Dual General Purpose Transistor The MBT3906DW1 device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-363 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium. ### **Features** - h_{FE}, 100-300 - Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$ - Simplifies Circuit Design - Reduces Board Space - Reduces Component Count - Available in 8 mm, 7-inch/3,000 Unit Tape and Reel - S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant* ### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--------------------------------|------------------|---------------------------|------| | Collector - Emitter Voltage | V _{CEO} | -40 | Vdc | | Collector - Base Voltage | V _{CBO} | -40 | Vdc | | Emitter – Base Voltage | V _{EBO} | -5.0 | Vdc | | Collector Current - Continuous | I _C | -200 | mAdc | | Electrostatic Discharge | ESD | HBM Class 2
MM Class B | | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------------------------|-------------|------| | Total Package Dissipation (Note 1)
T _A = 25°C | P _D | 150 | mW | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 833 | °C/W | | Junction and Storage Temperature Range | T _J , T _{stg} | -55 to +150 | °C | Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint. ### ON Semiconductor® http://onsemi.com SOT-363/SC-88 CASE 419B STYLE 1 ### **MARKING DIAGRAM** A2 = Device Code M = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|------------------------| | MBT3906DW1T1G | SOT-363
(Pb-Free) | 3,000 /
Tape & Reel | | MBT3906DW1T2G | SOT-363
(Pb-Free) | 3,000 /
Tape & Reel | | SMBT3906DW1T1G | SOT-363
(Pb-Free) | 3,000 /
Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | | Characteristic | Symbol Min | | Max | Unit | | |---|---|----------------------|-----------------------------|--------------------|--------------------|--| | OFF CHARACT | ERISTICS | <u> </u> | | | - | | | Collector - Emitter | Breakdown Voltage (Note 2) | V _{(BR)CEO} | -40 | - | Vdc | | | Collector - Base E | Breakdown Voltage | V _{(BR)CBO} | -40 | _ | Vdc | | | Emitter – Base Bre | eakdown Voltage | V _{(BR)EBO} | -5.0 | _ | Vdc | | | Base Cutoff Curre | ent | I _{BL} | _ | -50 | nAdc | | | Collector Cutoff C | urrent | I _{CEX} | _ | -50 | nAdc | | | ON CHARACTE | RISTICS (Note 2) | | | I. | 1 | | | $(I_C = -1.0 \text{ mAdd})$
$(I_C = -10 \text{ mAdd})$
$(I_C = -50 \text{ mAdd})$ | c, $V_{CE} = -1.0 \text{ Vdc}$)
c, $V_{CE} = -1.0 \text{ Vdc}$)
c, $V_{CE} = -1.0 \text{ Vdc}$)
c, $V_{CE} = -1.0 \text{ Vdc}$)
dc, $V_{CE} = -1.0 \text{ Vdc}$) | h _{FE} | 60
80
100
60
30 | -
300
-
- | - | | | $(I_C = -10 \text{ mAdd})$ | Saturation Voltage
c, $I_B = -1.0$ mAdc)
c, $I_B = -5.0$ mAdc) | V _{CE(sat)} | -
- | -0.25
-0.4 | Vdc | | | | turation Voltage
\mathbf{p}_{i} , $\mathbf{l}_{B}=-1.0$ mAdc)
\mathbf{p}_{i} , $\mathbf{l}_{B}=-5.0$ mAdc) | V _{BE(sat)} | -0.65
- | -0.85
-0.95 | Vdc | | | SMALL-SIGNA | L CHARACTERISTICS | | | | | | | Current - Gain - E | Bandwidth Product | f _T | 250 | - | MHz | | | Output Capacitan | се | C _{obo} | - | 4.5 | pF | | | Input Capacitance | • | C _{ibo} | - | 10.0 | pF | | | Input Impedance
(V _{CE} = -10 Vdd | c, I _C = -1.0 mAdc, f = 1.0 kHz) | h _{ie} | 2.0 | 12 | kΩ | | | Voltage Feedback
(V _{CE} = -10 Vdd | Ratio
c, I _C = -1.0 mAdc, f = 1.0 kHz) | h _{re} | h _{re} 0.1 | | X 10 ⁻⁴ | | | Small – Signal Cui
(V _{CE} = -10 Vdd | rrent Gain
c, I _C = -1.0 mAdc, f = 1.0 kHz) | h _{fe} | 100 | 400 | - | | | Output Admittanc
(V _{CE} = -10 Vdd | e
c, I _C = -1.0 mAdc, f = 1.0 kHz) | h _{oe} | 3.0 | 60 | μmhos | | | Noise Figure
(V _{CE} = -5.0 Vd | c, I _C = -100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz) | NF | - | 4.0 | dB | | | SWITCHING CH | IARACTERISTICS | | | | - | | | Delay Time | (V _{CC} = -3.0 Vdc, V _{BE} = 0.5 Vdc) | t _d | - | 35 | ns | | | Rise Time | $(I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$ | t _r | - | 35 | | | | Storage Time | $(V_{CC} = -3.0 \text{ Vdc}, I_C = -10 \text{ mAdc})$ | t _s | - | 225 | | | | Fall Time | $(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$ | t _f | _ | 75 | ns | | * Total shunt capacitance of test jig and connectors Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage and Fall Time Equivalent Test Circuit ### TYPICAL TRANSIENT CHARACTERISTICS - T_J = 25°C Figure 4. Charge Data Figure 5. Turn - On Time Figure 6. Fall Time # TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$ Figure 7. Figure 8. ### **h PARAMETERS** h_{oe}, OUTPUT ADMITTANCE (μ mhos) 70 50 30 20 10 7 5 L 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (mA) Figure 9. Current Gain Figure 10. Output Admittance Figure 11. Input Impedance Figure 12. Voltage Feedback Ratio ### TYPICAL STATIC CHARACTERISTICS Figure 13. DC Current Gain Figure 14. Collector Saturation Region Figure 15. "ON" Voltages Figure 16. Temperature Coefficients ### PACKAGE DIMENSIONS ### SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y** ### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994. - CONTROLLING DIMENSION: MILLIMETERS - DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF - THE PLASTIC BODY AND DATUM H. - DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS 6 AND 6 APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|-----------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | | | 1.10 | | | 0.043 | | A1 | 0.00 | | 0.10 | 0.000 | | 0.004 | | A2 | 0.70 | 0.90 | 1.00 | 0.027 | 0.035 | 0.039 | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | С | 0.08 | 0.15 | 0.22 | 0.003 | 0.006 | 0.009 | | D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 | | E | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 | | E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 | | е | 0.65 BSC | | | 0.026 BSC | | | | L | 0.26 | 0.36 | 0.46 | 0.010 | 0.014 | 0.018 | | L2 | 0.15 BSC | | | 0.006 BSC | | | | aaa | 0.15 | | | 0.006 | | | | bbb | 0.30 | | | 0.012 | | | | ccc | 0.10 | | | 0.004 | | | | ddd | 0.10 | | | 0.004 | | | PIN 1. EMITTER 2 2. BASE 2 STYLE 1: - 3 COLLECTOR 1 - 4. EMITTER 1 - BASE 1 - 6. COLLECTOR 2 ### **RECOMMENDED SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative