-07/09



WL

25.3.1 Bypass Register
The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR
controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

25.3.2 Device Identification Register
Figure 25-1 shows the structure of the Device Identification Register.

Figure 25-1. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 1 1 0
Device ID | Version | Part Number | Manufacturer ID | 1 |
4 bits 16 bits 11 bits 1-bit

25.3.2.1 Version
Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

25322 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for

ATmega64A is listed in Table 25-1.

Table 25-1. AVR JTAG Part Number

Part Number JTAG Part Number (Hex)
ATmega64A 0x9602

25.3.2.3 Manufacturer ID
The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID
for Atmel is listed in Table 25-2.
Table 25-2. Manufacturer ID

Manufacturer JTAG Man. ID (Hex)

Atmel 0x01F

25.3.3 Reset Register
The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-states port
pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the External Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the Fuse set-
tings for the clock options, the part will remain reset for a Reset Time-out Period (refer to “Clock
Sources” on page 38) after releasing the Reset Register. The output from this data register is not
latched, so the reset will take place immediately, as shown in Figure 25-2.

AImEl@ 260

8160C-AVR-07/09



ATmega64A

Figure 25-2. Reset Register

To
TDO
From Other Internal and
External Reset Sources
From Internal Reset
—D Q

TDI

ClockDR - AVR_RESET

25.3.4 Boundary-scan Chain
The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital 1/0 pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connections.

See “Boundary-scan Chain” on page 262 for a complete description.

25.4 Boundary-scan Specific JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG
instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction is not
implemented, but all outputs with tri-state capability can be set in high-impedant state by using
the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which data register is selected as path between TDI and TDO for each instruction.

25.4.1 EXTEST; 0x0
Mandatory JTAG instruction for selecting the Boundary-scan Chain as data register for testing
circuitry external 