MSP430x5xx Family

User's Guide

I3 TEXAS

INSTRUMENTS

Literature Number: SLAU208
June 2008

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS

INSTRUMENTS
Contents
MG o 15
1 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
1.1 System Control Module INntrodUCHioN [oo e e ieeeereeeeaeeereeeeeoeeeeoeeeoseeioeeeseeeeoeeeoseereseeeaeees 13
1.2 Principle Of OpPeratioNceseeeeeeeeeeeeereoeeeeeereeeeoeeteseeeeseeroseereseeeseeeeoeetoseeroseeeesreroeeioseereseesaneeres 13
1.2.1 Device Descriptor Table]. .. oo et e eseeeeeeeieaeeesieeeseeeiessseeesssesseeeeeesseeeesesseeeeiesseeeess 13
2 = To o A oo e (= 13
1.2.3 Boot Strap Loader (BSL) ieeieoeeeeeeereaeeroneeeoeeeeeeeeeoeereoeeeoseeroseeeoeeieseeeeseeroseeeoeereseeeeeeses 13
1.2.4 JTAG MailbOX SyStem (IMB) e e e e s seeeeeeeeeeeeeeieaseeesieaseeeeieeeseeeseseseeeieessseeeesesseeeeieseeeess 19
1.3 Memory Map—Uses and ADilities]ie e e reeeeeeeereeereeeoeeereroeeeeeeoreeeeeeeroeeeeeeoeroeeeeeoeioeeeeroeeereeeeioeess 20
1.3.1 Vacant MemoOry SPaCE . eeeuteeuueeeteeneeeeeeaseeeeteesseeetiesseeetiessseeeiessseeeieesseeereesseeeerseseeeeess 2Q
1.3.2 JTAG LOCK MECNANISIM st ettt eresteraseeiaseieneeeesseiaseerasesesseeeeseioseereseeessteioseieneereseesaseeres 2d
1.3.3 SYS Interrupt Vector GeNeratorSf.ueeueeeeieeeieeeereeeeiieeereseeeiseiieseieseeieseeeesseieseeeieeieseeieseeres 2]
1.4 a1t gV o] & 22
1.4.1 (Non)-Maskable Interrupts (NMI) oo e e see e e eeaaeeeeeeeaseeeeseeeeesseeeseeeseseseeesessseeeeessseeeeees 27
1.4.2 SNMI TimiNQ i seeeeeeeoeeeeeeoeeoeeeeeeoereeeeoeeoeeeeeeoeeoeeeoeeeeeeeeeoeeeeeeoeroeeeeeeortoeeeeroeeeeeeeioeees 23
1.4.3 Maskable INterruptS e e eeeeeeeeeeeeeereaeereeeeoseeeeeeeeoeereseeeoseeroseeeoeereseeeeseeroseeeoeereneeeeeeses 29
[ale=Ty gl ol M o dolol=SS o T | FF 24
15 (O] oT=Te=NilaTo Y (oo (=2 29
1.5.1 Entering and EXiting LOW-POWer MOOES L e ueeeeeeeeraneeraneeeoeeeeeeeieseeroseeeoseeioeeeseereseesaseeres 23
1.6 S e[ae] o] (=530 (o] gl e \WYRI S NVET N o] o] [[e= 110) o 1S I 30
1.7 Connection Of UNUSEO PiNS e i eeeeeeoereeereeeeeeeeeroeeoeeeoeeeeeeeeroeeeeeeorroeeeeroreeeeeeroeeeoeeeereeeroeeeeeens 30
1.8 Reset and SUDtYPES Lot ieetteeeeraeereeeeeeeeereneeroneeeoseeeoeeeoseereseeeoseeroseeeseereseeeoseetoseeeseereneereseeses 30
1.9 [l T a0 o MY =Toi (o) & T 3]
1.10 Special FUNCLION REQISIErS [iieeeeeeroereeeroeeeeeeoeroetoeeeoreeeeeeroeeeeeeoeroeeeeeoereeeeoeroeeereioeioeeroeeeeeeees 33
111 SYS REQISIEIS ieieeeeeoueeraeeteaeeteseeroeeroseeeoeeieseeeoeeroseeeoeeeeoeeeoseeroseeeoseiesseeeseetoseeroseienseeeeeeses 31
2 Watchdog Timer (WDT _A) [oioiieeeieeeeieteee it ieaeaeataraeeseterererereaeaearazaeererererereeeaeaeaeacarese. 13
2.1 Watchdog Timer INtro0UCHON e st s eeeeereeereeeeraseeeeseteseeeeseeieseereseieseeieseeseseereseieseeieseereseereseeenes 44
2.2 Watchdog Timer BIOCK Diagram e seeeeeeeeeeeeeereeeeeaeereeeeeoeeroeeeoeeieseeeeseeeaseeroseieseereseeroseeraeeeenes 43
2.2.1 Watchdog Timer COUNEI . ettt e eraeeteneetaeetaneeraseteaeeeiaseieseeteseeieseeioseieseereseeroseeraseeeneess 13
222 WatchdOog MOOE i e et ieeeieeeieneereseeeaeeeiaeeieaeeieseeeeseeieseeeoseeeseeeeseeioseeeeseeesseeeseeieseeeesees 48
223 Interval TIMer MO it ioeeeeroeereeraeeeeeeaeraeeeeroeeeeeeoeeeeeeseroeeeseeorroseeeeroeeeseeorroseroeeoeseees 13
2.2.4 Watchdog Timer INterrupPtS]aeeieeeereeeseeeeeeeeeieaeeiaseeeaneeieseieseereseereseeroeeeseeesseeieseereseeeaness 13
2.25 Clock Fail-Safe FeatUre e ueeeeieeeereeeeaeeeieeeieseereseeeeseeieseieseereseeseseeioseeeseeieseeieseereseeeeses 49
2.2.6 Operation in LOW-POWEr MOOES ittt oeeteeeeeeeeeieaeeroreeeooeeroeieoeereoeeroseeioreeeseeeeoeereseeraseeeaeess 13
2.2.7 Software EXamples oo eeieeeeieeeeiaeeiaitiieeeiaaeeiaieiiietiiaeeieieeieieiiiateiaeiemeeiiieeianteraieiiieess 19
2.3 Watchdog Timer REQIStErS] s s e eieeeeeeeereieereseeraseeeaeeieseeeeseeieseeieseieseeieseeieseereseieseeieseeresrereseeenes o0
3 Unified CloCK SYStemM (UCS) Lottt it ieteeeeietetaeeeeeieteraeeeieitaceeeeteiaraeeeeerecaceeeeeeracacees 53
3.1 Unified Clock System INtrOdUCHON e eteeeereeeeeaeeeeeeereaeereseeeoneeroseeeoeeeeeeesoseeroreeesseeeoeeeeseeroseeeaness 54
3.2 Unified Clock System Module Operation] ... ueee e e et e eeeeseeeesseaeeeeeiesseeesieesseeeiseeseeessssseeeesessnees 54
3.2.1 Unified Clock System Module Features for Low-Power Applications[ee e oeieeeeeeeeeeeeeieeeereeeeeeee.. od
SLAU208—-June 2008 Contents 3

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
www.ti.com
3.2.2 Internal Very-Low-Power Low-Frequency OscCillator (VLO) o oreeoreoeeeeeeareoeeeoceoceeoreoeeeereoceeeens 54
3.2.3 Internal Trimmed Low-Frequency Reference OscCillator(REFO)[Leceieeeereeeereeereaeeeeeeeieeeeraeeeaee.s 51
324 XT1 OSCillatON e st eeeeteeeeeeesseeseeessseeseeeeeesseeessesseeestesseeeessssseeesssesseeesessseeessssseeessesnees 51
325 XT2 OSCillatOMeeseeeeeeraeeeeeeaeroeeroeeeeeeseeoeeeeeeoreeseeeeroeeeeeeoeeoeereeeoeeeseeoeeoeeeoeeeeeeseroeeeeeens 57
3.2.6 Digitally-Controlled OSCillatOr (DCO) [iiiueeeeeeeroueeraeereoeeeeorereseereeeroeeeroeereseereseeroseeraeeeneees 53
3.2.7 Frequency Locked LOOP (FLL) ieeeeiieeeeeeieeeeeeeeeeeeeessaseeeeesesseeesiessseesisessseessssseeeessssnees 53
I I o @ Y oo [V] F=1 o] | P 59
3.2.9 Disabling the FLL Hardware and ModulatO e oo ereeeereeereeeeeaeeeeeeeeooeeroeeeoeeeeoeeeeseereseeeaeees 64
3.2.10 FLL Operation from Low-Power MOdesS].. .o eeeieeeeeteeieeseeeeieaeeeetieeseeesisesseeeisssseeeesessnees 64
3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules[.... oo oo eeeee e od
3.2.12 Unified Clock System Module Fail-Safe Operation[eeeeeeeeeeeeeeeeeeeeereoeeroreeeeeeeeeeeroseeroseeeaeess 6]
3.2.13 Synchronization of ClOCK SigNalS e eeeeseeeeeeereeaeeeeieaeeeeseaeseeeeseeseeeisessseeessssseeeseesnees 64
3.3 MODOSC Module OSCIllatON e seeeeereeeeeeeaereeeeeeroeeeeeeoeeoeeeoeeoeeeseroeeeeeeoeroeeeeeeorroeeeeroreeeeeeeroeees 69
3.3.1 MODOSC OpPEratiON]ieeeeeeeeereeeeeaeeremeeeeoeeroeeeoseteseeeeoeereseereeeseeeeroeereseereseeroseeraeeeeees 69
3.4 Unified Clock System Module ReQiSters. .. ieeeeesieeeeeeeeeeeseeeerseseeeeeiesseeesiessseeeisesseeeisseseeeesessnees 64
4 Power Management Module and Supply Voltage Supervisor [ooo.eeeeeiieieeieieseeereeeezezazaeee.s 71
4.1 PMM INtrO0UCHON s et eeereeraeeeeeroeraeeroeeoeseseroeeeseerroseeeeroeseseeoeroeeeserosroseroeeoeteseroetoceeseroeeeeees 79
4.2 Y 1Y @] o =T e= o] o M 34
4.2.1 Supply Voltage Supervisor and Monitor — High Side].eeieeeeieeeieeeeieeeieneeieeiiieeiieeeieseereseeeieess 34
4.2.2 Supply Voltage Supervisor and Monitor — LOW Side[ieeieeeieeeeeeeeeroeeieoeereeeeeoeeeeoeeioseeraseeeeess 83
4.2.3 Supply Voltage Monitor Output (SVMOUT, OptioNal)[eeseeereeeereeereereaeeieieeieseeraseieaeeieseeianees 34
4.2.4 Performance OptimiZation] . .eeseeeeseeeereseeeeeeeeeeeieseereseeieseiiseeeeseeieseeieseieseeieseeiesrereeieseess 84
425 Voltage ReferenCe o ieeeeeeeeereneereeeeoeetemeeroseeroeeeseeteseetoseeroeeeoeeieeeeeoseeroseeeoeereseeeanees 33
4.2.6 Brown-Out RESEt (BOR) et teuttteueteaeeieneetaneeraneeraseieseeieseeiaseeieeeieseeieseeessteraseieseereseeeaness 33
4.2.7 Manual Control of the Power Management MOAUIE[. eueeeieeereeeereeeieeeeieseeiieeieseieseereseeieness eS|
4.2.8 1/O-POrt CONION . zeteeerueeeeeeeraeeeeeeoeseseeoeroeeeeeoeeeseroeeoeeeseroeeeeeeorroseeseroeeeseeorroseeeesaeeees 8d
429 PMM INt@rrUPTS e uereereeeeeetienseeetieaseeetsesseeetsesaseeeseasseeessesseeeeiesseeessessseesssssseeesssnnees 2d
43 PMM REQISTOrS ettt euetoeeeeerareeeeeoetoeeeeeeoeseeeeoeeoeeeeeoeeoeeeoeeoeeeeeeoeeeeeeoeioeeeeeeorioeeeetoreeeeoeioeess 31
5 612V I 94
51 CPU INtrO0UCHON sttt eeeeereeeeeneereneeeoeeteneeeeneesoneeroeeeeseeteseetoseeroseeeneeieseeeoseeroseeeoeereseeeanees 94
5.2 [l o & T 98
5.3 CPU REQISTEIS e st eeereeeeeeeteeeeeeneeeeneeeoeeteoeeeeseeeesteroeeeeseeteseeiosteioseeeoeeieeeeeosteioeieseereseeeasees 99
5.3.1 Program CoOUNEr (PC) eieeeeerereeeaeereaeeeeoeereneeroeeeoseeroeereseereseesoseeroreieseereseeroseeraseeeaeess 99
SRSV r-Te @ 2o] 101 A 1) 100
5.3.3 Status RegiSter (SR) [iociiooeeeonreeoeeieoeeeeeeioreioeeieoeeeeseeeonteioeeeoeeeeeeesosteroseeearereseeeesees 107]
5.3.4 Constant Generator Registers (CGLl and CG2)[iiiieeeeeoeereeeroneeroeeeorereeeeioseeroeeeaeereseeeeeees 104
5.3.5 General Purpose Registers R4 t0 RIS . e e uiseeeeieeeeeeeieeseeeiseeseeessseeseeesseseeesessseeeesesnees 103
ST S Ao [o [=t o To Y oo [T 103
541 ReQiSter MOUE ot eeetteeeeeeeereneeeaeeieaeeeeeeroeeroeeieseeeeseeeoseeioeeioseeroseesoseeroseieneeroseeeaeees 1049
W [0 Te (X Cle BV [o1e - 101
LG IS V001 o o] [Tl 1Y oo I< I 117
5.4.4 ADbSOlUte MOOE oo oo e eeeoeeaeeeeeaeeaeeeaceoeeoeeoeeeeeeaseoeeeeeeaseeeeeoeeoeeeoeeoeeoeeeeceaeees 119
545 Indirect Register MOO€ .. .ue e it s seeeeeeeeseeeeeeessesseeeeseeseeesseesseesssesseeessesseeesessseeeeiessees 119
WSS [To [1¢=To MWANT (o] (e[l g=Taa (=101 A\ [o o [119
547 Immediate MOOE i o e oo eeeeeeeeoeeaeeeareaeeeeeeaceoeeeoreoeeeeeeoreoeeeoeeaeeeeeoreoeeroeeaeeeseeaceaeees 120
55 MSP430 and MSP430X INStrUCtONS]e. e e e e s e e e eseeeeeeeieeeeesseeseeesseeeseeesessseeessssseeesiesseeesieesseeess 123
551 MSP430 INStrUCHONS i eettzeeeeeeeroeeeeeroreeeeeoeroeeeseeaeeoeeeeeeoeeeseeoeroeeeoeeoeeesetoreeeeeeroeeeeeees 123
5.5.2 MSP430X Extended INStruCtioNS e e ueeeeeeeeereeereeeeoeereaeeeeseeroeeeoseieoeeeoseeroseeeaeereneeeenees 121
Contents SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com

5.6 INStruCtion Set DeSCriPtON s st teeeeeeroreeeeeaereeeroeeeeeeoeeoeeeeeeoeeeeeeoreoeeeoeeoeteeeoeroseeoeroseeeroeeeeeees 139
5.6.1 Extended Instruction Binary DeSCriptioNS e eeeeeeereeeeeoeeeeeeereseeroeeeorereeeeeoseeraeeeseeieseeeaeees 174

5.6.2 MPS430 INStruCtiONS s eeteeeeieueeraeeieneereseeiasrereseieseereseeresteiaseiessereseeieseeraseeeseeieseeranees 147

5.6.3 Extended INStruCtiONS e sz eeeeeeeeroeeeeeroeeeeeeeeroeeeeeeoeroeeeeeeoeeeeeeeeroreeeeeoeioseroeeoseeeroeeeeeees 194

5.6.4 Address INStrUCHONS e eeeeeereneeraeeteaeeeeoeeioseeroseeeoeeeeseeeeseetoeeeoseteseeeeseetoseeraeeieseeeeeees 233

6 Flash Memory Controller [oot eeaeaeases s rereaearaeazaserserereaeaearararerererereeeacacaees 257
6.1 Flash Memory INtrodUCHON [ues e et e e reseereseieneeeeneereneereseeesseeieseieseeieseeiesteieseeeseeieseeieseereseeeieess 252
6.2 Flash Memory Segmentation] e seeeeeeeeereeeeeeeeeeeeeeeoeeeeoeeroseeroseeeseeteseeeoseeroreeeoeeeroeeeeneereneeeaeees 253
(I ST =Te [o [T O 254

6.3 Flash Memory Operation] e e e eeseeeereeeereseeeeseeieseeeseeteseeieseeieseeeeseieseeieseeieseeieseeisseeeeeeieseeiesees 259
6.3.1 Erasing Flash MemoOry oo ooeeseeeoeeeeeeaeeeeeeeeeeeeeesseeeeeesseeeeeesseeeeeeesseeeeeesseeeeeesseeeeeesnees 253

6.3.2 WIriting FIash MemOry e e e s e e eieseeiaeteaeeteeeetaneeraseeeaeeieneeianeeiaseeeaseieseeieseeraseeraseieseerenees 259

6.3.3 Flash Memory Access During Write OF EraSeliueeeeieeeieeeereseereseeieseieseereseeieseeioseieseeieieeeeeees 264

6.3.4 Stopping Write Or Erase CyCle|ieeeieeeieeeereeeeraneeraeieoeeeeoeeeoseeroreeeoeeieseeioseeroeeeseereseeeeeees 261

6.3.5 Checking Flash memoOry[i s e ieeeeieeeieitieeeeiaateraieeeaeeieieeianeeraseesaseieseeieseeraseeraseieseeeenees 261

6.3.6 Configuring and Accessing the Flash Memory Controllerou e e eeeeereeeeeaeeieieeieeeereseeeeeeieieeienees 264

6.3.7 Flash Memory Controller INterrupts] e eeeeereeeereeeieoeeeeneeroseeroeeeeseereeeeeoeeroeeeneereseeeaeees 261

6.3.8 Programming Flash Memory DeViCeS] . .uuieeeeieeeereeieaeeieieeraseeraeieseeieseeieseeraseieseeieseeeanees 261

6.4 Flash MemoOry ReQiSterS e e ueseeteeeereseeeeseieseeeeseeieseereseiesseeeeseieseeieseeiosrereseieseeieseeienteieseeeieess 269
7 Digital 1/O [ioieieeeererereriererereaeaeararererererereeeaearararererereeeeeaeaeararerereeereeeeeaeaeacereeereeeeeaeaces 273
7.1 Digital 1/O INtrOdUCHON e s et teeereeeeraeeeeaeeieoeeeeeeraseeeeseeeoseeeoeeieseeeeseesoneeroeseoeereseeronteroeeeneess 279
7.2 [p]le]i - MV Olel= c:\ie] | 273
721 INPUt REQIStEr PXIN ettt teeeeoeeoeeaeeroeeeeeeeeroeeeeeeoeeoeeeeeeoreeeeeeetoeeeseeoeroseroeeoeeeseroeeaeeees 279

7.2.2 Output RegiSters PXOUT oot ieeeraeeteaeeeeoeeroneeroeeeoeeeeoeeeoseeroeeeoseieseeeoseeroseeearereseeeenees 279

7.2.3 Direction RegiSters PXDIR e iee e e i ieeeeeeeieeeaeeesseaseeeeteasseeetsesseeeissesseeissesseeesessseeeeeesnees 273

7.2.4 Pullup/Pulldown Resistor Enable Registers PXREN[Litotteeetoetoeeeeroereeeeorroeeeeeroreeeeeoeioeeeeeees 279

7.2.5 Output Drive Strength Registers PXDS i iieeeiieeeeeaeeieoeereeeraeeioeeioseereseeeoeeroeeieneereseeeaeess 279

7.2.6 Function Select Registers PXSEL .. i eeeieeeaeeereeeeeeeteasseeetiesseeeissesseeiseesseeesessseeeesesnees 279

727 Pland P2 INterrUpPtS e eeeeeeeeereeeeeeeeoreeeeeoetoeeeeeaeeoeeeoeroeeeeioeeoeeeoeroeeeeetoeeeseeeeroeeeeeees 279

7.2.8 Configuring Unused PoOrt PiNSE. e ieeeeieeeeeeeeeiaeeeeaeeieseeeeseeeoeeroeeioneeeeseeeoeeeeoeeioneereseeeaeess 279

7.3 B]le]i - IRV O R R[S & 279
8 YN oteT ol 4 go] | 1=] o 289
8.1 [SVN\Y (o I T doTo (¥ Toti{o] o I 284
8.2 [RYANY (o R e] o =Tr- 1ol o) N 2349
8.3 RAMCTL Module ReQiSters e eseeeereeeereieeeeeeieseieseereseeeeseereseeesseieseeieseereseeieseeisseeesseieseeiesees 281
9 D1V VN @feTal 4 go] I =T o IO 289
9.1 D1V VN i ol ¥ exx o] o) I 297
9.2 DIMA OOl At 0N et et teeeeesteeeeeesssesseeesseseesesasseesesasseeetseeseeesseesseesssssseeessssseeeseesseeeeiesseeeess 297
9.2.1 DMA AddressSing MOOES e e ieeeeeeeereeeeeeeeeroneeeoeeieseeeoseeeeseeioeeioseeioseesoseeeoeeiosreroseeeaeess 297

9.2.2 DMA Transfer MOOeS . oeieeeeieeeeeaeeieaeeeaeeraeeroeeieseeeeseeeoeeroeeeeseereseeeoseeroseeeneeroseeeaeess 2972

2 I VT [o @B AN N = 1 B = s 2971

9.2.4 Stopping DMA TranSerS] e ieeeeeeeoereeeroeeeeeeeeroeeeeeeoeroeeeeeeoreeeeeeeroreeeeoeroeeeeeroereeioeeeeeees 299

9.2.5 DMA Channel Prioriti@S ieseeeeeeeeeeaeeteaeeeeeeroseeroeereseeeeseeroreroeeieseereseeeoseeroeereseereseeeaeees 299

9.2.6 DMA Transfer CyCle TimMe i u e eesieeeeeeieeeeeesseseeeeeeasseeetsesseeessseseeeisseseeessessseeeesesnees 304

9.2.7 Using DMA With System INterruptS e eee e reeeeeeeeeeoeeeeneeeoneeioeeeeoeeeeseesoeeroeeeeseereseeeeeees 304

9.2.8 DMA Controller INterruptSh s seeeereeereeeeeeeeereseeroeeeoeereeeereseeroreeeoeeeeseeioseeroseeeseereseeeenees 304

9.2.9 Using the USCI_B I>)C Module with the DMA COntrolleN e osoeerererererrrrorororererererereeeoeoroeeces 307
SLAU208—-June 2008 Contents 5

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
www.ti.com
9.2.10 Using ADC12 with the DMA Controllen o e e et eeeeeeeeeeeeeeeeereeeeeoeeeeoeeeoseeroseeeoeereseeeeeees 307
9.2.11 Using DAC12 With the DMA Controllemo o e oo e eeeeeaeeeeeeeeeaeeereoeeeeeroreoeeeoceaceaeens 302
9.3 D)\ AN R e[S T 303
10 32-Bit Hardware Multiplier (MPY32) [t ettt et iteteeeeierasaeaeeerezaraeeererarazeeeerezacaeaees 317
10.1 32-Bit Hardware Multiplier INtrodUCHON e seeereeeeaeereoeereeereneereeeeoeeeeoeeroseeroeeeoeeeroeeeeseereseeeaeees 3172
10.2 32-Bit Hardware Multiplier Operation] .. eeseeeeseeeereeeereeeraeeteseereseeraseereseeeaeereseeeeseeraseeraseieseeeenees 314
10.2.1 Operand ReQiStErS . ueteeeeteeereeereseereseteaeeteieeieseeieseeeeseieseeieseeieseeieseeissteeeseieseereees 314
10.2.2 ReSUIt REQIStErS i eeieeeeeeeereoeereneeeoneeroeeeeoeeeeoeeroseeroeeeoeeeeoeeeesretoseeioeeroseeeaeeieseeeeeees 3149
10.2.3 Software EXamPIeS . eeeeeeeteeeeieieeiaeeiaeteaeeieieeiasteiaseeeaeeieieeieseeieseeieseiieseeraeeieneeienees 3171
oA S = Toa (o] o = L N (W]] o 1T &S 311
10.2.5 Putting It All TOgetheN o e seeeeeeereeeeeaeeeraeeeeoeeeeoeeeeseeroneeeoeeeeoeeeeseeieseeioeeroseeeaeeieneeeeeees 322
10.2.6 Indirect Addressing of Result RegiSters] . eeueeeereeeereeeereeieseeieseeianeereseeeseirseeieseereseeeaeess 329
10.2.7 USING INtEITUPES et teseereeeeraneeraseienseeeneeieseereseeesseeieseieseeieseeiosteroseeesseeeseeieseeroseeeesess 324
10.2.8 USING DMA oot seeeeeeeeeoneeeeeeneeeeeesseeeeeessseeeeeesneeeeeesseeeeeesneeeeeeesseeeeessseeeeeesseeees 323
10.3 32-Bit Hardware Multiplier ReQiSterS e e seeeereeeeraeeieaeereseeraseereseieseereseereseereseeesseieeeereseeraseeeaness 329
11 61 S {oR ¥ [o o [T] 1N 329
11.1 CRC Module INtrO0UCHON e sttt eeeeraereeeroeeeeeeoeeeeeeeeeoeeeeeeoeeoeeeoeeoereseroeeeeeeoeroseeeeroeeeeeeoeraeeeeess 330
11.2 CRC CheckSUm GeneratiON] i eeeeeeeeeeeeeeeeeereoeereeeeoseeeoeeeeseeteseeeoseeroseeeoeereseeeeeeroseeeasereseeeenees 337
1121 CRC IMplementation] . .. s e e e seeeaeeeeeeeeeeeesesseeetseeseeesseeseeesssesseeessssseeessesseeeeiesseeeess 337
11.2.2 Assembler EXamMPleS] e seeeroreeeeearreeeeeeeoeeeeeeoeioeeeoeeeeeeseroeteseeieeeeeeeroreeeeeorieeeioeeaeeees 337
11.3 CRC MOdUIE REQISIErS i eteeereeeeeaeeeeeeeraoeereeeeoseeeoeeeeseeteseeeoseeroseeeoeereseeeeseeraseeroeereseeeenees 333
12 R o P 339
2% R o o U=T AN g i do o (U Tt i o] o | I 3349
12.2 Timer_A OpPeratioN]ieeeeeeeeeeeeeeoeeieoeeeeeeraeeeaeeeeoeeteoeetoseetoeeeseeeeoeeioseeroseeeeeeeroeeeeseereseeeaeees 331
12.2.1 16-Bit Timer CoUNteN. oot et eee et e e eeeaeeeeeeaaeeeeeeeaseeeeeeaeeeeeeeaseeeeessseeeeeesseeeeeesseeeess 331
12.2.2 Starting the TimMer e uee e reeeereeiieeeeieeeieaeeteieeieseeieseieseeieseeieseereseeieseiisseieseeieseeeesees 339
12.2.3 Timer Mode CONtrOl s e seeeraeeeeeeaeraeeroeeaeeeeeoeeeseeoeeeseeeeoeeeseeoeseseeetoeeeoerosseseroesaeeees 339
12.2.4 Capture/Compare BIOCKS[oesieueereeeteeeiraeeianeeraseeiaseeraseieseeieseeraseereseeeseeirseeieseereseeeaeess 347
12,25 OUtPUt UNit s et e et eeeeeeeroeeaeeeeeaeeeeeeaeeeeeeoesoeeeoeeaeeeseeoeeoeeeoreoeeeeetoreeeeeoesoeeeeeeaeees 343
12.2.6 Timer_A INterrUPES e e eeeeereeeeeeeeteoeeeeeeereseeeeseeeoseeroeeieseetoseeronteroreeeoeeeeseeronteroseeeaeess 349
R B 1 o L N =T o 151 (=T I 349
13 BNl (T = N 359
G0 R 10 U=V G S0 o i doTo [V od 1 o) o] I 359
13.1.1 Similarities and Differences From Timer Al oiieeeeeeeereeeeaeeieoeeeeoeereseeioeeroeeeeseeieneeeeeees 3549
132 Timer_B OpPeratiON e e s s sseeeeeseseeeeeeseesseeeesesseeesteessseessesseeesseesseeesssssteesesssteesiesseeeeiesseeesss 353
13.2.1 16-Bit Timer COUNEN o ieeteeeraeeaeeeaeraeeeeeeoeeeeeeoeioeeeoeeeeeeeeoeeeeeeoreeeeeeeroreeeeeorreseroeeaeeees 359
13.2.2 Starting the Time e oo oo e teeeereeeeaeeeeaeeeeoeeeeoeeroseeroseeeoeeieseeeoseeroseeeoeeeroeeeeneeroneeeaeees 353
13.2.3 Timer Mode CONtrOl ... e ettt ee et eeeseeeeesseeseeetseeseeesseesseeessssseeeesssseeeeiesseeeeiesseeeess 353
13.2.4 Capture/Compare BlOCKS oot ioeeeeeeorreeereeeeeeeoeroeeeeeeoreeeeeoeroeeeeeeorreeeoeroeeeeeeoeeeeroeeeeeees 367
13.2.5 Output Unit o o e eteeeeeeeeaeeoneeoeeaeeeoceaeeoneeaeeoeeeoreoceeeceoreeeeeaeeoeeeeceaeeees 364
13.2.6 Timer_B INterrUPtS] e e s seeeeeeeseeeseeeeeseeeeeesesseessseeseeesseesseesssssseeessssseeessesseeeeiesseeeess 361
13.3 Timer_B ReQIStOrS s seeteeeeeeroreeeeeaereeeroeeoeeeeeoeeoeeeoeeeeeeeeoeeeeeeoetoseioetoreeeeosiosetoeeeseesrroeeeeess 370
14 Real-Time CIOCK (RTC_A) [ioireterrererearerearereererearareseeresearerearerearerearerearereaserenrereacerencerens 379
14.1 Real-Time ClocK INtrOdUCHON et tu et teeeraeeeraeeeraeeieneetaeeiaseeraeeieneeteseeiaseereseiesseseseereseeraseeeaeess 379
14.2 Real-Time Clock OperatioN]useeeeeeereseereseeieeeeeaeeieseereseeieseeieseieieeieseeieseereseieieeieseeieseereseeeieees 379
I R e 10 [(=] 1Y oo = 379
i or:1 [[T Y (ol [N 373
Contents SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com

14.2.3 Real-Time CloCK INterrUPtS e ieeeeeeeaereeereeeeeeeoeeoeeeeeeoeeeeeeoeroeeeeeeoeeeseeoeroseeoeeoseeseroeeeeeees 380

14.2.4 Real-Time Clock Calibration oo eeeeeoeeeeeeazeeeeeeeeeeeeeesneeeresonreeeeesnceeeeeeseeeeeesseeeeeeesseeees 389

14.3 Real-Time ClocK ReQiSters .. ueesiseeeeereeeeeeeseeseeesieaseeessseseeesiseesseeisssseeeisessseeeseesseeeeiesseeeess 383
15 Universal Serial Communication Interface, UARTMode [ieeeeeeeeeeeeeeees 393
151 USCI OVeIVIiEWl it eteueeeaeeeeeeeeeoeeteseeeoseeraseeeoeeieseeeeseetoseeeoeeioseetoseetosteroseeeeeeeeeeeroseeraseeeaeess 394
15.2 USCI Introduction: UART MOA€[L. e oo seeee e eeeaeeeeeeeeeeeeeaeeeeeeeeaeeeeeeasneeeeessneeeeeesneeeesesseeeess 3971
15.3 USCI Operation: UART MOOE et teueeieeereeeeiaueiiareieneeteseeieseeieseieieeieseeiestereseieiseieeeeieseereseeeieees 394
15.3.1 USCI Initialization and ReSet . seeieeeeeeeeereneeeeeeeoeeeoeeieseeieseeroteroeieoeereseeioneeroseeeaeess 399

15.3.2 Character FOrmat. . ..ot see e e eeeaeeeeeeaeeeeeseaeeeeeeeaeeeeseeaseeeeessneeeeeesseeeeeesseeeeeeeseeeess 399

15.3.3 Asynchronous Communication FOrMatS e eueeeereseereeerereieieeieseeieseereseeeeseiiseeieseereseeeeeees 399

15.3.4 Automatic Baud Rate DeteCtiON [eeeeeeeeereeeeeoeereoeereseeroeeeoeeieoeeeoseereseeioreeroseeeseereseeeeeees 402

15.3.5 IrDA Encoding and DeCOiNG e e uueereeeeraeeeeaeereneeiaseeraeeeaeeieseeieseereseeieseessseeesseieseeeanees 404

15.3.6 Automatic Error DeteCtioN] .. e e e sseeeeeeeteeeeeeteeeeeeieeeeeeieeeaeeeeeeaseeeeteeseeeeieeseeeeieesseeess 403

15.3.7 USCIReceive Enablefis oo ieeeieeeeeeeeeraeeeeaeeeeoeeioseeroneeeoeeieseeeeseereseeioseesoseeeseeieneeeeeees 404

15.3.8 USCI Transmit Enablel o o oot eeeee e e e eeeeeeeeeeneeeeseeaeeeeeesaneeeeeeseeeeeeseeeeeeeseeeess 409

15.3.9 UART Baud Rate Generation] e . e sseeeeeeeeeeeeeeeieeeeeeeeeseeeeeeeeseeeeeeeeeeeeeeseeeeieeseeeeieesseeess 401
15.3.10 Setting @ Baud RaAte]iesioeeeeoeereeeereeeroneeeoeeeeoeeeeseeroneeeoeeeoeeeeaeeieseeioseeroeeraeeieneeeeeees 409
15.3.11 Transmit Bit TimMINQ e e eeeeeeeeeeeaeeeeseaeeereeeaneeeeeeaeeeseeaeeeeeeaseeeeeeeseeeeeeesseeeeeeeneeess 409
SIS T 22 ST=Tol=T\VICN 211 g T To | 410
15.3.13 Typical Baud Rates and ErrOrs|eeseeeeeeeeeeeeeeeeeeeroseeroeeeaeeieoeeeoseeroseeeoeeroeeeeseereseeeeeees 417
15.3.14 Using the USCI Module in UART Mode with Low Power ModesS[.. .. ooooeeeeeeeeeeeeeeaaeeeeeeeanee... NS |
15.3.15 USCI INt@ITUPES i ee s eeeoeeeeeereneesoneeroseeeoeeeeoeeeoseereseeeoseeeoeeeooseieseeioseesosteroseieseeeeeees 413

15.4 USCI Registers: UART MO ietieueereeeeereeraneeeaeeieoeeeoseeioseeroeeieseeeeseetoseeroseieeeeeeeeetoseeraseeeaeess 414
16 Universal Serial Communication Interface, SPI MOA€ [ioiorieiieieieiieieraeieieierareeeeieracaeaees 423
16.1 USCI OVOIVIOW e et e etseeeeeesseseesiseseeesssesseeessesseeettessesetssesseesisessseeisssseeeisesssteessessteeeiesseeesss 429
16.2 USCI Introduction: SPlI MO e e s et eteeeereeeraeeeeaeeeeeesoseeroseeeoeeeeseesosteroeeeeeeeeeeeeestereseeeanees 421
16.3 USCI Operation: SPI MOOE . et iieeeieeeeeeeeraneeraeeieoeeeeseeioseeroseeeaeteeseeioseeroseeeeeeeroeereseeroseeeanees 129
16.3.1 USCI Initialization and ReSe ...t esieeeeeereeeseeeetseeeeeiseeseeeiseesseeessssseeeseesseeeiieseeeess 429

16.3.2 Character FOrmat o s et eeeeseeeeeeeeeeeeeeoeeeeeeeoseeroseeeoeeeeoeeeoteroseeeoeeeeoeeeesrereneeeeeees 429

16.3.3 Master MOOE oo eeeeeeeneeeeeeeeeeeeeeneeeeeeomeeeeeesseeeeeeeneeeeeeeeeeeeesssceeeeessceeeeessceeeeesseeeees 130

R S AV R Y (oo [437

16.3.5 SPIENnablel o ettt tiieetieateiiieeiaatitatiiaetiiaetiiatetaatiiatiiaetiiateteiteiieeen 437

16.3.6 Serial CloCK CONtrOl oo e oo e eeeeeazeeeeeeeeeeeeesseeeeeeeeeeeeeeoseeeeessnceeeeessceeeeeseeeeeesseeeees 139

16.3.7 Using the SPI Mode with Low Power MOOeS] .o ioeereireeeeeeiseeeeeeeseeeeeeereeeseeeeiesseeeeieeeeeess 437

(RS RIS] d l g) =T d¥ o] & 433

16.4 USCI Registers: SPlI MO0 i e tieoeeieoeereeeraneeeaeeieoeeeeseeroseeroeeeoeeeeseeioseeroseeeoeeeeeeereseeraseeeaeees 13
17 Universal Serial Communication Interface, 1°C MO0 [ioeeeoorrrrrreosoorrrerreosoorrrrersoooooeeeees 439
i R U o @ = oY o 444
17.2 USCI Introduction: 12C MOOE [feeereererserereeoerrrerreeareereeareeareereeerreareeaeeereearrereeereeareemeeereeareeee:s 277
17.3 USCI Operation: 12C MOOE i reseeeererrerreerreerereerererrererrscereereerarereerereerereerereeeereerereseareeeeceerece 773
17.3.1 USCI Initialization and ReSel ... st e s eeeeeeeereeeeeeeteeeeeeiseeeeeieeeseeeeeeesseeeeeesseeeeiesseeeess 443

17.3.2 12C Serial Datal oo eeeroreeorrerrrorreorrererorrearrerrrerrarresrrerrarre et irrerreirreirraree i rerereees 177

17.3.3 12C AJAresSiNg MOOES Leroreerererrererrerreerreerareererereecerearereareeeereresreeereererrecerrecereececens 475

17.3.4 12C Module Operating MOOES Teeeeeeereereereererrereerrerrereereereereereereereereereareereereareeeeeeeeeene: 444

17.3.5 12C Clock Generation and SyNChroniZation] reeseeeerererrecerrorereorereereresreresrererrererrorereacerens 459

17.3.6 Using the USCI Module in 1°C Mode with Low POWEr MOJES ez rrerrerereerererrererrecerracereacecees 454

17.3.7 USCI Interrupts in 12C MOOe[iorsoeeeereerereerereereereoreoreereereareereereereereereereereereereseereeeeene: 454

17.4 USCI RegiSters: 12C MOOE ireszreerzreerorerroresrarerrorerrarereseereerereerereerereerereerereseererraresearereecerence 759
SLAU208—-June 2008 Contents 7

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
www.ti.com
18 Y bl ox by N 4649
18.1 ADCI12_A INtrOdUCHON e st teeeeeeereeeeeneeraneeeaeeeeoeeeeseeroseeroeeeeseeeeseetoseeroseeeseeeeoeereseeraseeeaeess 4649
18.2 ADCI12_A OPEratiON]ieseeeeeeereeeeeeeeteneereseeiaseeraseieseeieseeiaseeieseiemeeieseeiostereseieseeieseereseeraseeeaeess 463
18.2.1 12-Bit ADC COr€lioriserreoeerereroneeeoneeroeeeeoeeeeoeeeeseeroseeeoseeeoeeeosseieseeioseeeesteeoseioseeeeeees 469
18.2.2 ADC12_A Inputs and MUltipleXem e seeeeeeeereoeeeeeeraneeroeeieseeeeseeroseeroreeeoeeeeoeeeeseeroseeeaeees 463
18.2.3 Voltage Reference Generaton. . e e eeeeeeereeeeeaeereseereseereseeeaeisseeieseeieseeieseersseeeseeieneerenees 469
18.2.4 AULO POWEr-DOWN| Lt etttisssasseesssss e eeeaseessssisssssssssssssssseeeeeeeeeeeseseisessssssssnsnnnnnns 464
18.2.5 Sample and Conversion TimiNQ oo eeeeeeeeeeeeoeeeeeeeroseeroeeeoeeieoeeroseeroreeeoeeroeeeeseereseeeeeees 470
RS 2 SR ©fo 1o \VZT 1 To] WY =T 4o To T oY I 177
18.2.7 ADCI12_A CoNnVerSion MOOES| . e e e s e e e eeeeeeeeieeeeesieeseeeeieeeseeeeeeaeeeeeesseeeeiesseeeeieeseeeess 474
18.2.8 Using the Integrated Temperature SeNSOM e eeeeeeeeeraeeroeeeoeeeeeeeroseereseeeoeeroeeeeseereseeeaeees 471
18.2.9 ADC12_A Grounding and Noise CoNnSiderationS]ueeeereeeieaeeieseeraneeraeieseereseeiaseeraseeeaeess 178
18.2.10 ADCI2_A INtEITUPTS eeseeeeeereueeeoneeroneeeoeeeeoeeeeseereeeeeeeeeoeeeeoseieseeioseeeesteraseioseeeeeees 479
18.3 ADCI12_A REQISIEIS ieueeeeeeereeeeeoeereoeeeeeeraneeeaeeieoeeeeseeroseeroeeieseeeeseetoseeroseeeeeeeeeeeroseeraseeeaeess 2387
19 Embedded Emulation Module (EEM) [ieieeieieie et eeeeaeaeeseiieieeeaeacazaeererrereeeaeacasns 439
T R =1 =Y W g oo [V Lol [o) o 497
19.2 EEM BUIlding BIOCKS s et e e ie e ieeeeeeeeeeeraneereseeeoeeeeoeeeeseereeeeoeeesoeeeeseereoeeeoseeroseeeseeieseeeenees 497
e T R o o= £ 199
19.2.2 Trigger SEOUENCEM e e e tseeeeeseeseeeeeeaseeeesesseeetseeseeessessseeessssseeessssseeeteesseeeeiesseeeess 494
19.2.3 State Storage (Internal Trace Buffer) oo iooreeeeeereoeeroeeeeoeeeeoeeieseeieeeeeoeeeeeeeeseeieseeeeeees 193
19.2.4 CyCle COUNTEIN ittt teeereeeeeeneereeeroseereseeeoseeeoeereseeroeeeoseeoseeeesseioseeioseesoseeeaeeieseeeeeees 199
19.25 ClOCK CONrON et st ts e e sseeseeeseeeeeeesaseeeesesseeesseeseeesseesseeessssseeessssseeessesseeeeiesseeeess 493
SRS =1 =1\Y I @fo]g} il [V] = 11 [o] o & I 499
Contents SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com
List of Figures
1-1 Lo T g o = o1 Y, 22
1-2 NMI Interrupts With Reentrance ProteCtioN] ... eeeueeeeeeeereeeeeeieaseeesseeaseeeseeeseeeseseseeesesssseeeeseseeeeees 23
1-3 INterrUPt PrOCESSINGL et e e eeoeereeeeeeeeeeeeeeeeereneeeoseeeoeeeeoeeeeeeeoseeioseesoeeteseeeeseeioseeeoeeseseeeeeeses 24
1-4 Return From INtermuUPt .. e eessee e eteeeneeessanaeeeeeasseeeeeeanseeeeeenseeessesseeessessseeessssneeesessseeereesseeeeess 23
1-5 (o] LI e 1o e W\ (ol o1 . 21
1-6 BOR/POR/PUC Re€SEt CirCUIM et szeeereeereeeoeeeeeroeeeeeeoeroeeeeeeoreeeeeeeroreeeeeoeioeeeeeeoeieeioetoeeeeeeoeeeeees 37
2-1 Watchdog Timer BlOCK Diagram e seeeeeeeeeeeeeereeeeeaeereoeeeeneeroeeeoeereseeeeseeroseeeosereseereseeroseeraeesenes 17
3-1 Unified Clock System BIOCK Diagraml ... e e sieeeeeesseeeseeeeseeseeeessesseeeeiesseeesiessseeeisesseeesssssseeeeeesnees 53
3-2 MoOdUlatOr PatterNS e e seeeeeeroeeeeeeoeroeeeeeeoereeeeeeeoeeeseeoeeoeeeoeeoeeeeeeoeeeeeeoeroeeeeeeortoseeeeroeeeeeeeeioeees 59
3-3 Module Request ClOCK Sy SteMl e eueeeereeereneeeaeeieoeeeeseeroseeroeeeeeeeeoeeioseeroseeeoseeroeeroseereseesaseeres 6]
3-4 (o1l | =1 (o] == 1V Mo o | [I 63
3-5 Switch MCLK from DCOCLK t0 ACLK Lt ittt teetreeeaeeeoreaeeeeeroeeeeeeoeroeeeeeeoereeeeoeeeeeeoeeoeeoeeroeeeeeeees 64
4-1 System Frequency and Supply/Core Voltages oo eeeeeeeeeereaeeraeeeeoeeeoeeeeoeeroseeroeereseeeeseeroseeraseeeneees 79
4-2 PMM BlOCK Diagram e s e sieeeeeesseeeseeeseeeseeessessseeeteasseeeeeesseeesseesseesssseseeeieeeseeesesssseeeeseseeeeess 79
4-3 Powering Up the SyStemM it eeeeeeeereeereneeeoeeeeeeeeeoeereeeeoseeioseeeoeeteseeeeseeioseeeoeeieseeeeeeses 34
4-4 High-Side and Low-Side Voltage Failurel oo oo ieeereeeeeeeeeraneereeeeaeeeroeeieseereseeeoseeroeeeseereseeseneeses 8]
4-5 High-Side Supply Voltage Supervisor and MONItOM. .. e e e ueee e e e ieeeeeeeieeeeeeereeeseeeseeeseeeseessseeeiseseeeeess ¥ |
4-6 Low Side Supply Voltage Supervisor and MONItOM e seeereeeeeeroreeeeeeroeeeeeeoeroeeeeeeoeiereieeroeeerereeeeeees 83
4-7 Changing Vcore @and the SVM_ and SVS| LeVelS oo oo ereeeeeaeeioeieaeereeeeioseeroreeeseeeeoeeieseeraseeeaeess 33
5-1 MSP430X CPU BIOCK Diagraml e e e eeeseeeeeeeseeeeeesseaseeeeeeesseeessessseesseseseeeseseseeessssseeeeeeeseeeeess 91
5-2 Program Counter Storage on the Stack for INtermuUpPtS] e ee e ieerereeeeeeeeereeeioseereeeeaeeeioeeeseereseeeeeeeres 93
5-3 Program COUNTEN e e e uueeeeeeteenneeetsenseeeeteaneeeetsanseeetseaseeetesssseeesessseeeeesssseeesessseeeieesseeeriesseeeess 99
5-4 Program Counter Storage on the Stack for CALLAL. e e oot e et ieeee e i ieeeeeeieeeseeereeeseeeeeeeseeeeiseseeeeess 99
5-5] r=Tot o] 01)| I 104
5-6 StaCK USBQE ittt ieeeereeeeraneereneieaeereoeeeasteroneeeaeeieseeeoseesoseeeoeeteseeeeseesoseeeosereneeteseeroseeraeesenes 100
5-7 PUSHX.A Format on the Stackiieeeieeeereeieeeeiieeeieneereseeiaseereseieseeieseeioseereseeseseisseeieseereseeeasees 104
5-8 PUSH SP, POP SP S@OUENCE[it teettoreaeeearraeeeeeraeteeeeorioeeeeeeeeeeseeoetoeeeoeioeeeeeroreeeeorioeeieeeaeeees 100
5-9 Status RegiSter BitS eieeeeeeeeereeerearerereeeaneeroeeeeaeereseeeoeeroseeesrereseeeoseeroseeeseereseeroseeroseesaeesenes 107]
5-10 Register-Byte/Byte-Register Operation] ... ueeeeeeeeeeeeeereeeseeesteaseeeeteseseeeiseeseeeissesseeessssseeeseesnees 103
5-11 RegQister-Word Operation e eeeeeeeeeeeeeroeeeeeeeeroeeeeeeoetoeeeoeeoeeeeeioeeoeeeoeioetoreroeeereeseroeeeeeeoereeeeeess 103
5-12 Word-Register OPeratiON] e eseeeeeeeeereeereeeeeeeeeeeeereseereseeeaseeroeeieseeteseeeeseeroseeeseeteseeeeneeraseeeaes 104
5-13 Register — Address-Word Operation]eeseeeeeeeeeeeeeeeeseeaeeeeteeseeeeieseseeeiseeseeeissesseeessssseeeseessees 104
5-14 Address-Word — RegiSter OperatiON] e s.eeeeeeeereeeeeeeorroeeeeeeoreeeeeoeroeeeeeorroeeeeeeoeiereroeeoreereroeeaeess 109
5-15 Indexed Mode in LOWEY 64 KBloisoeeeeoeeeeaeereoeeeaueeroeeeaeeiemeeeeseeroneeeoseieseeeeseeroseeroseesoseeeoeesanes 107
5-16 Indexed Mode in Upper MmOy . ee oo eeeeeeeeeeeteeeeeeeeeaseeesseesseeessseseeesssesseeessssseeessssseeessessees 109
5-17 Overflow and Underflow for the Indexed MOO€[i e ieeseeereeeeeeeaeeeeeeeroeeeeeoeroeeeeeeoeioeroeeoeeeseroeeaeess 109
5-18 Example for the Indexed Mode Lo oo eieeieeeeaeeraneeraeeeeaeeeeoeeioneeroseeesseeroseeeseereseesaneeroseesaes 110
5-19 Symbolic Mode Running in Lower 64 KBl oo e iieeee et ieeeeeeseeeeeeeieseseeesseesseesseesseeessssneeessessees 1172
5-20 Symbolic Mode Running in Upper MemoOry oo e seeeeieeeereeeeeaeeeeeeeioseeroeeeeseeeoeeeeseereseesoeeroeeeenes 113
5-21 Overflow and Underflow for the Symbolic Model . oo oo e e eeeieaeereeeeaeeeroseeeseereseeeeneeraseeeaes 114
5-22 MSP430 Double Operand Instruction FOrmat] ueeeee e ieeeeeeeseeeeeeeiesseeeeieeeeeeisseseeeissssseeeseanees 123
5-23 MSP430 Single Operand INStrUCtONS sz eeeseeereeeeeeeoeroeeeeeroreeeeeoeroeeeeeoeroeeeeeeorieeroerereereraeeeeess 174
5-24 Format of the Conditional Jump INStrUCtONS] s e e eeeereeeeaeeeeaeeeeoeeioneeroeeeseeeeoeereneeroseesaneeroeesenes 123
5-25 Extension Word for RegiSter MOOES ... eeeuueeeeeeereeeeeeseeeeeeeteaseeesieseseeeiseeseeeissesseeessssseeeseesnees 129
5-26 Extension Word for Non-RegiSter MOOES] e iezereeeeeeeorroeeeeeroreeeeeoeroeeeoeeoeioreroeeoeeeseroeeeseesereeeeeess 123
5-27 Example for an Extended Register/Register INStruCtiON] e seeeeeeeeereeereaeereeeeeaoeeroreeeoeereseereneeraeeeaes 129
5-28 Example for an Extended Immediate/Indexed INStruCtion] ... eeeeveeeeeeeeeeeeeeereeeseeesseeseeeessseneeeseasaees 139
5-29 Extended Format-1 INStruCtion FOrM@atS e seseeereeeeeeeorroeeeeeeoreeeeeoeroreeeeoeroeeeeeeoeeeeroeeeeeeseroeeaeess 137
5-30 20-Bit AddresSes iN MemMOrY [eeeeeeeeeeeeeeeaeereoeeeeoeeroseeroseeemeeeeoeeioseeroseeesseeeoeereseereseeraneeraeesenes 137
5-31 Extended Format-Il InStruction FOrmMatf..euueeeieeerreeeeraneeraeeeaseereeeieseereseeesseeroseieseeieseeraseeraseeeaes 133
5-32 PUSHM/POPM INStruction FOrMat e eeseeeeeeeereeeeeeeoeeeeeroeeoeeeeeroeeoeeeoetoeeeeeroeeeseeoeroeeeeeeoeraeeeeess 133
5-33 RRCM, RRAM, RRUM and RLAM INStruCtion FOrMat| eeeeeeeesezzzoeeeeeeeennsszsreeeeeesnsssssesreereesnnsns 133
SLAU208-June 2008 List of Figures 9

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
www.ti.com
5-34 BRA INStrUCtON FOMM@at s e teeeeeeroeeaeeroeeeeeeeeeoeeeeeeoeeoeeeeeeoeeeeeeoeeoeeeeeoetoseroeeeseeseroeeeseeorroeeeeess 133
5-35 CALLA Instruction Format e e teeeeeaeeeeneeeeeeraeeroseeeaeeeeoeeioneeroseeeoseeroseeeseereseesoneeraseeeaes 133
5-36 Decrement OVerlap oo e eeeeeeeeeeesseeeeesseeseeeseesseeeseesseeestesseeeeteseseeesssesseeissesseeessssseeeseessees 159
5-37 Stack After @ RET INStrUCHON L eettzereeeeeeaereeeroeeeeeeoeroeeeeeeoreeeeeseroeeeeeorioeeeeeeoeieseeoeroeeereraeeaeess 179
5-38 Destination Operand—Arithmetic Shift Left . oo e e e eeaeeeeeeeieneereseeeaseerareeeseereseeraseeraeeeaes 180
5-39 Destination Operand—Carry Left Shiff] oot eeeeeeeteeaeeeisseseeesseesseeesessseeessssseeessessees 1817]
5-40 Rotate Right Arithmetically RRA.B and RRAM o oottt eeeeeeeeieeeetoeeeeeeeeroseeeseereseeeoneeioeeeeaes 187
5-41 Rotate Right Through Carry RRC.B and RRC. M oot ioeieeeeaereroeeieaeereeeeeeeeroseeeseeieseeeeseeraeeeaes 183
5-42 Swap ByteS iN MemMOrY e e e e e uieeeeeesseeeeeeeseeeeeesseseeeeesaseeesteesseeeseseseeeessesseeesssssseessssseeesiessees 190
5-43 Swap Bytes in @ ReQIStON s ueeereeeeererereeeeeaereeeeeeeseeroeeeoseeioeeieseeieseeeesteroseeeoeeteseeeeneeroeeeaes 190
5-44 Rotate Left Arithmetically—RLAM[.W] and RLAM. Al oo o et eeeeeeeeieneeeeeereneeraseeseseeeneeianes 211
5-45 Destination Operand-Arithmetic Shift Left]. ... oo ise et ee st eteeseeeeteeeeeeiseeseeesssesseeesssseeessessees 213
5-46 Destination Operand-Carry Left Siftl . e eeeieeereeeeeeeeereeeeeeeoreeeeeeroeeeeeoeroeeeeeeorieeeeeroreereraeeaeess 219
5-47 Rotate Right Arithmetically RRAM[.W] and RRAM. Al o oo e e et eeeeieeeeeaeeeraeereneereseesoneeroeeeenes 227
5-48 Rotate Right Arithmetically RRAX(.B,.A) — Register MOOE] .o ereiieeeeeiieeeeeiseeseeeiseeseeessssneeessesnees 227
5-49 Rotate Right Arithmetically RRAX(.B,.A) — Non-Register Model .o oot eeeeeeeeeeeeereeeeeeneeiaeeeenes 227
5-50 Rotate Right Through Carry RRCM[.W] and RRCM. A it st ie e ieeeieaeeieneeeaeeeroeeeneereseeeoneeraseeeaes 223
5-51 Rotate Right Through Carry RRCX(.B,.A) —Register MOO€ ... ueeeiieeeeeiieeseeerreeseeereeeeeeisseneeessessees 223
5-52 Rotate Right Through Carry RRCX(.B,.A) — Non-Register MO oo oreeeeeereeeeeeeoneeeeeeoreeeeeonceeeeesnees 223
5-53 Rotate Right Unsigned RRUM[.W] and RRUM. AL o oot it eeeeeianeeraeeieneeeeaseroneeroseesoneeroeeinnes 2249
5-54 Rotate Right Unsigned RRUX(.B,.A) — Register Mode[.. .. oooeeeireeeerieaeeeeeieeeseeeisaeseeeissssseeesssnees 2271
5-55 Swap Bytes SWPBX.A RegiSter MOOE e s oeeieeeeeeeiaeeraereeaeeeeoeeioseeeoeeeeseeeoeeeeseeteseesonteioeeienes 23]
5-56 Swap Bytes SWPBX.A IN MeMOIY et iteueeeeiieneeeteesaeeeeeessseeeteeseeetiesseeeeieesseeeiessseeeissssseeesesnnees 237
5-57 Swap Bytes SWPBX[.W] Register MOde ..o eeeeiieeeteeieeseeeeseeseeesieseseeeiseesseesssssseeesssseeessessees 233
5-58 Swap Bytes SWPBX[.W] IN M@MONY et r e ieeeeeeeeeraeeeeaeeeeaeeeeoeeioseesoeeeeeeeeoeeeeseereseesoteioceienes 232
5-59 Sign EXtend SXT X A ittt eieeeeeeeeeianeeroeeieaeeeeoeetoseeroeeeoseeeoeeieseetoseeeeseeroseeeseeteseereseeraeeeaes 233
5-60 Sign EXtend SXT X[W e e e ie et e eteeeeeessseeseeesseesseeesessseeessesseeestessseesssseseeeisseseeeissssneeesessnees 233
6-1 Flash Memory Module BIOCK Diagramlieseeeeoeeeeereeeeeeeoeroeeeeeeoeeeeeeoeroeeeeeeoeeeeeeeeroreeeeeoeeeeroeeeeeees 257
6-2 Flash Memory Segments, 256-KB EXampPle i eeieeeeieeeeeeeeeeaeeeroeeieoeereseeroeeroeeeoeereseeieseeroseeeneess 253
6-3 Erase CyCle TimMiNQ e e e eseeeeeeseeeeeeseeeeeeesasseeeesesseeesseeseeesssesseeissssseeessssseeeseesseeeeiesseeeess 254
6-4 Erase Cycle From Flash oo oo oo eeeieeeeeeeereoeeeeseeeoseeeoeeieseeioseesonteioseieoeeieseeeonteroseeeeees 251
6-5 Erase Cycle FromM RAM oot eetteeeetaotereneteeeteeeeetoseeeeeeeoseeroeeieseeieseeronteroreeeoeeieeeeieneeroseeeaeess 253
6-6 Byte/Word/Long-Word Write TimiNgE. .. .eeuueeee s teeeeeeeeieeeeesseeseeesseeeseeesssseeessssseeeeiesseeeeieeseeeess 259
6-7 Initiating a Byte/Word Write From Flashlo o eeeieeereeeeeeeoreeeeeeeeoeeeeeoeeoeeeeeeoeiesereeeeseeoeioseeeeroeeeeeees 260
6-8 Initiating a Byte/Word Write From RAM o it e ot reeteaeeeeeeeraneeroeeeoeeieoeeeoseeroseeeoeeroeeeeneereneeeeeees 267
6-9 Initiating Long-Word Write From Flashl oo ieeeeeetieeeeeiseeeeesseesseeessssseeessssseeeeiesseeeess 267
6-10 Initiating Long-Word Write from RAM it eeeeeeeroeeeeeeorieeereeeoeeeeeioeeoeeeoetoeiereroeeeeeeeeroeeeeeeoriaeeeeess 263
6-11 Block-Write CycCle TimiNQ oo eeeeeeeeeeeraneeeaeereaeeeeoeeroneeroseeeoeeeeoeeioneeroseeeoseeroseeeseereseeroseeraseeeaes 264
6-12 BIOCK WIrite FlOW[e et ieeeteaeereeesasetieseeeneeieseeiaseeraseesaseieseeeeseeioseereseiesseeesseieneeroseesssreraseinnes 269
6-13 User-Developed Programming SOIUtiON e eeor e e e ieeeereeeeaeeeroeeeeaeereoeeeoseeroseeeoeeieseeeeneeroeeeaes 263
9-1 DMA Controller BloCK Diagram e e seeeeeeeeeeeeeeeeeereoreeeeeeoseeroeeieseeieseerosreroeeeoeereoeereneeroseeeaeees 297]
9-2 [D)\Y/VAWANe [o [(=SS T o o 1Y [o Lo L1 297
9-3 DMA Single Transfer State Diagramliieeeeeeeeeeeeeeeeroeeeeeeoeioeeroeeeeeeoeroeeeeeeoereeeeeroreeeeeorieeioeeeeeees 294
9-4 DMA Block Transfer State Diagramlieeeeeeeeeeeeeeeeeeeoeeeeoeeroseeroeeeoeeieoeeroseeroseeeoeeeeoeeeeseereseeeaeees 293
9-5 DMA Burst-Block Transfer State Diagram .. e e e eeeeeeeeereeeeeeeieeeseeeiseeseeeiseeseeeessssseeeseesseeeiiesseeeess 2971
10-1 32-Bit Hardware Multiplier BIOCK Diagraml e e seeeeeeroeeeeeeoeeeeeeoeroeeeoeroeeeeeroeeeeeeoeioeeeeeoeeeeeeeeaeess 313
10-2 Q15 Format RepreSentatiON] e s eeeeereeeeeeeeereeeeeaeereoeereseeroseeeoeeieseeeeseeroseeroeeieeeeeeoeeroseeraseeeaeess 319
10-3 Ql4 Format RepreSentatioNn] e seeeeeseeeeeeeeeeeseeeeseeeseeeeteeseeestsessseeisesseeessessseeeseesseeeeiesseeeess 319
10-4 Saturation FIOW Chart o e s e seeeeeeeaeraeeeeeraeeeeeeeeroeeeoeeoeeeeeeoeeeeeeoeroseeeetoreeeeeoeioeereeeoreeseroeeaeess 320
10-5 Multiplication FIOW Char] o oo teeeeeeeeeraneeeaeeeeoeeeeseeroseeroseeeseeeeseesoseeroseeeeeeeeeeereseeraseeeaeees 329
11-1 LFSR Implementation of the CRC-CCITT Standard, Bit 0 is the MSB of theresultl.. ... oo eveeeeeeeieenee. ... 330
11-2 Implementation Of the CRC-CCIT T i atteeereeraeeerroeeeeerorreeeeoeeoeeeeeeoereeioeeoreeoeroreeeeroeeeeeeorroeeeeess 337
12-1 Timer_A BlOCK Diagraml e eeeeeeeeeeereaeeeeeeraneerareeeoeeeeoeeroseeroeeeoeeeeoeeioseeroseeeaseeroseeeseereseeeaeees 331
10 List of Figures SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com
12-2 Up MOO€ oo et e et teeoeeseoeeeeseesanteroseesoseeoneeeostetoseeeoetesoeeeeseeeeseeeoseeioseeeseereneeeenees 339
12-3 Up Mode Flag Settingleeeeeeeeeeeeeeoeereoeeeeeeraeeraeereoeeeeoeeroseeroseeeoeeeeoeeioseeroseeeaseeroseeeseereseeeanees 339
12-4 CONtINUOUS MOOE ettt et etseeeeetseeeesseeseeessesseeesteaseeeessasseessssssseeissssseeesessseeessesseeeeiesseeesss 339
12-5 Continuous Mode Flag Settingle e e e ieeeeeeeeeeeeeeaeereoeeeeeeroseeroeeieseeeoseesosteroeeeeeeeeeoeeiostereeeeaeees 339
12-6 Continuous Mode Time INterValS e eieeeeeeeeeraaeerareeeoeeeeoeeeeseerereeeoseeroeeeeseereseeeeseeroseeeseereseeeenees 340
12-7 UpP/DOWN MOOE et ettt eeetseeeessseeeessseseeessesseeessesseeesssasseesssessseeisssseeessessstessesssteeeiesseeesss 347
12-8 Up/Down Mode Flag Settinglieeeeeeeeeeeeereeeaeeeeeeoeroeeroreoeeeeroeeeeeorroreeeetoreeeeeorioeeioeeereeseroeeeeess 347
12-9 Output Unit in Up/DOWN MOO€ e it et teeeeraneeraeeeaeeeeeeeeeseereseeroseeroseeeoeereseeeeeeroseeeeeereseeeenees 347
12-10 Capture Signal (SCS = L)l e e e ereeeeereeseeeeieaseeesteasseeetseeseeeiseesseeeseessteeiessseeesiessseeeiesseeeess 347
R R O o (¥ (N 03 Y = 343
12-12 Output Example—Timer in Up MOO€[. e ieoeieeeieeeieeeeieneeiaeeroseeeaeeeeoeeioseeroseeeaeeeroeeeeseeraseeeaeees 344
12-13 Output Example—Timer in ContinUOUS MOOE e ot uereeireeeeereeeeeesseeseeeseaeseeeieeseeeeiesseeeeiesseeeess 343
12-14 Output Example—Timer in Up/DOWN MOO€[1.t ieetrereeereeraeeeereeeeeeeorieeeeeroreeeeoeioeroeeereeseroeeeeess 3449
12-15 Capture/Compare TACCRO INterrupt Flagloee oo eeeeeeeeeeeroeeeeoeerereeraeeroeeeorereseeeeseeroseeraeereseeeenees 347
13-1 Timer_B BlOCK Diagram e eeiseeeeeeseeeseeeeseaseeesseesseessaeseeessessseeesssssteesessseeessessseeeiesseeesss 351
13-2 Up MO ettt e et eeeoeeseoeeeeseeeaneeroseeeoeeeeoeesostetoseesoeeesoeeeeseereseeeoseeioseeeseereneeeenees 359
13-3 Up Mode Flag Setting[eeeeeeeeeeeeeeaeeteaeeeeeeraeeraeeeeoeeeeoeeroseeroreeeaeeeeoeetoseeroseeeaeeeroseeeseereseeeanees 359
13-4 CONtINUOUS MOOE ettt e etseeeeesseeeeessseseeessesseeesteaseeeessasseesssessseeissssseeesessseeessesseeeeiesseeesss 364
13-5 Continuous Mode Flag Settinglee e e ieeeeeeeeeereeeereoeeeeeeroseeroeeieseeioseesoseeroeeeeeeeeeoeerostereseeeaeess 360
13-6 Continuous Mode Time INterValS e ieeeeeeeeeraeeereeeeoeeeeoeeeeseereseeeoseeroseeeoeereseeeeeeroeeeseereseeeenees 360
13-7 UP/DOWN MOOE et ettt e e etseeeestseeeesseeseeeseesseeesteaseeestsasseesssessseeisssseeeesessseeessessteeeiesseeesss 367
13-8 Up/Down Mode Flag Settingleeeeeeeeeeeeereeeaeeeeeoeroeeroeeeeeeeeoeeeseeoeioreeoetoreeeeeorioeeroeeereeseroeeeeess 361
13-9 Output Unit in Up/DOWN MOO€ et et e tteeeeraneeraeeeaeeeeoeeeeseereseeeoseeroseeeoeereseeeeeeraseeeoeereneeeenees 369
13-10 Capture Signal (SCS = L)l uuereereeeeeereeseeeeseaseeetteasseeetseeseeeiseesseeeseessteesessseeesiesseeeeiesseeeess 363
13-11 Capture CyCle iioeseeeeeereeeeeeroeeeeeeaereeeeeeeoeeeseeoeeoeeeoeeoeeeseeoeeeeeeoeroeeeeetoreeeeeorioseioeioseeseroeeeeess 363
13-12 Output Example—Timer in Up MOO€[. oeieeee oo ieeieeeereneeraneeroseeeaeeeeoeeioseeroeeeoeeeroeeeeseereseeeanees 363
13-13 Output Example—Timer in ContinUOUS MOOE e et uereeireeeeereeeeeesseeeseeeseaesteeieeseeesiesseeeeiesseeeess 369
13-14 Output Example—Timer in Up/DOWN MOO€[1.t ieetieereeeroereereereeeeeeeorioeeeeeroreeeeeoeioeeroeeereeseroeeeeess 361
13-15 Capture/Compare TBCCRO INterrupt Flag oo oo eeeeeeeeeeeeoeeeeoeerereeraeeroeeeeoeereseeeeseeroseereeereseeeenees 369
14-1 Real-Time ClOCK e ettt it et s i sees et eseeeaeeessesseeesteaseeesssasseesssessseesssssseeesessseeessesseeeeiesseeesss 371
15-1 USCI_Ax Block Diagram: UART Mode (UCSYNC = Q)i iioeeieeereeeeeeeeeeeoeeroeeeeoeeeeoeeroseeroseeeaeess 3993
15-2 Character FOrMat oo e eeeeeeeeeeeeneereoeeeeseeeaneeeaeeieseeeeseeroseeroeeieseeeeseeioseeroseieeeeeeoeeroseeraeeeaeess 399
NESEC I (o | (SR W Tl oy - 400
15-4 Address-Bit MultiprocesSOr FOrmMat] s oeueeereereeeeeeeeeeeeroeeeeeeoeroeeeeeeoereeeoeeoreeierosieeeroeeeeeeoeraeeeeess 407
15-5 Auto Baud Rate Detection — Break/Synch Sequencel. oo oo ieeeieeeieaeereneereeeereeieaeeeeeeereseeraseeeaeess 402
15-6 Auto Baud Rate Detection — Synch Fieldl oo e iuieee s iseeeeeiseeeeesseeeseeeseeseeeeiesseeesiessseeeieseseeess 407
15-7 UART VS IrDA Data FOrM@at oo seeeeeeeeereeereeeaeeeeeeoeeoeeeoeeeeeeeeoeeeeeeoeroeeeoeroeeeeeeoeroeeroeeeseeseroeeeeess 404
15-8 Glitch Suppression, USCI Receive NOt Startedl e o oeeeeeeeeeeereoeereeeeeaeeroeeeoeereseeeeseeroeeraeereseeeenees 409
15-9 Glitch Suppression, USCI ACtVAteO] . e e e sieeeeeereeeeestseeseeeiseeeeesseesseeesessseeeseesseeesiessseeeieseseeess 409
15-10 BITCLK Baud Rate Timing With UCOS16 = O itteeeroeeeeeeorroeeeeeeoreeeeeoeroreeeeeoeroeeroeioreeoeroceeceeaeees 407
15-11 RECEIVE ErTOM it eieeeeeeeetaneeiaeeieaeeeeoeeiaoreraseeeoseeeoeeeeseereseeeostesoseeeseereseeeeseeroseeeoeereneeeanees 410
16-1 USCI Block Diagram: SPlI MOA€ et eeeiieeeeeeseeaeeesieaseeeeisaseeesiseesseeissesseeesessseeesessseeeeiesseeeess 423
16-2 USCI Master and EXternal SlIaVe s eeeseeereeeeeeeeeeoeeeeeroereeeeoeroeeeeeaeieeroetoreeoeeoeieeroeeeeeeorroeeeeess 430
16-3 USCI Slave and EXternal MaSten o eueeeeeeeeereaeereeeeoeeeeoeeeeseerereeraeeroseeeoeereseeeeeeroeeeseereseeeanees 137
16-4 USCI SPI Timing With UCMSB = L[i ieeteeeiaeiaeeeoeioeeeoeioeeoeeoeeaeeeorioseeeeroreeeeeorioeereeioseeseraeeaeess 432
17-1 USCI Block Diagram: 12C MOOE rsoereroreerorerroreerorerrererrererrorereerereerereerereerereseererrereseererreceeeece 447
17-2 12C BUS CONNECHON DiagraM i oseeseeerorerroreerarerrocerrerereorereerereerereerereerereerereseererrarerearereacerece 173
17-3 12C MOdule Data TranS N rsceororororororerereoeoeorersrerererererereeeorerorererererereoeeeerscorererererereoeoeececes 777
17-4 Bit Transfer 0N the 12C BUS ioereeereererrereererrereerrerroreereereereereereareereoreareereereereereeeeereerereeecene:s 77
17-5 1°C Module 7-Bit AddresSiNg FOMMaAt s ez esoreeroreerorerrererrorereerereerereerereerereerereseererraresearerracereace 177
17-6 1°C Module 10-Bit AddresSiNg FOrMAt o e.ereeererorerererrererereoeororororerererereoeoreeorscerererereeereorecececes 427
17-7 12C Module Addressing Format with Repeated START CONAitiON ez erzrrerereerererrererrererrorerrorerroceeece 473
17-8 12C Time LiNe LeQeNO iiesrerszreerrrerorerroreerarerrocerrarereoeereerereerereereresreresrereseeresracesearereacerence 2749
SLAU208-June 2008 List of Figures 11

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
www.ti.com
17-9 I12C Slave Transmitter MOOE [ieeeeeereereereererrerrerrerrerrereerrerrereereereereereoreareereereereereeeeereeeeeeeecene: 277
17-10 1?C Slave RECEIVEr MOOE orrszreorerrorreerreerereerorerreresrcereeeesrarereerereerereerereseeresrereseereereceseere 779
17-11 12C Slave 10-bit AddreSSing MOOE erosoererrereeeorororerarererererereororororerererererereorsrororererererereeeeeeces 779
17-12 12C Master Transmitter MOOE i oeeeeeeroeroereererrereereereereereereereereereareereereereereereereerereeeeeerereeecenes 757
17-13 12C Master ReCeiVEr MOOE i osoeerroererererroreerarerrocerrerereorereerreerereerereerereerereseorerracesearereocerence 753
17-14 12C Master 10-bit AdAreSSiNG MOOE s oererrrererorororererererereoeororororererererereoreeorecerererererereoeecececes 754
17-15 Arbitration Procedure Between Two Master TranSmitters] e .eeeeeeeeeeeaereeeroereeeeoeroeeeeeroeeeeeeoeraeeeeess Y|
17-16 Synchronization of Two 12C Clock Generators During ArbitratioN o zeseeeerereerererrorerrarereorerearereerereerers 159
18-1 ADC12 ABIOCK Diagraml e eeeseeeseeesseeseeeeeeaseesiseeseeesseeseeessessseeessesseeeeiesseeesiessseeeieseseeess 4671
18-2 Analog MUltipleXer e see e e eeeraeeeeeeaeeaeeeoeeoeeeseeoeeoeeeoeeeeeeeeoeeeeeeoeioseeoeioeeeeeoseoeeroeeeeeeoeioeeeeess 469
18-3 Extended Sample Mode . o o i e et eeeeeraeeraeeieaeeeeoeeioeeroseeeaeteeoeeioseeroseeeoeeeroseeeseereseeeanees 170
18-4 Pulse Sample MOOE .. e e e it st e ieeeeeeesseeeeeeteesseeetteaseeesseasseesssessseeisesseeeessssseesssessteeeiesseeesss 477
18-5 Analog Input EQUIValent CirCUM e eeseeereeereeraeeeeereeeeeeeoeeeeeeereeeeeeeaeroeeeeeroeeeeeeorioeeroeeeseeoeroeeeeess 477
18-6 Single-Channel, Single-Conversion MOOE e ooeereeereaeereoeeroseereeeeaeeeeoeeroseeroseeeeeeeroeeeeseereseeeanees 173
18-7 Sequence-0f-Channels MO .. s i ereereeeeeeeereaeeerteaeeeetsasseeeiseesseeiseesseeesessseeessesseeeeiesseeeess 17
18-8 Repeat-Single-Channel MOOEeeseeeerreeeeeeraereeeeoeroeeeoeeoeieeeoeeeeeeaeioeeeeeroreeeeeoeioeereeeereeseroeeaeess 173
18-9 Repeat-Sequence-of-Channels Model .o oo oo i e e e eeeeiaeeraeeieaeeeeneesoseeroeeeseeeeeeeeeseeraseeeaeees 179
18-10 Typical Temperature Sensor Transfer FUNCHON oo e s ireeeeerreeeeesreeeseeeseeeeeetiesseeesiessseeeieseseeess 173
18-11 ADC12_A Grounding and NoiSe CONSiAeratioNS . .e.seeeeeoeerooeereeeeoeeeeoeeeeseereoeeeeeeroseeeseereseeeenees 479
19-1 Large Implementation of the Embedded Emulation Module (EEM)c e eci e ieeereeeeeeeereeeieneereneeene.s 297
12 List of Figures SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com
List of Tables
1-1 Connection of UNUSEd PiNS|i o soeeoooeeeeeeezeeeeeeeneeeeeeenceeeeeoneeeeeosseeeeeeeseeeeeeeseeeeseseseeeeeessceeeeesnees 30
1-2 Interrupt Sources, Flags, and VeCtOrS i s e eereeeereeeeeoeeeeeeereoeereoeeeoeeeroeeeeseeieseeeeseeroeeeoeereseereseeses 33
1-3] e F T Yo o | =TS 33
1-4 Special FUNCiON REQIStErS] . e ueueereeeeieseeresetenereieseieaeeieseeeeeeieseieseeieseeteseeieseeieseiiseeiesrereseeeesees 33
1-8 DY SR F e o [31
1-9 SYS Configuration REQISTErS L. eeteeeeieeeraeeteneeteneeraneeraeeieaeeteseeiaseereseieaeeieseeeeseeraseeeseereneeeaness 31
2-1 Watchdog Timer Base RegiSter oo seeeereeeereeereeeeaeeeeoeeeoseeroeeroeereseeeeseeroseeroseieseereseeroseeraeeeenes 54
2-2 Watchdog Timer ReQiStErS] e eeeeeeeeeeeeeeeeeeereeeeoeeeeoeeeeeeroseeroeeieseeeeseeroseeroseeeseereseeroseeraeeeenes 50
3-1 Unified Clock System ReQiSters e e ieereseereaeeeeeeereorereeeeosreioeeeeoeeeeseeroseeioeeeseeeeoeeeoseereseeeaeees 64
4-1 High-Side Supply Voltage Supervisor and Monitor Levels (see the device-specific datasheet)......oo..e... ... sl
4-2 Low-Side Supply Voltage Supervisor and Monitor Levels (see the device specific datasheet)l................. 37
4-3 Power Mode Overwrite (see also device specific datasheet)ooeeieeeereeeereeeeraeeieieereseeieseerereieseeeeaeesns 83
4-4 SVSy, and SVMy | Performance When SVSHACE = SVSLACE = Oliieieeierieeeeierieieeioriieriorieeeciaesees 34
4-5 SVSy, and SVMy | Performance When SVSHACE = SVSLACE = 1[iiioieiieiieeeeieeieieeieeiieriorioiesiesees 84
4-6 PMM REQISTONS e e eeteneeeeeeennreeeeeneeeeeeenneeeeeesneeeeeesseeeeeessseeetessseeesesssseeeeeesseeeeessseeeeiosseeeees 31
5-1 Description of Status RegiSter BitS|uuieueeeeeeieseeteeeereseereeiesseeiereieseeieseeiisreieseieseeieseeieseereseeeieees 107
5-2 Values of Constant Generators C G, Gl 2 st uuuuunnuteennneeennoeesnsoemnsstenssssonsssseessssenssssonsssessssssens 104
5-3 Source/Destination AdOreSSING e e eeueeteeeteeeereeeraeeieseereseeiaseereeeieseeieseeraseeraseremeeieseeiaseeraseeeaes 109
5-4 MSP430 Double Operand INStruCtiONS) e ez eeeeeeereeeeeaeeeeeeereseeroreeeoeeieoeeeeseeroseeroreeroeeeeaeereneeeeeees 123
5-5 MSP430 Single Operand INStrUCtONS e e s eeeeeeeeeeeereoreeeeeroeereeeieseeieseeroneeroreeeoeeeeoeereseeroseeeaeees 124
5-6 Conditional JuMpP INStrUCHONS e et szt reeeeeeeoereeeroeeaeeeeeroeeeeeeoreoeeeeeroeeeeeeoeioeeeeeorresereeroeeeseeeeeeeess 129
5-7 (Sl E1=Te W Y1 W {ednTo] o K I 123
5-8 Interrupt, Return, and Reset Cycles and Lengthl. oo iiee e e ieeeeeeiieeeeeeseeeeeerseaseeesiesseeeeesesseeess 129
5-9 MSP430 Format-1I Instruction Cycles and Lengthle.ueeeereeeereeeereeeieneereseeianeereseieseeieseeieseeraseeeaeess 129
5-10 MSP430 Format-l Instructions Cycles and Length oo ooeieeeeeaeeereeeieaeereeeeeaeeroeeeoeereseeeeneeraeeeaes 121
5-11 Description of the Extension Word Bits for Register MOJ€[. eeeieerereeeieaeereeeeeeeraeeeoeereseereneeraeeeeaes 123
5-12 Description of the Extension Word Bits for Non-Register MOdes] oo oeieeeeeeeeeeeeeereeeeeaeereeeeeoneereeeeaes 123
5-13 Extended Double Operand INStruCtiONS] . e es.eeueseereseereseereseieseeeeeeeieseereseeesseeieseieseeieseeseseeraseienes 139
5-14 Extended Single-Operand INStrUCtONS] . .. e e e use e e ereeseeeeeeaseeeeseeaseeeseseseeesssesseeessesseeessesseeesiessees 132
5-15 Extended Emulated INStruCtiONS .. e esreeeeeaeereneeeaeeraeeraeeieseeeeeeeieseeraseieseeeraseieneereseerareraeeienes 134
5-16 Address Instructions, Operate on 20-Bit RegiSter Data] ... ioeeeeeeeeroeereaeereeeeeaeeroreeeoeereseereseeroseeeaes 139
5-17 MSP430X Format Il Instruction Cycles and Lengthlioe oo oo eeeeeeeeeeieneereeeeaeeeraeeeeseereseeroneeraeeeeaes 139
5-18 MSP430X Format-1 Instruction Cycles and Lengthl oo oo oo e e teeeeeeeeeraeeeeaeeeeeeeeeneereeeeaes 131
5-19 Address Instruction Cycles and Length]ieeseeeeueseeeeeeereseereeeieseeeeeeeieseereseiesereeeseieseeieseeieseereseieaes 139
5-20 Instruction Map Of MSP 430X i e e e et iee et e ereeeeeseeeseeeeeeaseeesteesseeeteseseeeissesseeessssseeessssneeessessees 139
6-1 SRR ol o T 259
6-2 g RV ol o T 259
6-3 Flash Access While the Flash is busy (BUSY = 1)iiieoeeeeeeeeeeeeoeeieoeeieseeraneeroeieoeeeeseeroneeroseeeaeess 269
6-4 Flash Controller RegiSters e eeseeeeteeeereeeeeeereeeeereoreeeeeeoseeroeeeeoeeeeseeeosteioseeeoeeeeeeeeesrereseeeeeees 269
7-1 O N ®felq)i[e (V1= 1le] s 279
7-2 D]le]i - RO R R[S & 279
8-1 RAMCTL Module REQiISteN e eueeteeeraeeraueieaeeteaeeianeeraseeiaseeiaseiesseieseesanteraseeeseeisseeieneereseeeaeess 287
9-1 D)\ VA N 1o ISy (=T Y [ole (1S N 293
9-2 DMA Trigger OpPeratiOn s eeeeeeeeeeeeeeeereeeeoeeeeeeeeeoeeeereeroseeroeeeoeeteseetosteroreeeoeeeroeeeeneereseeeeeees 299
9-3 Maximum Single-Transfer DMA Cycle Time oo oesieeeeeeeeeaeeroneeeoeeeeoeeeooeereseeeoeereeeeeaeeieseeeeeees 304
9-4 D)\ AN R Te [S (T & 304
10-1 Result Availability (MPYFRAC = 0, MPYSAT = O) i etteeetettoetaeeeaeeeeeearioreeeroreeeeiorioeeroeioseeseraeeaeess 314
O N O] A = To 151 (= o 313
10-3 OP2 REQISIEISaieeeteeeeaeeeraneeraeeieaeeeeseeraeeeoeeeeoeeeeoeeeosteroseeeoeeeeoseioseeroseeeeeeeroseeeseeroseeeaeees 319
SLAU208-June 2008 List of Tables 13

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
www.ti.com
10-4 SUMEXT Contents and MPYC CONMENtS iutiereeeroereeerorreeeeeeroeeeeearreeeeoeroreeeeeoeioeroeeereeorroeeeeess 314
10-5 Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = O)[ieeeeeeeeeeeereereeneeeeeeeeneeeeieeeeeses 319
10-6 Result Availability in Saturation Mode (MPYSAT = 1) i ieeeiiieeeeeeeseeeseeeseaeeeeeeesseeesiessseeeieseseeess 319
10-7 32-Bit Hardware Multiplier REQiSterS . e e seeeereeeeraeereeeeteseeraseereseieseereseeieseereseieseereeeereseeraseeeaeess 329
10-8 Alternative RegiSters i eeeeeereeeereeereaeeeeoeeraseeraeeeoreeeoeeioseeroseeeoeeeroeeeeseereseeeeseeroseeeseereseeeenees 321
11-1 CRC MOAUIE REQISIErS i eereeeeraeeeeaeeeeoeeraneeraeeroeeeeoeeeeseeteseeeoseeroseeeoeeteseeeeseeraseeeaeereseeeenees 333
I R I o o Y oo L= 339
2 B O 1011181 1Y (oo (-1 I 344
IZECI 1o Ul g AV S N [S 349
B Mo LT g Y (oo [359
13-2 TBCLX LOAd EVENtS[e reeeeeeeeeeeeeeeeeeeonceeeeesneeeeeesseeeeeeeseeeeeeessreeeeessseeeeessseeeeeesneeeeeesseeeees 364
13-3 Compare Latch Operating MOOES e e ieoeeeeeeraneeraeeeeoeeeeoeeroseeroreeeoeeeeoeeieseereseeeeseeroseeeseereseeeanees 364
R O TV 1 o1V 1Y (oo (=2 369
13-5 Timer_ B ReQISIOrS i eieueeteueeieueeieseieseeteseeieseeieseiesseieseeieseereseeeiseeesseieseereseeeeseeieseeeseeieseeeenees 374
14-1 Real-Time ClocK ReQiSters . .ueeeiseeeeeseeeeeeeeeeeseeeesieseeeeseeseeesssessseeisessseessesseeesseesseeeeiesseeeess 383
14-2 Word Access to Registers in Counter MOAe[. . eueeeieeeereneeiaeeiaeieieeieseeieseereseieseeieseeieseeraseeeaeess 384
15-1 Receive Error ConditioNS e seeeereeeeeaeeeeeeeraorereeeeoeeeeoeeeeseereseeroeeroseeeoeetoseeeeeeroseeeasereseeeenees 403
15-2 BITCLK Modulation PatterN e e seeeeeereeeeeeraereeeeoeroeeeeeroeroseeoetoeeeseroeeeseroreeeeeortoeeeeroreeseeaesaeess 407
15-3 BITCLK16 Modulation PatterN e seseeeeeeeeeeeoeeeeeeeeroeeeeeeoeeeeeeeetoeeeseroeeeeeroeeeeeeoeroeeeeeroreeeeoeeaeess 409
15-4 Commonly Used Baud Rates, Settings, and Errors, UCOS16 = Ofeesiseeeeereeeeeeereeeeeeieeeseeeeeeaseeees.s 412
15-5 Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1[iuouiieuereereeeeeeereeeeeeisseseeeesesseeeeesss 413
15-6 USCI_AX REQIStEIS it et eteetieeeteaeeieneeteneeiaseeraeeieseeteseeiaseeioseieseeieseeieseeroseeeaseirseereseeraseeeaness 119
15-7 Word Access t0 USCI_AX REQIStErS ieueeteeeeraneeeaeeteoeereoeeroseeroeeeoeeeeoeeroseeroeeeoeeeeoeeroseeroseeeaeees 174
16-1 UCXSTE OpPeration iieeeeeeeeeeeeeeeeeeieaeeeeeeroneeeeeeeeoeeeeseetoseeroseeeoeeeeoeeiosteroeeeaeeeroeeeeseeroseeeaeees 129
16-2 USCI XX REQISIOIS it eeeeeereereeaeereoeeeeseereseeraeeeeoeeeeseesostetoseeeoeeeoseesosteroseeeeeeeeoeeieseereseeeaeees 434
16-3 Word Access t0 USCI_ XX REQISIErSusueeieeeereeerereieeeeieneeieseereseeeiseiesseieseereseeeeseiieseeeseeieseeeesees 434
17-1 1°C State Change INterrupt FlagS ororesoeeoereorororororererererereoeoeororerererererereoeerorscerererereeereoroeececes 4549
17-2 USCI_BX REQIStErS ittt teetraeeteneeteneetaseeianteraseieseeieseeiaseereseieseeieseeieseereseeeaeeeraeereneeraseeeaness 453
17-3 Word Access t0 USCI_BX ReQIStErS ieueeeeeeeraneeeaeeieoeereoeeroseeroeeeoeeeeoeetoseeroseeeaeeeeoeereseeraseeeaeees 153
18-1 Conversion MOOe SUMMAIY [e ureeeeeezeeeeeeaneeeeeeesneeeeeeeneeeeeesseeeeeeesneeeeeessreeeeesseeeeeessseeeseesseeees 477
18-2 ADCI12 A REQISIEIS . eeetereeeroeeaeeerroeeeeeeoreeeeeoeroeeeeeoeieseeoetoeeeoeioeeeeetoreeeeeoetoeeeeroreeeeoeiaeess 437
19-1 SXX EEM CoONfiguratioNS s esseeeeeeeieseeteseeraseeieseieseeteseeieseeieseeeietieseeieseereseeesstiieeeieseereseeeeses 494
14 List of Tables SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Preface
INSTRUMENTS SLAU208_ June 2008

Read This First

About This Manual

This manual describes the modules and peripherals of the MSP430x5xx family of devices. Each
description presents the module or peripheral in a general sense. Not all features and functions of all
modules or peripherals may be present on all devices. In addition, modules or peripherals may differ in
their exact implementation between device families, or may not be fully implemented on an individual
device or device family.

Pin functions, internal signal connections and operational parameters differ from device to device. The
user should consult the device-specific data sheet for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required
to take whatever measures may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary
ACLK Auxiliary Clock
ADC Analog-to-Digital Converter
BOR Brown-Out Reset; see System Resets, Interrupts, and Operating Modes
BSL Bootstrap Loader; see www.ti.com/msp430 for application reports
CPU Central Processing Unit See RISC 16-Bit CPU
DAC Digital-to-Analog Converter
DCO Digitally Controlled Oscillator; see FLL+ Module
dst Destination; see RISC 16-Bit CPU
FLL Frequency Locked Loop; see FLL+ Module
GIE Modes General Interrupt Enable; see System Resets Interrupts and Operating
INT(N/2) Integer portion of N/2
110 Input/Output; see Digital I/O
ISR Interrupt Service Routine
LSB Least-Significant Bit
SLAU208-June 2008 Read This First 15

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

LSD
LPM
MAB
MCLK
MDB
MSB
MSD
NMI
PC
PM
POR
PUC
RAM
SCG
SFR
SMCLK
SNMI
SP
SR
Src
TOS
UNMI
WDT

Least-Significant Digit

Low-Power Mode; see System Resets Interrupts and Operating Modes; also named PM for Power Mode
Memory Address Bus

Master Clock

Memory Data Bus

Most-Significant Bit

Most-Significant Digit

(Non)-Maskable Interrupt; see System Resets Interrupts and Operating Modes; also split to UNMI and SNMI
Program Counter; see RISC 16-Bit CPU

Power Mode See; system Resets Interrupts and Operating Modes

Power-On Reset; see System Resets Interrupts and Operating Modes
Power-Up Clear; see System Resets Interrupts and Operating Modes

Random Access Memory

System Clock Generator; see System Resets Interrupts and Operating Modes
Special Function Register; see System Resets, Interrupts, and Operating Modes
Sub-System Master Clock

System NMI; see System Resets, Interrupts, and Operating Modes

Stack Pointer; see RISC 16-Bit CPU

Status Register; see RISC 16-Bit CPU

Source; see RISC 16-Bit CPU

Top of stack; see RISC 16-Bit CPU

User NMI; see System Resets, Interrupts, and Operating Modes

Watchdog Timer; see Watchdog Timer

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each individual bit, and the initial

condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility
w Read/write
r Read only
r0 Read as 0
rl Read as 1
w Write only
wO Write as 0
wl Write as 1
(w) No register bit implemented; writing a 1 results in a pulse. The register bit is always read as 0.
hO Cleared by hardware
hl Set by hardware
-0,-1 Condition after PUC
-(0),-(1) Condition after POR
-[0],-[1] Condition after BOR
-{0},-{1} Condition after Brownout

16

Read This First

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 1
INSTRUMENTS SLAU208— June 2008

System Resets, Interrupts, and Operating Modes, System
Control Module (SYS)

The System Control Module (SYS) is integrated into various devices with different feature sets. It provides
public services like Device-ID and Tl-private services.

The following list shows the basic feature set of SYS.

» Power on reset (BOR/POR) handling

» Power up clear (PUC) handling

* NMI (SNMI/UNMI) event source selection and management

* Address decoding

* Providing an user data exchange mechanism via the JTAG Mailbox (JMB)
» Boot strap loader (BSL) entry mechanism

» Configuration management (device descriptors)

* Providing interrupt vector generators for Reset and NMls

* Watch dog timer (WDT_A)

Topic Page
1.1 System Control Module Introduction [13
1.2 Principle of Operationfo....coe oo ee et i iezaeeeees 13
1.3 Memory Map—Uses and Abilities. o oeecieieeeiiieieeeeieieiaeaeaeien.s 20
i L1 (< g gV o S 24
15 Operating Modes...ov oot eeitaraeeene 24
1.6 Principles for Low-Power Applications[...ceeeeeeieieieieieeeeeeaeaeennee. 30
1.7 Connection of Unused PiNS[cieee oo ieeeeeeeeieiezaeees 30
1.8 Resetand Subtypes|. .o iaeaeees 30
e I [1 (=] g g1 oY Y/<Tod (o] &S| 3]
1.10 Special Function ReQISters [iuiioieieeieieieeaeieiieiaeaeieiiarareeieiiaeaeeens 33
111 SYS RegiSterslioeeoii ittt eeiteraeaeaeeene, 31

SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 17

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

System Control Module Introduction www.ti.com

11

1.2

121

System Control Module Introduction

The SYS module is responsible for interaction between various modules throughout the system. The
functions SYS provides for are not inherent to the modules themselves. Address decoding, bus arbitration,
interrupt event collection/prioritization, and reset generation are some of the many functions that SYS
provides.

Principle of Operation

The SYS module provides a series of services that can be used by the application program. Some of
these services however can be locked to fulfill code protection requirements. Some bit fields used for
common functions are defined as reserved when not implemented on a particular device; this allows a
maximum of compatibility among the devices within the MSP430 microcontroller family with SYS modules.

Device Descriptor Table

Each MSP430 provides a data structure in memory that allows an unambiguous identification of the
device. Device adaptive SW-tools and libraries need a more detailed description of the available modules
on a given device. The SYS module provides this information and can be used by device adaptive SW
tools and libraries to clearly identify a particular device and all modules/capabilities contained within it. The
validity of the device descriptor can be verified by CRC (cyclic redundancy check).

1.2.1.1 Identifying the Device type

The value read at address location 00FFOh identifies the family branch of the device. All values starting
with 80h indicate a hierarchical structure consisting of the info block and a TLV (tag-length-value) structure
containing the various descriptors. The info block contains the device ID, die revisions, SW revisions of
boot code, and other manufacturer and tool related information. The descriptors contains information
about the available peripherals, their subtypes and addresses. This allows to build adaptive HW drivers for
operating systems.

Any other value than 80h read at address location O0OFFOh indicates the device is of an older family and
contains a flat descriptor beginning at location OFFOh.

1.2.1.2 MSP430 Calibration Descriptors

1.2.2

1.2.3

The MSP430 features a common data structure for calibration data. This structure starts with a predefined
header of constant length that simplifies extracting some basic information like Chip_ID, hardware
revisions, etc., and is followed by a flexible TLV list containing various calibration information required by
the device.

Boot Code

The boot code will always be executed after a BOR. The boot performs calibration of the oscillator and
reference voltages. In addition, it checks for existing signatures (predefined data pattern) that indicate the
presence of a customer definable boot strap loader (BSL).

Boot Strap Loader (BSL)

The MSP430 bootstrap loader (BSL) is software that is executed after startup when a certain bootstrap
loader entry condition is applied. A BSL enables the user to communicate with embedded memory in the
MSP430 microcontroller during the prototyping phase, final production, and in service. All memory
mapped resources, the programmable memory (flash memory), the data memory (RAM) and the
peripherals, can be modified by the BSL as required. The user can define its own BSL-Code for flash
based devices and protect it against erasure and unintentional or unauthorized access.

A basic BSL program is provided by TI. This supports the commonly used UART protocol with RS232

18

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Principle of Operation

interfacing, allowing flexible use of both hardware and software. To use the bootstrap loader, a specific
BSL entry sequence has to be applied to specific device pins. An added sequence of commands initiates
the desired function. A boot loading session can be exited by continuing operation at a defined user
program address, or by the reset condition. Access to the MSP430 memory via the bootstrap loader is
protected against misuse by a user-defined password.

1.2.4 JTAG Mailbox System (JMB)

The SYS module provides the capability to exchange user data via the regular JTAG test/debug interface.
The idea behind the JTAG mailbox system is to have a direct interface to the CPU during debugging,
programming and test that is identical for all ‘430 devices of this family and uses only few or no user
application resources. The JTAG interface was chosen because it is available on all ‘430 devices and is a
dedicated resource for debugging, programming and test.

Applications of the JTAG Mailbox System are:

* Fast flash programming

* Providing entry password for software security fuse
* Run-time data exchange (RTDX)

SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 19
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Memory Map—Uses and Abilities

I

TEXAS
INSTRUMENTS

www.ti.com

1.3 Memory Map—Uses and Abilities

This memory map represents the MSP430F5438 device. Though the address ranges differs from device
to device, overall behavior remains the same.

Can Generates NMI on read/write/fetch

Generates PUC on fetch access

Protectable for read/write accesses

Always able to access PMM registers from®); Mass erase by user able from

Mass erase by user able from

Block erase by user able from

Segment erase by user able from

Address

Name/Purpose

Properties

00000h-00FFFh

Peripherals with gaps

00000h-000FFh

Reserved for system-extension

00100h-00FEFh

Peripherals

00FFOh-00FF3h

Descriptor type

00FF4h-00FF7h

start address of descriptor structure

01000h-011FFh BSL_Seg 0 X X
01200h-013FFh BSL_Seg_1 X X
01400h-015FFh BSL_Seg_2 X X
01600h-017FFh BSL_Seg_3 X X X
017FCh-017FFh BSL Signature Location
01800h-0187Fh User_Info_D X
01880h-018FFh User_Info_C X
01900h-0197Fh User_Info_B X
01980h-019FFh User_Info_A X
01A00h-01A7Fh Calibration X

| 01A80h-01AFFh

Info-Bock, Device ID, Descriptor

[01C00h-05BFFh

RAM 16k

| 05B80-05BFFh

Alternate Interrupt Vectors

‘ 05C00h-OFFFFh

Program_lo (64-x%)k

<@

OFF7Ch-OFF7Fh

Application Signature Location

OFF80h-OFFFFh

Interrupt Vectors

10000h-45BFFh

Program_hi (192+x%)k

45C00h-FFFFFh

Vacant

NE)

@ Access rights are separately programmable for SYS and PMM.
On vacant memory space, the value 03FFFh will be driven on the data bus.

(@)

1.3.1 Vacant Memory Space

Accesses to vacant memory space will generate a NMI interrupt. Reads from vacant memory results in the
value 3FFFh. In the case of a fetch, this is taken as JMP $. Fetch accesses from vacant peripheral space
will result in a PUC. After the Boot code is executed, it behaves like vacant memory space and causes a

NMI on access.

1.3.2 JTAG Lock Mechanism

After a BOR the memory location 01BFEh will be taken as the reset-vector to start the boot code. The
Boot code evaluates the signatures of an optional boot strap loader (BSL) and the application is able to

lock or unlock JTAG for debugging, all that depending on the signatures.

20 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Memory Map—Uses and Abilities

1.3.3 SYS Interrupt Vector Generators

The SYS module collects all user NMI (UNMI) sources, system NMI (SNMI) sources, and BOR/POR/PUC
sources of all the other modules. They are combined into three interrupt vectors. The interrupt vector
registers SYSRSTIV, SYSSNIV, SYSUNIV are used to determine which flags requested an interrupt or a
BOR/POR/PUC reset. The interrupt with the highest priority of a group, when enabled, generates a
number in the corresponding SYSRSTIV, SYSSNIV, SYSUNIV register. This number can be directly
added to the program counter, causing a branch to the appropriate portion of the interrupt service routine.
Disabled interrupts do not affect the SYSRSTIV, SYSSNIV, SYSUNIV values. A read access, read to the
SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets the highest pending interrupt flag of that
register. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial
interrupt. A write access to the SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets all pending
interrupt flags of the group.

1.3.3.1 SYSSNIV Software Example

The following software example shows the recommended use of SYSSNIV. The SYSSNIV value is added
to the PC to automatically jump to the appropriate routine. For SYSRSTIV and SYSUNIV a similar SW
approach can be chosen. The following is an example for a generic MSP430x5xx device. Vectors can
change in priority for a given device. The device specific data sheet should be referenced for the vector
locations. All vectors should be coded symbolically to allow for easy portability of code.

SNl _I SR ADD &SYSSNI V, PC ; Add offset to junp table
RETI ; Vector 0: No interrupt
JMP SVML_I SR ; Vector 2: SVM.IFG
JMP SVMH | SR ; Vector 4: SVMH FG
JMP DLYL_I SR ; Vector 6: DLYLIFG
JMP DLYH | SR ; Vector 8: DLYH FG
JMP VMA | SR ; Vector 10: VMAI FG
JMP JMBI _I SR ; Vector 12: JMBI N FG
JMBO_I SR: ;. Vector 14: JMBOUTI FG
e ; Task_E starts here
RETI ;. Return
SVM__I| SR ; Vector 2
- ; Task_2 starts here
RETI ; Return
SVMH_| SR: ;. Vector 4
e ; Task_4 starts here
RETI ;. Return
DELL_| SR: ; Vector 6
- ; Task_6 starts here
RETI ; Return
DELH | SR: ;. Vector 8
e ; Task 8 starts here
RETI ;. Return
VMA | SR: ; Vector A
- ; Task_A starts here
RETI ; Return
JMBI _I SR: ;. Vector C
C ; Task _C starts here
RETI ;. Return

SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 21
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Interrupts www.ti.com
1.4 Interrupts
Interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as
shown in Eigure 1-7]. Interrupt priorities determine what interrupt is taken when more than one interrupt is

pending simultaneously.

There are three types of interrupts:

* System reset
* (Non)-maskable NMI

* Maskable
RST/NMI —»] cpPU
- — PorPUC |PUC
- —p circuit
KEYV —p
|
INT
System NMI —» > >_
User NMI —» NMI | el
Module_A_int —»,
Module_B_int —p Interrupt
. —»| daisy chain
WDT_int — p| and vectors
L—
Module_C_int — MAB - 6LSBs
Module_D_int —,

Figure 1-1. Interrupt Priority

1.4.1 (Non)-Maskable Interrupts (NMI)

The MSP430x5xx family supports two levels of NMI interrupts, system NMI (SNMI) and user NMI (UNMI).
In general, (Non)-maskable NMI interrupts are not masked by the general interrupt enable bit (GIE). The
user NMI sources are enabled by individual interrupt enable bits (NMIIE, ACCVIE, OFIE). When a user
NMI interrupt is accepted, other NMls of that level are automatically disabled to prevent nesting of
consecutive NMls of the same level. Program execution begins at the address stored in the
(non)-maskable interrupt vector as shown in [Table 1-2. To allow software backward compatibility to users
of earlier MSP430 families, the software may, but does not need to re-enable user NMI sources. The block
diagram for NMI sources is shown in Eigure 1-2.

A (non)-maskable user NMI interrupt can be generated by following sources:
* An edge on the RST/NMI pin when configured in NMI mode

» An oscillator fault occurs
* An access violation to the flash memory

A (non)-maskable system NMI interrupt can be generated by following sources:
* Power Management Module (PMM) SVML/SVMH supply voltage fault

* PMM time out

* Vacant memory access

* JTAG mailbox event

22

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Interrupts
1.4.2 SNMI Timing

Consecutive system NMils that are fired in a higher rate than they can be handled (interrupt storm) allow
the main program to execute one instruction after the system NMI handler is finished with an RETI
instruction, before the system NMI handler is executed again. Consecutive system NMIs are not
interrupted by user NMils in this case. This avoids a blocking behavior on high SNMI rates.

ACCVIFG User NMI
) _IRQA
PUC
RETI
R

IE1.5 (ACCVIE)
[Hs B
—» User NMI

ACCV

NMI

IFG1.4 (NMIIFG)
IE1.4 (NMIE)

;

IFG1.1 (OFIFG)
IE1.1 (OFIE)

PMMSVMLIFG
PMMSVMLIE

PMMSVMHIFG
PMMSVMHIE

OSC Fault

SVML 3_ System NMI
_IRQA

‘ — PUC
Del. FF| — RETI
R &

[s B
System NMI

SVMH

;

JMB event SYSJMBIFG }
SYSJMBI
Figure 1-2. NMI Interrupts With Reentrance Protection
SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 23

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Interrupts www.ti.com

1.4.3 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability. Each maskable interrupt source
can be disabled individually by an interrupt enable bit, or all maskable interrupts can be disabled by the
general interrupt enable (GIE) bit in the status register (SR).

Each individual peripheral interrupt is discussed in its respective module chapter of this manual.

Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are
set, the interrupt service routine is requested. Only the individual enable bit must be set for
(non)-maskable interrupts to be requested.

1.44.1 Interrupt Acceptance

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt request, and lasting until the
start of execution of the first instruction of the interrupt-service routine, as shown in Figure 1-3. The
interrupt logic executes the following:

1. Any currently executing instruction is completed.

2. The PC, which points to the next instruction, is pushed onto the stack.

3. The SR is pushed onto the stack.
4

. The interrupt with the highest priority is selected if multiple interrupts occurred during the last
instruction and are pending for service.

5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set
for servicing by software.

6. The SR is cleared. This terminates any low-power mode. Because the GIE bit is cleared, further
interrupts are disabled.

7. The content of the interrupt vector is loaded into the PC: the program continues with the interrupt
service routine at that address.

Before After
Interrupt Interrupt
Item1 Item1
SP —» ltem2 TOS ltem2
PC
SP—» SR TOS

Figure 1-3. Interrupt Processing

24

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Interrupts
1.4.4.2 Return From Interrupt

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions and is illustrated in Eigure 1-4.

1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, etc. are
now in effect, regardless of the settings used during the interrupt service routine.

2. The PC pops from the stack and begins execution at the point where it was interrupted.

Before After
Return From Interrupt

Item1 Item1
Item2 SP—» Item2 TOS
PC PC
SP—» SR TOS SR

Figure 1-4. Return From Interrupt

1.4.4.3 Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting

is enabled, any interrupt occurring during an interrupt service routine will interrupt the routine, regardless
of the interrupt priorities.

SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 25
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Operating Modes www.ti.com

15

Operating Modes
The MSP430 family is designed for ultralow-power applications and uses different operating modes shown

in Figure 1-5.

The operating modes take into account three different needs:
» Ultralow-power

» Speed and data throughput

* Minimization of individual peripheral current consumption

The low-power modes LPMO through LPM4 are configured with the CPUOFF, OSCOFF, SCGO0, and
SCG1 bhits in the status register. The advantage of including the CPUOFF, OSCOFF, SCGO0, and SCG1
mode-control bits in the status register is that the present operating mode is saved onto the stack during
an interrupt service routine. Program flow returns to the previous operating mode if the saved SR value is
not altered during the interrupt service routine. Program flow can be returned to a different operating mode
by manipulating the saved SR value on the stack inside of the interrupt service routine. The mode-control
bits and the stack can be accessed with any instruction. When setting any of the mode-control bits, the
selected operating mode takes effect immediately. Peripherals operating with any disabled clock are
disabled until the clock becomes active. The peripherals may also be disabled with their individual control
register settings. All I/O port pins and RAM/registers are unchanged. Wake-up is possible through all
enabled interrupts.

When LPM5 is entered, the voltage regulator of the Power Management Module (PMM) is disabled. All
RAM and register contents are lost, as well as, /O configuration. Wake-up is possible via a power
sequence or an RST/NMI event. On some devices, wake-up from 1/O is also possible. Please refer to the
device specific datasheet.

26

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Operating Modes

From active mode

Brownout

fault
Security
violation
DoBOR
event

RST/NMI *
(Reset event)
SVMH OVP-fault

SVML OVP-fault

WDT Active
Time expired, Overflow

WDT Active
Security Key Violatio

Peripheral area fetch

CPUOFF=1
OSCOFF=0
SCG0=0
SCG1=0

Active Mode: CPU is Active

PMMREGOFF =1
Various Modules are active

to LPM5

LPMO:
CPU/MCLK = off
FLL=o0n
ACLK =on
VCORE =on

7

_ LPM4:
CPUOFF=1 CPUOFF=1 CPUIMCLK = off
chuorr=1 OSCOFF=1 FLL = off
corr0 SCG0=1 ACLK = off
S0G1=0 CPUOFF=1 CPUOFF=1 SCG1=1 Veore = ON
OSCOFF=0 OSCOFF=0
LPM1: SCG0=0 SCG0=1
CPU/MCLK = off SCG1=1 SCG1=1 T
FLL = off o
ACLK = on LPM2: CPUMCLK = off
Voo = 0N CPUIMCLK = off ACLK =on
FLL = off
ACLK = on Veore = ON
Veore = ON

O Events
Q Operating modes/Reset phases

T Any enabled interrupt and NMI performs this transition
—— > Arbitrary transitions T An enabled reset always restarts the device

Figure 1-5. Operation Modes

SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Eubmit Documentafion FeedbacH

27

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Operating Modes www.ti.com
SCG1 SCGO OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 0 0 Active CPU, MCLK are active.
ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
0 0 0 1 LPMO CPU, MCLK are disabled.

ACLK is active. SMCLK optionally active (SMCLKOFF = 0).

DCO enabled if sources ACLK, MCLK, or SMCLK (SMCLKOFF =
0).

FLL enabled if DCO enabled.
0 1 0 1 LPM1 CPU, MCLK are disabled.
ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
DCO enabled if sources ACLK or SMCLK (SMCLKOFF = 0).
FLL disabled.
1 0 0 1 LPM2 CPU, MCLK are disabled.
ACLK is active. SMCLK is disabled.
DCO enabled if sources ACLK.
FLL disabled.
1 1 0 1 LPM3 CPU, MCLK are disabled.
ACLK is active. SMCLK is disabled.
DCO enabled if sources ACLK.

FLL disabled.
1 1 1 1 LPM4 CPU and all clocks disabled
LPM5 When PMMREGOFF = 1, regulator disabled. No memory
retention.

1.5.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from low-power operating modes LPMO through LPM4.
LPMS5 exit is only possible via a power cycle or a RST/NMI event or wakeup from I/O on when available
on some devices. The program flow entering and exiting LPMO through LPM4 is:

« Enter interrupt service routine:

— The PC and SR are stored on the stack

— The CPUOFF, SCG1, and OSCOFF bits are automatically reset
e Options for returning from the interrupt service routine:

— The original SR is popped from the stack, restoring the previous operating mode.

— The SR bits stored on the stack can be modified within the interrupt service routine returning to a
different operating mode when the RETI instruction is executed.

; Enter LPMD Exanpl e
Bl S #G E+CPUCFF, SR ; Enter LPMD
. ; Program stops here
Exit LPMD Interrupt Service Routine
BIC #CPUOFF, O(SP) : Exit LPMD on RETI
RETI

; Enter LPMB Exanpl e
BIS #d E+CPUOFF+SCGL+SCQD, SR ; Enter LPMB
. ; Program stops here

; Exit LPMB Interrupt Service Routine

BIC #CPUOFF+SCGL+SCQ0, 0(SP) ; Exit LPM3 on RETI
RETI
28 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Operating Modes

Enter LPMA Exanpl e
BI S #Ad E+CPUOFF+0OSCOFF+SCGL+SCA), SR . Enter LPM4
. ; Program stops here
; Exit LPMA Interrupt Service Routine
BIC #CPUOFF+OSCOFF+SCGL+SCQ0, 0(SP) ;. Exit LPM4 on RETI
RETI

The following code example shows how to enter LPM5 mode. Exit from LPM5 is only possible with a
RST/NMI event, a power on cycle, or if available on some devices via specific /0. Upon exit from the
device, a complete reset sequence is performed. Please refer to the Power Management Module Chapter
for further details.

; Enter LPMb Exanpl e
BI S #PMVREGOFF, &PMMCTLO ;
BIS #d E+CPUOFF+0OSCOFF+SCGL+SCQ0, SR ; Enter LPMb6 when PMVREGOFF is set.

1.5.1.1 Extended Time in Low-Power Modes

The temperature coefficient of the DCO should be considered when the DCO is disabled for extended
low-power mode periods. If the temperature changes significantly, the DCO frequency at wake-up may be
significantly different from when the low-power mode was entered and may be out of the specified
operating range. To avoid this, the DCO can be set to it lowest value before entering the low-power mode
for extended periods of time where temperature can change.

Enter LPMA Exanple with | onwest DCO Setting
BI C #SCA), SR ; Disable FLL
MOV #0100h, &UCSCTLO ; Set DCOtap to first tap, clear
nodul ati on.
BIC #DCORSEL2+DCORSEL1+DCORSELO, &UCSCTL1 ; Lowest DCORSEL
BIS #Qd E+CPUCFF+0OSCOFF+SCGL+SCA0, SR ; Enter LPMA
; Program stops

; Interrupt Service Routine

BIC #CPUOFF+OSCOFF+SCGL+SCQD, 0(SR) ; Exit LPM4A on RETI
RETI
SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 29

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Principles for Low-Power Applications www.ti.com

1.6

1.7

1.8

Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the MSP430's clock system to

maximize the time in LPM3 or LPM4 modes whenever possible.

» Use interrupts to wake the processor and control program flow.

» Peripherals should be switched on only when needed.

» Use low-power integrated peripheral modules in place of software driven functions. For example
Timer_A and Timer_B can automatically generate PWM and capture external timing, with no CPU
resources.

e Calculated branching and fast table look-ups should be used in place of flag polling and long software
calculations.

» Avoid frequent subroutine and function calls due to overhead.

» For longer software routines, single-cycle CPU registers should be used.

Connection of Unused Pins
The correct termination of all unused pins is listed in [[able 1-1].

Table 1-1. Connection of Unused Pins

Pin Potential Comment
AVce DVce

AVsg DVsg
Px.0 to Px.7 Open Switched to port function, output direction

47-kQ pullup or internal pullup selected with 10-nF

RST/NMI DVCC or VCC pU”dOWn

TDO/TDI/TMS/TCK Open
TEST Open

Reset and Subtypes

BOR, POR, and PUC can be seen as a special type of a non-maskable interrupt with restart behavior of
the complete system. BOR (brownout reset), POR (power on reset) and PUC (power up clear) are
subtypes of it. shows their dependencies; A BOR reset represents the highest impacts to HW
and causes a reload of device dependent HW while a PUC only resets the CPU and starts over with
program execution.

30

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Interrupt Vectors
BORshaddow
brownout circuit Brownout Delay
OPTIONAL
from port s ©r
wakeup logic’
EN =
PMMRSTIFG

SYSNMI
notRST — pMMBORIFG

!s c:r I
DoBor event

PMMSVSHIFG

BOR Dela
t BORje——» BOR

E
00 0

'

from SVSH
PMMSVSHIBs—

PMMVLRHIFG

'

from SVMH

PMMVLRHPBEs—
POR Delay

PMMSVSLIFG SOR le » POR

from SVSL

PMMSVSLIER—

PMMVLRLIFG

'

from SVML
PMMVLRLPBs—

PMMPORIFG

tﬁuﬁjuu

DoPor event

WDTPWVIFG —

WDT_PWV MCLK— » Module

> PUCs

l

PUC Logic

Figure 1-6. BOR/POR/PUC Reset Circuit

1.9 Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the address range OFFFFh to
OFF80h, for a maximum of 64 interrupt sources. A vector is programmed by the user this vector points to
the start of the corresponding interrupt service routine. See the device-specific data sheet for the complete
interrupt vector list.

SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 31
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Interrupt Vectors www.ti.com
Table 1-2. Interrupt Sources, Flags, and Vectors
System I
Interrupt Source Interrupt Flag Interrupt Word Address Priority
Reset:
Power up, external WDTIFG Reset OFFFEh highest
reset, watchdog, KEYV
flash password
System NMI: (non)-maskable OFFFCh
PSS
User NMI:
NMI, oscillator fault, NMIIFG (non)-maskable OFFFAh
flash memory access OFIFG (non)-maskable
violation ACCIFG (non)-maskable
device specific OFFF8h
Watchdog timer WDTIFG maskable
device specific
reserved (maskable) lowest

Some interrupt enable bits, and interrupt flags and control bits for the RST/NMI pin are located in the
Special Function Registers (SFRs). The SFRs are located in the peripheral address range and are byte
and word accessible. See the device-specific data sheet for the SFR configuration.

32

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Special Function Registers

1.10 Special Function Registers
The special function registers, SFR, are listed in [[able 1-4. The base address for the SFR registers is

listed in [Table 1-3.
Table 1-3. SFR Base Address
Module Base address
SFR 00100h
Table 1-4. Special Function Registers
. Register Register Address L
Register Short Form Type Access Offset Initial State
SFRIE1 read/write word 00h 0000h
Interrupt enable register SFRIEL1_L (IE1) read/write byte 00h 00h
SFRIE1_H (IE2) read/write byte 01h 00h
SFRIFG1 read/write word 02h 0082h
Interrupt flag register SFRIFG1_L (IFG1) read/write byte 02h 82h
SFRIFG1_H (IFG2) read/write byte 03h 00h
SFRRPCR read/write word 04h 0000h
Reset pin control register SFRRPCR_L read/write byte 04h 00h
SFRRPCR_H read/write byte 05h 00h
SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 33

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Special Function Registers www.ti.com
SFRIFG1, SFRIFG1_L, SFRIFG1_H, Interrupt Flag Register
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved Reserved Reserved | Reserved ‘ Reserved Reserved Reserved Reserved
r0 ro r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
| JMBOUTIFG | JMBINIFG | Reserved NMIIFG VMAIFG Reserved | OFIFG | WDTIFG
rw-(1) rw-(0) rw-0 rw-0 rw-0 r0 rw-(1) rw-0
Reserved Bit 15-8 Reserved. Reads back 0
JMBOUTIFG Bit 7 JTAG mailbox output interrupt flag
0 no interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when
JMBOO has been written by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared
automatically when both IMBOO and JMBOL1 have been written by the CPU. This bit is also
cleared when the associated vector in SYSUNIV has been read.
1 interrupt pending, JMBO registers are ready for new messages. In 16-bit mode (JMBMODE=0)
JMBOO has been received by JTAG. In 32-bit mode (JMBMODE=1) , IMBOO and JMBOL1 have
been received by JTAG.
JMBINIFG Bit 6 JTAG mailbox input interrupt flag
0 no interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when
JMBIO is read by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared automatically
when both JMBIO and JMBI1 have been read by the CPU. This bit is also cleared when the
associated vector in SYSUNIV has been read
1 interrupt pending, a message is waiting in the JMBIN registers. In 16-bit mode (JMBMODE = 0)
when JMBIO has been written by JTAG. In 32 bit mode (JMBMODE = 1) when JMBIO and JMBI1
have been written by JTAG.
Reserved Bit 5 Reserved. Reads back 0
NMIIFG Bit 4 NMI pin interrupt flag
0 no interrupt pending
1 interrupt pending
VMAIFG Bit 3 Vacant memory access interrupt flag
0 no interrupt pending
1 interrupt pending
Reserved Bit 2 Reserved. Reads back 0
OFIFG Bit 1 Oscillator fault interrupt flag
0 no interrupt pending
1 interrupt pending
WDTIFG Bit 0 Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until reset by software. In
interval mode, WDTIFG is reset automatically by servicing the interrupt, or can be reset by software.
Because other bits in ~IFG1 may be used for other modules, it is recommended to clear WDTIFG by
using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 no interrupt pending
1 interrupt pending
34 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Special Function Registers

SFRIE1, SFRIE1_L, SFRIE1_H, Interrupt Enable Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved Reserved Reserved | Reserved Reserved Reserved Reserved Reserved
r0 ro r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
JMBOUTIE JMBINIE ACCVIE NMIIE VMAIE Reserved OFIE WDTIE
rw-0 rw-0 rw-0 rw-0 rw-0 ro rw-0 rw-0
Reserved Bit 15-8 Reserved. Reads back 0.
JMBOUTIE Bit 7 JTAG mailbox output interrupt enable flag
0 interrupts disabled
1 interrupts enabled
JMBINIE Bit 6 JTAG mailbox input interrupt enable flag
0 interrupts disabled
1 interrupts enabled
ACCVIE Bit 5 Flash controller access violation interrupt enable flag
0 interrupts disabled
1 interrupts enabled
NMIIE Bit 4 NMI pin interrupt enable flag
0 interrupts disabled
1 interrupts enabled
VMAIE Bit 3 Vacant memory access interrupt enable flag
0 interrupts disabled
1 interrupts enabled
Reserved Bit 2 Reserved. Reads back 0.
OFIE Bit 1 Oscillator fault interrupt enable flag
0 interrupts disabled
1 interrupts enabled
WDTIE Bit O Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for interval timer mode. It is not

necessary to set this bit for watchdog mode. Because other bits in ~IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B

instruction
0 interrupts disabled
1 interrupts enabled

SLAU208-June 2008
Eubmit Documentation Feedbacl

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Special Function Registers www.ti.com
SFRRPCR, SFRRPCR_H, SFRRPCR_L, Reset Pin Control Register
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved ‘ Reserved Reserved Reserved Reserved
r0 ro r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved SYSRSTRE SYSRSTUP SYSNMIIES SYSNMI
r0 ro r0 ro rw-0 rw-0 rw-0 rw-0
Reserved Bit 15-5 Reserved. Reads back 0.
SYSRSTRE Bit 3 Reset pin resistor Enable.
0 Pullup/pulldown resistor at the RST/NMI pin is disabled.
1 Pullup/pulldown resistor at the RST/NMI pin is enabled.
SYSRSTUP Bit 2 Reset resistor pin pullup/pulldown.
0 Pulldown is selected.
1 Pullup is selected.
SYSNMIIES Bit 1 NMI edge select. This bit selects the interrupt edge for the NMI interrupt when SYSNMI = 1. Modifying
this bit can trigger an NMI. Modify this bit when SYSNMI = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge
SYSNMI Bit 0 NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function

36 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I,

TEXAS

INSTRUMENTS

www.ti.com

SYS Registers

1.11 SYS Registers

The SYS registers are listed in and Table 6. A detailed description of each register and its bits is
also provided. Each register starts at a word boundary. Both, word or byte data can be written to the SYS

registers.
Table 1-8. SYS Base Address
Module Base address
SYS 00180h
Table 1-9. SYS Configuration Registers
. . Register "
Register Short Form Register Type Access Address Offset Initial State
System Control Register SYSCTL read/write word 00h 0000h
SYSCTL_L read/write byte 00h 00h
SYSCTL_H read/write byte 01lh 00h
Boot strap loader SYSBSLC read/write word 02h 0003h
configuration register SYSBSLC_L read/write byte 02h 03h
SYSBSLC_H read/write byte 03h 00h
Arbitration configuration SYSARB read/write word 04h 0000h
Register SYSARB_L read/write byte 04h 00h
SYSARB_H read/write byte 05h 00h
JTAG Mailbox Control SYSJMBC read/write word 06h 0000h
Register SYSIJMBC_L read/write byte 06h 0Ch
SYSIJMB_H read/write byte 07h 00h
JTAG Mailbox Input SYSJMBIO read/write word 08h 0000h
Register #0 SYSJIMBIO_L read/write byte 08h 00h
SYSJIMBIO_H read/write byte 0%h 00h
JTAG Mailbox Input SYSJMBI1 read/write word OAh 0000h
Register #1 SYSJIMBI1_L read/write byte OAh 00h
SYSJIMBI1_H read/write byte 0Bh 00h
JTAG Mailbox Output SYSJIMBOO read/write word 0Ch 0000h
Register #0 SYSIJMBOO_L read/write byte 0Ch 00h
SYSIJMBOO_H read/write byte 0Dh 00h
JTAG Mailbox Output SYSJMBO1 read/write word OEh 0000h
Register #1 SYSIJMBO1_L read/write byte OEh 00h
SYSIJMBO1_H read/write byte OFh 00h
reserved for future use 10h
17h
Bus error vector SYSBERRIV read only word 18h 0000h
generator
User NMI vector
generator SYSUNIV read only word 1Ah 0000h
System NMI vector gen. SYSSNIV read only word 1Ch 0000h
Reset vector generator SYSRSTIV read only word 1Eh 0002h

Access to some SYS registers is allowed only if the SYSLOCK bit is reset.

SLAU208-June 2008
Eubmit Documentation Feedbacl

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

37

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
SYS Registers www.ti.com
SYSCTL, SYSCTL_L, SYSCTL_H, SYS Control Register
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved Reserved Reserved | Reserved Reserved Reserved Reserved Reserved
r0 ro r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
Reserved Reserved | SYSJTAGPIN | SYSBSLIND | Reserved | SYSPMMPE | Reserved | SYSRIVECT |
r0 r0 rw-(0) r-0 r0 rw-(0) r0 rw-(0)

Reserved Bits 15-8 Reserved. Reads back 0.

SYSJTAGPIN Bit 5 Dedicated JTAG pins enable. Setting this bit disables the shared functionality of the JTAG pins and
permanently enables the JTAG function. This bit can only be set once. Once it is set it will remain set
until a BOR occurs.

0 shared JTAG pins (JTAG mode selectable via SBW sequence)
1 Dedicated JTAG pins (explicit 4 wire JTAG mode selection)

SYSBSLIND Bit 4 TCK/RST entry BSL indication detected to allow writing a backward compatible BSL to early ‘430
families. See BSL entry in Spy-Bi —~Wire
0 No BSL indication
1 BSL entry detected

Reserved Bit 3 Reserved. Reads back 0.

SYSPMMPE Bit 2 PMM access protect. The control register of the PMM module can be accessed by a program running
... (If this bit is set to one it only can be cleared again by a BOR)

0 ... anywhere in memory
1 ... only from boot code area (01BO0Oh-01BFFh) and the protected BSL segments.

Reserved Bit 1 Reserved. Reads back 0.

SYSRIVECT Bit 0 RAM based Interrupt Vectors
0 Interrupt Vectors generated with end address: TOP of lower 64k Flash FFFFh
1 Interrupt Vectors generated with end address TOP of RAM

38 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

SYS Registers

SYSBSLC, SYSBSLC L, SYSBSLC_H, BSL Configuration Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
‘ SYSBSLPE | SYSBSLOFF ‘ Reserved | Reserved Reserved Reserved Reserved Reserved
rw-(0) rw-(0) r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
’ Reserved | Reserved ‘ Reserved | Reserved Reserved | SYSBSLR ‘ SYSBSLSIZE ‘
r0 r0 r0 r0 r0 rw-(0) rw-(1) rw-(1)
SYSBSLPE Bit 15-7 Boot strap loader (BSL) memory protection enable for the size covered in SYSBSLSIZE
0 area not protected read, program and erase of memory is possible
1 area protected
SYSBSLOFF Bit 14-6 Boot strap loader (BSL) memory disable for the size covered in SYSBSLSIZE
0 BSL memory is addressed when this area is read
1 BSL memory behaves like vacant memory
Reserved Bit 13-3 Reserved. Reads back 0.
SYSBSLR Bit 2 RAM assigned to BSL
0 no RAM assigned to BSL area
1 lowest 16 bytes of RAM assigned to BSL
SYSBSLSIZE Bit 1-0 BOOT Strap Loader Size

This defines the space and size of Flash that is reserved for the Boot Strap Loader.

00
01
10
11

Size: 512B BSL_SEG_3

Size: 1024B BSL_SEG_2,3

Size: 1536B BSL_SEG_1,2,3

Size: 2048B BSL_SEG_0,1,2,3 (value after BOR!)

SLAU208-June 2008
Eubmit Documentation Feedbacl

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

39

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
SYS Registers www.ti.com
SYSIJMBC, SYSIMBC_L, SYSBMBC_H, JTAG Mailbox Control Register
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved Reserved Reserved | Reserved ‘ Reserved | Reserved Reserved Reserved
r0 ro r0 ror r0 ro r0 ro
7 6 5 4 3 2 1 0
| JMBCLRI10FF | JMBCLROOFF | Reserved JMBMODE | JMBOUTIFG | JMBOUTOFG | JMBINIFG | JMBINOFG |
rw-(0) rw-(0) r0 rw-0 r-(1) r-(1) rw-(0) rw-(0)
Reserved Bit 15-8 Reserved. Reads back 0.
JMBCLR1OFF Bit 7 Incoming JTAG Mailbox 1 flag auto-clear disable.
0 JMBIN1FG cleared on read of JMB1IN register
1 JMBIN1FG cleared by SW
JMBCLROOFF Bit 6 Incoming JTAG Mailbox 0 flag auto-clear disable
0 JMBINOFG cleared on read of JMBOIN register
1 JMBINOFG cleared by SW
Reserved Bit 5 Reserved. Reads back 0.
JMBMODE Bit 4 This bit defined the operation mode of JMB for JMBIO/1 and JMBOO/1. Before switching this bit pad
and flush out any partial content to avoid data drops.
0 16 bit transfers using JMBOO and JMBIO only
1 32 bit transfers using JIMBOO0/1 and JMBI0/1
JMBOUT1FG Bit 3 Outgoing JTAG Mailbox 1 flag. This bit is cleared automatically when a message is written to the
upper byte of IMBOL1 or as word access (by the CPU, DMA,...) and is set after the message was
read via JTAG.
0 JMBOL1 is not ready to receive new data
1 JMBOL1 is ready to receive new data
JMBOUTOFG Bit 2 Outgoing JTAG Mailbox 0 flag. This bit is cleared automatically when a message is written to the
upper byte of IMBOO or as word access (by the CPU, DMA,...) and is set after the message was
read via JTAG.
0 JMBOO is not ready to receive new data
1 JMBOO is ready to receive new data
JMBIN1FG Bit 1 Incoming JTAG Mailbox 1 flag. This bit is set when a new message (provided via JTAG) is available
in JMBI1. This flag is cleared automatically on read of JIMBI1 when JMBCLR1OFF=0 (auto clear
mode). On JIMBCLR1OFF=1 JMBIN1FG needs to be cleared by SW.
0 JMBI1 has no new data
1 JMBI1 has new data available
JMBINOFG Bit 0 Incoming JTAG Mailbox 0 flag. This bit is set when a new message (provided via JTAG) is available

in JMBIO. This flag is cleared automatically on read of JIMBIO when JMBCLROOFF=0 (auto clear
mode). On JIMBCLROOFF=1 JMBINOFG needs to be cleared by SW.

0 JMBI1 has no new data
1 JMBI1 has new data available

40 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com SYS Registers

SYSJIMBIO, SYSIMBIO_L, SYSIMBIO_H, JTAG Mailbox Input O Register
SYSJIMBI1, SYSIMBI1_L, SYSIMBI1_H, JTAG Mailbox Input 1 Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
MSGHI
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
7 6 5 4 3 2 1 0
MSGLO
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
MSGHI Bit 15-8 JTAG mailbox incoming message high byte
MSGLO Bit 7-0 JTAG mailbox incoming message low byte

SYSIMBOO, SYSIMBOO_L, SYSIJIMBOO_H, JTAG Mailbox Out 0
Register SYSIJIMBO1, SYSIMBO1_L, SYSIMBO1_H, JTAG Mailbox Out 1 Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
MSGHI
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
MSGLO
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
MSGHI Bit 15-8 JTAG Mailbox outgoing message high byte
MSGLO Bit 7-0 JTAG Mailbox outgoing message low byte

SYSUNIV, SYSUNIV_H, SYSUNIV_L, User NMI Interrupt Vector Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
0 0 0 0 0 | 0 0 0
r0 ro r0 ro r0 ro r0 ro
4 3 2 1
0 0 SYSUNVEC
r0 ro r0 r-0 r-0 r-0 r-0 ro
SYSUNIV Bit 15-0 User NMI interrupt vector. It generates an value that can be used as address offset for fast interrupt

service routine handling. Writing to this register clears all pending user NMI interrupt flags.

Value Interrupt Type

0000h No interrupt pending

0002h NMIIFG interrupt pending (highest priority)
0004h OFIFG interrupt pending

0006h ACCVIFG interrupt pending

0008h reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device.

SLAU208-June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 41
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
SYS Registers www.ti.com
SYSSNIV, SYSSNIV_H, SYSSNIV_L, SYS NMI Interrupt Vector Register
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
0 0 0 | 0 \ 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
4 | 3 2 1
SYSSNVEC
r0 ro r0 r-0 r-0 r-0 r-0 ro
SYSSNIV Bit 15-0 System NMI interrupt vector. It generates an value that can be used as address offset for fast
ifgg;rupt service routine handling. Writing to this register clears all pending system NMI interrupt
Value Interrupt Type
0000h No interrupt pending
0002h SVMLIFG interrupt pending (highest priority)
0004h SVMHIFG interrupt pending
0006h DLYLIFG interrupt pending
0008h DLYHIFG interrupt pending
000Ah VMAIFG interrupt pending
000Ch JMBINIFG interrupt pending
000Eh JMBOUTIFG interrupt pending
0010h VLRLIFG interrupt pending
0012h VLRHIFG interrupt pending
0014h Reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device.

42 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

SYS Registers

SYSRSTIV, SYSRSTIV_H, SYSRSTIV_L, SYS Reset Interrupt Vector Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
0 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
4 3 2 1
SYSRSTVEC
r0 ro r0 r-0 r-0 r-0 r-0 r0

SYSRSTIV Bit 15-0

Reset interrupt vector. It generates an value that can be used as address offset for fast interrupt

service routine handling to identify the last cause of an Reset (BOR, POR, PUC) . Writing to this
register clears all pending reset source flags.

Value

0000h
0002h
0004h
0006h
0008h
000Ah
000Ch
000Eh
0010h
0012h
0014h
0016h
0018h
001Ah
001Ch
001Eh
0020h
0022h

Interrupt Type

No interrupt pending

Brownout (BOR) (highest priority)
RST/NMI (POR) (also RST wakes up)
DoBOR (BOR)

Port wakeup (BOR)

Security violation (BOR)

SVSL (POR)

SVSH (POR)

SVML_OVP (POR)

SVMH_OVP (POR)

DoPOR (POR)

WDT time out (PUC)

WDT keyviol (PUC)

KEYYV flash keyviol (PUC)

PLL unlock (PUC)

PERF peripheral/configuration area fetch (PUC)
PMM key violation (PUC)

Reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device

SLAU208-June 2008
Eubmit Documentation Feedbacl

System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 43

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

44 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 2
INSTRUMENTS SLAU208— June 2008

Watchdog Timer (WDT_A)

The watchdog timer is a 32-bit timer that can be used as a watchdog or as an interval timer. This chapter
describes the watchdog timer. The enhanced watchdog timer, WDT_A, is implemented in all MSP430x5xx
devices.

Topic Page
2.1 Watchdog Timer Introduction] oo e ieee e ieieeeeeeieieraeaeeeininene. 449
2.2 Watchdog Timer Block Diagramf....ccoooeiiee e eeeeeeeeeeeeieieeeeeeeee 13
2.3 Watchdog Timer Registersfoeieeeieieieieeieieiieaeeeeeeeeieieieieieieaeenees 50
SLAU208-June 2008 Watchdog Timer (WDT_A) 45

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Watchdog Timer Introduction www.ti.com

2.1

Watchdog Timer Introduction

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart
after a software problem occurs. If the selected time interval expires, a system reset is generated. If the
watchdog function is not needed in an application, the module can be configured as an interval timer and
can generate interrupts at selected time intervals.

Features of the watchdog timer module include:

Eight software-selectable time intervals

Watchdog mode

Interval mode

Access to WDT control register is password protected
Selectable clock source

Can be stopped to conserve power

Clock fail-safe feature

The WDT block diagram is shown in Figure 2-1].

Note: Watchdog Timer Powers Up Active
After a PUC, the WDT_A module is automatically configured in the watchdog mode with an
initial ~32-ms reset interval using the SMCLK. The user must setup or halt the WDT_A prior
to the expiration of the initial reset interval.

46

Watchdog Timer (WDT_A) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Watchdog Timer Introduction
-32Bit WDT extension WDTCTL A
\ 00 %&3‘\ § | MSB MDB
01
. 0 —p <«
e JwbTan 10 16-bit
D “ i\ | Counter % 1 —p «—
2 TN
< op | CLK \ 0—p <
% 1k ki
ol SN~ 00 4—212 —t T I;assword <
uise I ompare '
Generator U 01<Q9 L
10/ 0—p <
11|€=2 16-bit
™ Clear Counter 1 —p <«
PUC
;3 > (Asyn)’ | cLK o caule <
Write Enable
EQU Low Byte —
SMCLK 00
ACLK 01
VLOCLK 10
X_CLK 11 WDTHOLD
WDTSSEL1
WDTSSELO
WDTTMSEL
WDTCNTCL
WDTIS2
WDTIS1
WDTISO | LSB \4
I

——— P X_CLK request
Clock P SMCLK request
Request

Logic [~ ACLKrequest
———— P VLOCLK request

Figure 2-1. Watchdog Timer Block Diagram

SLAU208-June 2008 Watchdog Timer (WDT_A) a7
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Watchdog Timer Block Diagram www.ti.com

2.2

221

222

2.2.3

224

Watchdog Timer Block Diagram

The WDT module can be configured as either a watchdog or interval timer with the WDTCTL register.
WDTCTL is a 16-bit, password-protected, read/write register. Any read or write access must use word
instructions and write accesses must include the write password 05Ah in the upper byte. Any write to
WDTCTL with any value other than 05Ah in the upper byte is a security key violation and triggers a PUC
system reset regardless of timer mode. Any read of WDTCTL reads 069h in the upper byte. Byte reads on
WDTCTL high or low part will result the value of the low byte. Writing byte wide to upper or lower part of
WDTCTL results into a PUC.

Watchdog Timer Counter

The watchdog timer counter (WDTCNT) is a 32-bit up-counter that is not directly accessible by software.
The WDTCNT is controlled and its time intervals selected through the watchdog timer control register
WDTCTL. The WDTCNT can be sourced from SMCLK, ACLK, VLOCLK and X_CLK on some devices.
The clock source is selected with the WDTSSEL bits.

Watchdog Mode

After a PUC condition, the WDT module is configured in the watchdog mode with an initial ~32-ms reset
interval using the SMCLK. The user must setup, halt, or clear the WDT prior to the expiration of the initial
reset interval or another PUC will be generated. When the WDT is configured to operate in watchdog
mode, either writing to WDTCTL with an incorrect password, or expiration of the selected time interval
triggers a PUC. A PUC resets the WDT to its default condition.

Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide
periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time
interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG
interrupt flag is automatically reset when its interrupt request is serviced, or may be reset by software. The
interrupt vector address in interval timer mode is different from that in watchdog mode.

Note: Modifying the Watchdog Timer
The WDT interval should be changed together with WDTCNTCL = 1 in a single instruction to
avoid an unexpected immediate PUC or interrupt. The WDT should be halted before
changing the clock source to avoid a possible incorrect interval.

Watchdog Timer Interrupts

The WDT uses two bits in the SFRs for interrupt control
* The WDT interrupt flag, WDTIFG, located in SFRIFG1.0
* The WDT interrupt enable, WDTIE, located in SFRIE1.0

When using the WDT in the watchdog mode, the WDTIFG flag sources a reset vector interrupt. The
WDTIFG can be used by the reset interrupt service routine to determine if the watchdog caused the
device to reset. If the flag is set, then the watchdog timer initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by a different source.

When using the WDT in interval timer mode, the WDTIFG flag is set after the selected time interval and
requests a WDT interval timer interrupt if the WDTIE and the GIE bits are set. The interval timer interrupt
vector is different from the reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag
is reset automatically when the interrupt is serviced, or can be reset with software.

48

Watchdog Timer (WDT_A) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Watchdog Timer Block Diagram
2.2.5 Clock Fail-Safe Feature

The WDT _A provides a fail-safe clocking feature assuring the clock to the WDT_A cannot be disabled
while in watchdog mode. This means the low-power modes may be affected by the choice for the WDT_A
clock.

If SMCLK or ACLK fails as WDT_A clock source then VLOCLK is automatically selected as WDT_A clock
source.

When the WDT_A module is used in interval timer mode, there is no fail-safe feature within WDT_A for
the clock source.

2.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals are available in different
low-power modes. The requirements of the user’s application and the type of clocking used determine
how the WDT_A should be configured. For example, the WDT_A should not be configured in watchdog
mode with a clock source that is originally sourced from DCO, XT1 in high frequency mode, or XT2 via
SMCLK or ACLK if the user wants to use low power mode 3. In this case, SMCLK or ACLK would remain
enabled increasing the current consumption of LPM3. When the watchdog timer is not required, the
WDTHOLD bit can be used to hold the WDTCNT, reducing power consumption.

2.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte:

; Periodically clear an active wat chdog
MOV #WDTPWHWDTCNTCL, &ADTCTL

; Change wat chdog tiner interval
MOV #WDTPWHWDTCNTCL+SSEL, &ADTCTL
; Stop the watchdog

MOV #WDTPWHWDTHOLD, &WDTCTL

; Change WDT to interval timer node, clock/8192 interval
MOV #WVWDTPWHWDTCNTCL+WDT TMSEL +WDTI S2+WDTI SO, &ADTCTL

SLAU208-June 2008 Watchdog Timer (WDT_A) 49
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Watchdog Timer Registers

13 TEXAS
INSTRUMENTS

www.ti.com

2.3 Watchdog Timer Registers
The watchdog timer module registers are listed in [[able 2-7. The base register or the watchdog timer
module registers and special function registers (SFR) can be found in the device specific data sheet. The
address offset is given in [[able 2-7.
Table 2-1. Watchdog Timer Base Register
Module Base address
WDT_A 00150h
Table 2-2. Watchdog Timer Registers
Register Short Form Register Type REG Access Address Initial State
Watchdog timer control register WDTCTL read/write word 0Ch 6904h
50 Watchdog Timer (WDT_A)

SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Watchdog Timer Registers

WDTCTL, Watchdog Timer Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Read as 069h
WDTPW, must be written as 05Ah
7 6 5 4 3 2 1 0
WDTHOLD WDTSSELX WDTTMSEL WDTCNTCL | WDTISxX
rw-0 rw-0 rw-0 rw-0 ro(w) rw-1 rw-0 rw-0
WDTPW Bits 15-8 Watchdog timer password. Always read as 069h. Must be written as 05Ah, or a PUC will be generated.
WDTHOLD Bit 7 Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1 when the WDT is not in use
conserves power
0 Watchdog timer is not stopped
1 Watchdog timer is stopped
WDTSSEL Bit 6-5 Watchdog timer clock source select
00 SMCLK
01 ACLK
10 VLOCLK
11 X_CLK , same as VLOCLK if not defined differently in data sheet
WDTTMSEL Bit 4 Watchdog timer mode select
0 Watchdog mode
1 Interval timer mode
WDTCNTL Bit 3 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is
automatically reset.
0 No action
1 WDTCNT = 0000h
WDTISx Bit 2-0 Watchdog timer interval select. These bits select the watchdog timer interval to set the WDTIFG flag and/or
generate a PUC.
000 Watchdog clock source /2G (18:12:16 at 32 kHz)
001 Watchdog clock source /128M (01:08:16 at 32 kHz
010 Watchdog clock source /8192k (00:04:16 at 32 kHz)
011 Watchdog clock source /512k (00:00:16 at 32 kHz)
100 Watchdog clock source /32k (1 s at 32 kHz)
101 Watchdog clock source /8192 (250 ms at 32 kHz)
110 Watchdog clock source /512 (15,6 ms at 32 kHz)
111 Watchdog clock source /64 (1.95 ms at 32 kHz)
SLAU208-June 2008 Watchdog Timer (WDT_A) 51

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

52 Watchdog Timer (WDT_A) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 3
INSTRUMENTS SLAU208— June 2008

Unified Clock System (UCS)

The Unified Clock System module provides the clocks for MSP430x5xx devices. This chapter describes
the operation of the Unified Clock System module. The Unified Clock System module is implemented in all
MSP430x5xx devices.

Topic Page
3.1 Unified Clock System Introduction[.....ccooeieieieieieieeeeiieraeaeaeeesn.s 54
3.2 Unified Clock System Module Operation....o.coeeeeeeeeeeieieieieieeeene.... 54
3.3 MODOSC Module Oscillator oo i eeeaeeeees 63
3.4 Unified Clock System Module Registers[i.coceeeeeereieieeeeeeeeeeeaeaienn... 64
SLAU208-June 2008 Unified Clock System (UCS) 53

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Unified Clock System Introduction www.ti.com

3.1

Unified Clock System Introduction

The Unified Clock System (UCS) module supports low system cost and ultra-low power consumption.
Using three internal clock signals, the user can select the best balance of performance and low power
consumption. The Unified Clock System module can be configured to operate without any external
components, with one or two external crystals, or with resonators, under full software control.

The Unified Clock System module includes up to five clock sources:

XT1CLK: Low-frequency/high-frequency oscillator that can be used either with low-frequency 32768-Hz
watch crystals, standard crystals, resonators, or external clock sources in the 4-MHz to 32-MHz range.

VLOCLK: Internal very low power, low frequency oscillator with 12 kHz typical frequency.

REFOCLK: Internal, trimmed, low frequency oscillator with 32768 Hz typical frequency, with the ability
to be used as a clock reference into the FLL.

DCOCLK: Internal digitally controlled oscillator (DCO) that can be stabilized by the FLL.

XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or
external clock sources in the 4-MHz to 40-MHz range.

Three clock signals are available from the Unified Clock System module:

ACLK: Auxiliary clock. The ACLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK,
DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4,
8, 16, or 32 within the FLL block. ACLK is software selectable for individual peripheral modules. ACLK
is divided by 1, 2, 4, 8, 16 or 32. ACLK/n is ACLK divided by 1, 2, 4, 8, 16, or 32 and is available
externally at a pin.

MCLK: Master clock. MCLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK,
DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4,
8, 16, or 32 within the FLL block. MCLK is divided by 1, 2, 4, 8. 16, or 32 MCLK is used by the CPU
and system.

SMCLK: Sub-system master clock. SMCLK is software selectable as XT1CLK, REFOCLK, VLOCLK,
DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided
by 1, 2, 4, 8, 16, or 32 within the FLL block. SMCLK is divided by 1, 2, 4, 8, 16, or 32. SMCLK is
software selectable for individual peripheral modules.

A peripheral module may request its clock sources automatically if required for its proper operation. The
block diagram of the Unified Clock System module is shown in Figure 3-11.

54

Unified Clock System (UCS) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Unified Clock System Introduction
ACLK_REQEN
ACLK_REQ
SELM,
SELS SELA OSCOFF
L %
0osC
XT1 Fqult ACLK Enable Logic
XTIBYPASS Detection DIVPA
EN
3
0
. XTCLK Divider M
1 DIVA 1112/4/8/16/32
VLOCLK 13
VLO
Divider
[11214/8/16/32
REFOCLK
XTS REFO
N XT1 #
oV
L
— MCLK_REQEN
T MCLK_REQ
XOUT ov - SELREF
zi Zi SELM CPUOFF
XCAP XTIDRIVE ¥3
FLL FLLREFCLK MCLK Enable Logic
EN
SCGO PUC
T DIVM
off Reset ;3
* . Divider
10-bit 1112/418/16/32 MCLK
Frequency
Integrator
Divider _
SCG! pcoRrseL DISMOD| peo,
13 T 10 MOD
off DCO SMCLK_REQEN
o oc | ¥ SMCLK_REQ
enerator Modulator
FLLD SELS SMCLKOFF
s 13
DCOCLK
Prescaler -
111214/8/16/32 SMCLK Enable Logic
DCOCLKDIV
EN
DIVS
_____________________ s
IXT2 (Optional) xmsyPass | Divider
| I 11/2/4/8/16/32 SMCLK
: | XT20LK
I hd !
! XT2 Fault | |
: Detection § |
| XT20FF |
| XT2DRIVE | MODOSC_REQEN
| T 21 :
i
1 |
= v : MODOSC_REQ
|
I '
1 Unconditonal MODOSC
: XT20UT XT2 Oscillator : requests
EN MODCLK
MODOSC >
Figure 3-1. Unified Clock System Block Diagram
SLAU208-June 2008 Unified Clock System (UCS) 55

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Unified Clock System Module Operation www.ti.com

3.2

3.21

3.2.2

Unified Clock System Module Operation

After a PUC, the Unified Clock System module's default configuration is as follows:

* XT1in LF mode is selected as the oscillator source for XT1CLK. XT1CLK selected for ACLK.

* DCOCLKDIV selected for MCLK.

» DCOCLKDIV selected for SMCLK.

» FLL operation is enabled. XT1CLK is selected as FLL reference clock, FLLREFCLK.

» XIN and XOUT pins set to general purpose 1/0O, XT1 remains disabled until I/O ports are configured for
XT1 operation.

e When available, XT2IN and XT20UT pins set to general purpose 1/0, XT2 disabled.

As shown above, FLL operation with XT1 is enabled by default. On MSP430x5xx devices, the crystal pins
(XIN, XOUT) are shared with general-purpose 1/O. To enable XT1, the PSEL bits associated with the
crystal pins must be set. When a 32,768 Hz crystal is used for XT1CLK, the fault control logic will
immediately cause ACLK to be sourced by the REFOCLK since XT1 will not be stable immediately. See
for further details. Once the crystal startup is obtained and settled, the FLL stabilizes MCLK
and SMCLK to 1.048576 MHz and fpco = 2.097152 MHz.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure the MSP430 operating modes
and enable or disable portions of the Unified Clock System module. See Chapter System Resets,
Interrupts and Operating Modes. The UCSCTLO, UCSCTL1, UCSCTL2, UCSCTL3, UCSCTL4, UCSCTLS5,
UCSCTL6, UCSCTL7, and UCSCTLS registers configure the Unified Clock System module.

The Unified Clock System module can be configured or reconfigured by software at any time during
program execution.

Unified Clock System Module Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered MSP430x5xx applications:
» Low clock frequency for energy conservation and time keeping

» High clock frequency for fast response times and fast burst processing capabilities
» Clock stability over operating temperature and supply voltage

* Low cost applications with less constrained clock accuracy requirements

The Unified Clock System module addresses the above conflicting requirements by allowing the user to
select from the three available clock signals: ACLK, MCLK, and SMCLK.

All three available clock signals can be sourced via any of the available clock sources, (XT1CLK,
VLOCLK, REFOCLK, or XT2CLK) giving complete flexibility in the system clock configuration.

For optimal low-power performance, ACLK can be sourced from a low-power 32,786-Hz watch crystal,
providing a stable time base for the system and low power stand-by operation, or from the internal
low-frequency oscillator when crystal accurate time keeping is not required. A flexible clock distribution
and divider system is provided to fine tune the individual clock requirements. ACLK can be sourced via
any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or XT2CLK) .

MCLK can be configured to operate from the on-chip DCO, optionally stabilized by the FLL, that can be
activated when requested by interrupt-driven events. A flexible clock distribution and divider system is
provided to fine tune the individual clock requirements. MCLK can be sourced via any of the available
clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or XT2CLK).

SMCLK can be configured to operate from a crystal or the DCO, depending on peripheral requirements. A
flexible clock distribution and divider system is provided to fine tune the individual clock requirements.
SMCLK can be sourced via any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or
XT2CLK).

Internal Very-Low-Power Low-Frequency Oscillator (VLO)

The internal VLO provides a typical frequency of 12 kHz (see device-specific data sheet for parameters)
without requiring a crystal. The VLO provides for a low-cost ultra-low power clock source for applications
that do not require an accurate time base.

56

Unified Clock System (UCS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com Unified Clock System Module Operation

3.2.3

3.24

3.25

The VLO is selected when it is used to source ACLK, MCLK, or SMCLK (SELA =1 or SELM =1 or
SELS =1).

Internal Trimmed Low-Frequency Reference Oscillator(REFO)

The internal trimmed reference oscillator (REFO) can be used for cost sensitive applications where a
crystal is not required or desired. The reference oscillator is internally trimmed to 32.768 kHz typical and
provides for a stable reference frequency that can be used as FLLREFCLK. The REFOCL , combined with
the FLL, provides for a flexible range of system clock settings without the need for a crystal. The REFO
consumes no power when not being used.

The REFO is selected when it is used to source ACLK, MCLK, or SMCLK (SELA =2 or SELM =2 or
SELS = 2) or sources the FLL (SELREF = 2). The REFO oscillator can be disabled with software by
setting OSCOFF, if the REFO oscillator is not used to source MCLK, SMCLK. or FLLREFCLK. The
OSCOFF bit disables REFO for LPM4.

XT1 Oscillator

The XT1 oscillator supports ultra low-current consumption using a 32,768-Hz watch crystal in LF mode
(XTS = 0). A watch crystal connects to XIN and XOUT without any other external components. The
software-selectable XCAP bits configure the internally provided load capacitance for the XT1 crystal in LF
mode. This capacitance can be selected as 2 pF, 6 pF, 9 pF, or 12 pF (typical). Additional external
capacitors can be added if necessary.

The XT1 oscillator also supports high-speed crystals or resonators when in HF mode (XTS = 1). The
high-speed crystal or resonator connects to XIN and XOUT and requires external capacitors on both
terminals. These capacitors should be sized according to the crystal or resonator specifications.

The drive settings of XT1 in LF mode can be increased with the XT1DRIVE bits. At power up, the XT1
starts with the highest drive settings for fast, reliable startup. If needed, user software can reduce the drive
strength to further reduce power. In HF mode, different crystal or resonator ranges are supported by
choosing the proper XT1DRIVE settings.

XT1 may be used with an external clock signal on the XIN pin in either LF or HF mode by setting
XT1BYPASS. When used with an external signal, the external frequency must meet the datasheet
parameters for the chosen mode. XT1 is powered down when used in bypass mode.

The XT1 pins are shared with general-purpose 1/O ports. At power up, the default operation is XT1, LF
mode of operation. However, XT1 will remain disabled until the ports shared with XT1 are configured for
XT1 operation. The configuration of the shared 1/O is determined by the PSEL bit associated with XIN and
the XT1BYPASS bit. Setting the PSEL bit will cause the XIN and XOUT ports to be configured for XT1
operation. If XTIBYPASS is also set, XT1 is configured for bypass mode of operation. In bypass mode of
operation, XIN can accept an external clock input signal and XOUT is configured as general-purpose I/O.
The PSEL bit associated with XOUT is a do not care.

If the PSEL bit associated with XIN is cleared, both XIN and XOUT ports are configured as
general-purpose 1/0O and XT1 will be disabled.

XT1 is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA =0 or SELM =0 or SELS =0)
or FLLREFCLK (SELREF = 0) and (XT1OFF = 1) in all power modes AM through LPM3, otherwise it is
disabled. Setting OSCOFF (LPM4) while (XT1OFF = 1), will disable XT1. If an application wishes to have
XT1 enabled regardless of the OSCOFF setting, clearing XT1OFF will enable XT1 continuously. This will
cause XT1 to be enabled in power modes AM through LPM4.

XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK and its characteristics are
identical to XT1 in HF mode. The XT2DRIVE bits select the frequency range of operation of XT2.

XT2 may be used with external clock signals on the XT2IN pin by setting XT2BYPASS. When used with
an external signal, the external frequency must meet the datasheet parameters for XT2. XT2 is powered
down when used in bypass mode.

SLAU208-June 2008 Unified Clock System (UCS) 57
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Adjusting the DCO Frequency www.ti.com

3.2.6

The XT2 pins are shared with general-purpose 1/O ports. At power up, the default operation is XT2.
However, XT2 will remain disabled until the ports shared with XT2 are configured for XT2 operation.The
configuration of the shared 1/O is determined by the PSEL bit associated with XT2IN and the XT2BYPASS
bit. Setting the PSEL bit will cause the XT2IN and XT20UT ports to be configured for XT2 operation. If
XT2BYPASS is also set, XT2 is configured for bypass mode of operation. In bypass mode of operation,
XT2IN can accept an external clock input signal and XT20UT is configured as general-purpose 1/O. The
PSEL bit associated with XT20UT is a do not care.

If the PSEL bit associated with XT2IN is cleared, both XT2IN and XT20OUT ports are configured as
general-purpose 1/0O and XT2 will be disabled.

XT2 is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA =5 or SELM =5 or SELS =5)
or FLLREFCLK (SELREF = 5) and (XT20FF = 1) in all power modes AM through LPM3, otherwise it is
disabled. Setting OSCOFF (LPM4) while (XT20FF = 1), will disable XT2. If an application wishes to have
XT2 enabled regardless of the OSCOFF setting, clearing XT20FF will enable XT2 continuously. This will
cause XT2 to be enabled in power modes AM through LPM4.

Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency can be adjusted by software
using the DCORSEL, DCO, and MOD bits. The DCO frequency can be optionally stabilized by the FLL to
a multiple frequency of FLLREFCLK / n . The FLL can accept different reference sources selectable via
the SELREF bits. Reference sources include XT1CLK, REFOCLK, or XT2CLK (if available) The value of n
is defined by the FLLREFDIVx (n =1, 2, 4, 8, 12, or 16). The defaultis n = 1.

The FLLD bits configure the FLL prescaler divider value D to 1, 2, 4, 8, 16, or 32. By default, D = 2, MCLK
and SMCLK are sourced from DCOCLKDIV, providing a clock frequency DCOCLK/2.

The divider (N + 1) and the divider value D define the DCOCLK and DCOCLKDIV frequencies, where
N > 0. Writing N = 0 causes the divider to be set to 2.
fococik = D * (N + 1) X (frLirercik =)

fococikoiv = (N + 1) X (fey rercik =)

Adjusting the DCO Frequency

3.2.7

By default, FLL operation is enabled. FLL operation can be disabled by setting SCGO0. Once disabled, the
DCO will continue to operate at the current settings defined in UCSCTLO and UCSCTL1. The DCO
frequency can be adjusted manually if desired. Otherwise, the DCO frequency will be stabilized by the FLL
operation.

After a PUC, DCORSELX = 2 and DCOx = 0. MCLK and SMCLK are sourced from DCOCLKDIV. Because
the CPU executes code from MCLK, which is sourced from the fast-starting DCO, code execution begins
from PUC in less than 5 ps.

The frequency of DCOCLK is set by the following functions:

e The three DCORSELX bits select one of eight nominal frequency ranges for the DCO. These ranges
are defined for an individual device in the device-specific data sheet.

» The five DCOX bits divide the DCO range selected by the DCORSELX bits into 32 frequency steps,
separated by approximately 8%.

» The five MODXx bits, switch between the frequency selected by the DCOx bits and the next higher
frequency set by DCOx + 1. When DCOx = 31, the MODXx bits have no effect, because the DCO is
already at the highest setting for the selected DCORSELX range.

Frequency Locked Loop (FLL)

The FLL continuously counts up or down a frequency integrator. The output of the frequency integrator
that drives the DCO can be read in UCSCTLO, UCSCTL1 (bits MODx and DCOXx). The count is adjusted
+1 with the frequency fz reecik/n (n = 1, 2, 4, 8, 12, or 16) or —1 with the frequency fococ /(D *x (N+1)).

58

Unified Clock System (UCS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com Adjusting the DCO Frequency

Note: Reading MODx and DCOx

The integrator is updated via the DCOCLK which may differ in frequency of operation of
MCLK. It is possible that immediate reads of a previously written value are not visible to the
user since the update to the integrator has not occurred. This is normal. Once the integrator
is updated at the next successive DCOCLK, the correct value can be read.

In addition, since the MCLK can be asynchronous to the integrator updates, reading the
values may be cause a corrupted value to be read under this condition. In this case, a
majority vote method should be performed.

Five of the integrator bits, UCSCTLO bits 12 to 8, set the DCO frequency tap. Thirty-two taps are
implemented for the DCO, and each is approximately 8% higher than the previous. The modulator mixes
two adjacent DCO frequencies to produce fractional taps.

For a given DCO bias range setting, time must be allowed for the DCO to settle on the proper tap for
normal operation. (n x 32) fr | rRercLk CYCles are required between taps requiring a worst case of

(n x 32 x 32) fe . rercLk CYcles for the DCO to settle. The value n is defined by the FLLREFDIVX bits (n =
1,2,4,8,12, or 16).

3.2.8 DCO Modulator
The modulator mixes two DCO frequencies, fpco and fpcpo+1 to produce an intermediate effective
frequency between fpco and fpcotl and spread the clock energy, reducing electromagnetic interference
(EMI). The modulator mixes fpco and fpcot1 for 32 DCOCLK clock cycles and is configured with the
MODx bits. When MODx = 0 the modulator is off.
The modulator mixing formula is:
t= (32 - MODX) X tDCO + MODx x tDCO+l
illustrates the modulator operation.
When FLL operation is enabled, the modulator settings and DCO are controlled by the FLL hardware. If
FLL operation is not desired, the modulator settings and DCO control can be configured with software.
MODx
ol L
St e e O e
|
U e
16
15I_l_
4T gy B
) [[[] []
; [] [] [
, [] [
Lower DCO Tap Frequency fpco Upper DCO Tap Frequency fpcos+1
]
0
Figure 3-2. Modulator Patterns
SLAU208-June 2008 Unified Clock System (UCS) 59

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Adjusting the DCO Frequency www.ti.com

3.2.9 Disabling the FLL Hardware and Modulator

The FLL is disabled when the status register bits SCGO0 or SCG1 are set. When the FLL is disabled, the
DCO runs at the previously selected tap and DCOCLK is not automatically stabilized.

The DCO modulator is disabled when DISMOD is set. When the DCO modulator is disabled, the DCOCLK
is adjusted to the DCO tap selected by the DCOXx bits.

Note: DCO Operation without FLL

When FLL operation is disabled, the DCO will continue to operate at the current settings.
Since it is not stabilized by the FLL, temperature and voltage variations will influence the
frequency of operation. Please refer to the device specific data sheet for voltage and
temperature coefficients to ensure reliable operation.

3.2.10 FLL Operation from Low-Power Modes

An interrupt service request clears SCG1, CPUOFF and OSCOFF if set but does not clear SCGO. This
means that FLL operation from within an interrupt service routine entered from LPM1, 2, 3 or 4, the FLL
remains disabled and the DCO operates at the previous setting as defined in UCSCTLO and UCSCTLL1.
SCGO can be cleared by user software if FLL operation is required.

3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules

Peripheral modules can request a clock from the Unified Clock System module if their state of operation
still requires an operational clock as shown in Figure 3-3.

A peripheral module asserts one of three possible clock request signals, ACLK_REQ, MCLK_REQ, or
SMCLK_REQ. If the requested source is not active, the software NMI handler must take care of the
required actions.

The watchdog, due to its security requirement, actively selects the VLOCLK source if the originally
selected clock source is not available.

Any clock request from a peripheral module will cause its respective clock off signal to be overridden, but
does not change the setting of clock off control bit. For example, a peripheral module may require the
MCLK source which is currently disabled by the CPUOFF bit. The module can request the MCLK source
by setting the MCLK _REQ bit. This causes the CPUOFF bit to have no effect, thereby allowing the MCLK
to be sourced to the requesting peripheral module.

60

Unified Clock System (UCS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Adjusting the DCO Frequency
SMCLK_REQ [0
MCLK_REQ (0
0 -
ACLK_REQ 0
..ACLKON ..ACLKON ..ACLKON
..MCLKON ..MCLKON ..MCLKON
..SMCLKON ..SMCLKON ..SMCLKON
ucs Module n-2 Module n-1 Module n
SMCLK T
MCLK
ACLK

WDTACLKON WDTSMCLKON
Watch Dog Timer Module

Direct clock request
in Watchdog mode

Figure 3-3. Module Request Clock System

3.2.12 Unified Clock System Module Fail-Safe Operation

The Unified Clock System module incorporates an oscillator-fault fail-safe feature. This feature detects an
oscillator fault for XT1, DCO and XT2 as shown in Figure 3-4. The available fault conditions are:

* Low-frequency oscillator fault (XTLLFOFFG) for XT1 in LF mode
» High-frequency oscillator fault (XTIHFOFFG) for XT1 in HF mode
» High-frequency oscillator fault (XT20FFG) for XT2

e DCO fault flag (DCOFFG) for the DCO

The crystal oscillator fault bits XTILFOFFG, XTIHFOFFG and XT20FFG are set if the corresponding
crystal oscillator is turned on and not operating properly. Once set, the fault bits remain set regardless if
the fault condition no longer exists. If the user clears the fault bits, and the fault condition still exists, the
fault bits will automatically be set, otherwise they remain cleared.

When using XT1 operation in LF mode as the reference source into the FLL (SELREFx = 0), a crystal fault
will automatically cause the FLL reference source, FLLREFCLK, to be sourced by REFO. XT1LFOFFG
will be set. When using XT1 operation in HF mode as the reference source into the FLL, a crystal fault
causes no FLLREFCLK signal to be generated and the FLL continues to count down to zero in an attempt
to lock FLLREFCLK and DCOCLK/(Dx[N+1]). The DCO tap moves to the lowest position (DCOx are
cleared) and the DCOFFG is set. DCOFFG is also set if the N-multiplier value is set too high for the
selected DCO frequency range resulting the DCO tap to move to the highest position (UCSCTLO0.12 to
UCSCTLO.8 are set). The DCOFFG will remain set until cleared by the user. If the user clears the
DCOFFG and the fault condition remains, it will automatically be set, otherwise it remains cleared.
XT1HFOFFG will be set.

When using XT2 as the reference source into the FLL, a crystal fault causes no FLLREFCLK signal to be
generated and the FLL continues to count down to zero in an attempt to lock FLLREFCLK and
DCOCLK/(Dx[N+1]). The DCO tap moves to the lowest position (DCOx are cleared) and the DCOFFG is
set. DCOFFG is also set if the N-multiplier value is set too high for the selected DCO frequency range
resulting the DCO tap to move to the highest position (UCSCTL0.12 to UCSCTLO0.8 are set). The
DCOFFG will remain set until cleared by the user. If the user clears the DCOFFG and the fault condition
remains, it will automatically be set, otherwise it will remain cleared. XT20FFG will be set.

SLAU208-June 2008 Unified Clock System (UCS) 61
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Adjusting the DCO Frequency www.ti.com

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault
(XT1LFOFFG, XT1HFOFFG, XT20FFG, or DCOFFG) is detected. When OFIFG is set, and OFIE is set,
the OFIFG requests an NMI interrupt. When the interrupt is granted, the OFIE is not reset automatically as
in previous MSP430 families. It is no longer required to reset the OFIE. NMI entry/exit circuitry removes
this requirement. The OFIFG flag must be cleared by software. The source of the fault can be identified by
checking the individual fault bits.

If a fault is detected for the oscillator sourcing MCLK, MCLK is automatically switched to the DCO for its
clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If MCLK is sourced from XT1 in LF
mode, an oscillator fault will cause MCLK to be automatically switched to the REFO for its clock source
(REFOCLK). This does not change the SELMXx bit settings. This condition must be handled by user
software.

If a fault is detected for the oscillator sourcing SMCLK, SMCLK is automatically switched to the DCO for
its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If SMCLK is sourced from XT1
in LF mode, an oscillator fault will cause SMCLK to be automatically switched to the REFO for its clock
source (REFOCLK). This does not change the SELSx bit settings. This condition must be handled by user
software.

If a fault is detected for the oscillator sourcing ACLK, ACLK is automatically switched to the DCO for its
clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If ACLK is sourced from XT1 in LF
mode, an oscillator fault will cause ACLK to be automatically switched to the REFO for its clock source
(REFOCLK). This does not change the SELAX bit settings. This condition must be handled by user
software.

Note: DCO Active During Oscillator Fault

DCOCLKDIV is active even at the lowest DCO tap. The clock signal is available for the CPU
to execute code and service an NMI during an oscillator fault.

62

Unified Clock System (UCS) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Adjusting the DCO Frequency
DCO _Fault ?
. 000 ¢
DCO_OF
SetQ SetO
DCOFFG

Reset Reset

POR \

XT1_LF_OscFault

\
SetQ
XT1LFOFFG
Reset

SetQ XT1_LFOF

Reset

XT1_HF_OscFault

s

XT1HFOFFG

Reset

SetQ XT1_HFOF

Reset

XT2_0OscFault

ol s

SetQ XT2_OF
XT20FFG OscFault_Set OFIFG
Riset Rese‘t Set } L\W”_ R_S_
Q
OscFault_Clr T
OFIE
SetQ
PUC IT%eset
NMI_IRQA

Figure 3-4. Oscillator Fault Logic

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

Unified Clock System (UCS) 63

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Adjusting the DCO Frequency www.ti.com

Note: Fault Conditions
DCO_Fault: DCOFFG is set if DCOXx bits in UCSCTLO register value equals 0 or 31.

XT1_LF_OscFault: This signal is set after the XT1 (LF mode) oscillator has stopped
operation and cleared after operation resumes. The fault condition will cause XT1LFOFFG to
be set and will remain set. If the user clears XT1LFOFFG and the fault condition still exists,
XT1LFOFFG will remain set.

XT1_HF_OscFault: This signal is set after the XT1 (HF mode) oscillator has stopped
operation and cleared after operation resumes. The fault condition will cause XT1HFOFFG to
be set and will remain set. If the user clears XTIHFOFFG and the fault condition still exists,
XT1IHFOFFG will remain set.

XT2_OscFault: This signal is set after the XT2 oscillator has stopped operation and cleared
after operation resumes. The fault condition will cause XT20FFG to be set and will remain
set. If the user clears XT20FFG and the fault condition still exists, XT20FFG will remain set.

Note: Fault Logic

Please note that as long as a fault condition still exists, the OFIFG will remain set. The
application must take special care when clearing the OFIFG signal. If no fault condition
remains when the OFIFG signal is cleared, the clock logic will switch back to the original
user settings prior to the fault condition.

3.2.13 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to the another, the switch is synchronized to
avoid critical race conditions as shown in Figure 3-3:

» The current clock cycle continues until the next rising edge.
» The clock remains high until the next rising edge of the new clock.
» The new clock source is selected and continues with a full high period.

Select
ACLK
v
DCOCLK
ACLK)
Wait for
~DCOCLK Aok M Aok >
Figure 3-5. Switch MCLK from DCOCLK to ACLK
64 Unified Clock System (UCS) SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com MODOSC Module Oscillator

3.3

3.3.1

MODOSC Module Oscillator

The Unified Clock System module also supports an internal oscillator, MODOSC that is used by the Flash
Memory Controller module, and optionally, by other modules in the system. The MODOSC sources
MODCLK.

MODOSC Operation

To conserve power, MODOSC is powered down when not needed and enabled only when required. When
the MODOSC source is required, the respective module requests it. The MODOSC is enabled based on
unconditional and conditional requests. Setting MODOSCREQEN will enable conditional requests.
Unconditional requests are always enabled. It is not necessary to set the MODOSCREQEN for modules
that utilize unconditional requests e.g. Flash controller, ADC12_A.

The Flash Memory Controller only requires MODCLK when performing write or erase operations. When
performing such operations, the Flash Memory Controller issues an unconditional request for the
MODOSC source. Upon doing so, the MODOSC source will be enabled, if not already enabled from other
modules' previous requests.

The ADC12_A may optionally use the MODOSC as a clock source for its conversion clock. The user
chooses the ADC120SC as the conversion clock source. During a conversion, the ADC12_A module
issues an unconditional request for the ADC120SC clock source. Upon doing so, the MODOSC source
will be enabled, if not already enabled form other modules' previous requests.

SLAU208-June 2008 Unified Clock System (UCS) 65
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Unified Clock System Module Registers www.ti.com

3.4 Unified Clock System Module Registers

The Unified Clock System module registers are listed in [[able 3-1. The base address can be found in the
device specific datasheet. The address offset is listed in [Table 3-11.

Table 3-1. Unified Clock System Registers

. Register Register Address L
Register Short Form Type Access Offset Initial State
UCS Control register 0 UCSCTLO Read/write Word 00h 0000h

UCSCTLO_L Read/write Byte 00h 00h
UCSCTLO_H Read/write Byte 01lh 00h
UCS Control register 1 UCSCTL1 Read/write Word 02h 0020h
UCSCTL1_L Read/write Byte 02h 20h
UCSCTL1_H Read/write Byte 03h 00h
UCS Control register 2 UCSCTL2 Read/write Word 04h 101Fh
UCSCTL2_L Read/write Byte 04h 1Fh
UCSCTL2_H Read/write Byte 05h 10h
UCS Control register 3 UCSCTL3 Read/write Word 06h 0000h
UCSCTL3_L Read/write Byte 06h 00h
UCSCTL3_H Read/write Byte 07h 00h
UCS Control register 4 UCSCTL4 Read/write Word 08h 0044h
UCSCTL4_L Read/write Byte 08h 44h
UCSCTL4_H Read/write Byte 09h 00h
UCS Control register 5 UCSCTL5 Read/write Word 0Ah 0000h
UCSCTL5_L Read/write Byte 0Ah 00h
UCSCTL5_H Read/write Byte 0Bh 00h
UCS Control register 6 UCSCTL6 Read/write Word 0Ch C1CDh
UCSCTL6_L Read/write Byte 0Ch CDh
UCSCTL6_H Read/write Byte 0Dh Cilh
UCS Control register 7 UCSCTL7 Read/write Word OEh 0703h
UCSCTL7_L Read/write Byte OEh 03h
UCSCTL7_H Read/write Byte OFh 07h
UCS Control register 8 UCSCTL8 Read/write Word 10h 0307h
UCSCTL8_L Read/write Byte 10h 07h
UCSCTL8_H Read/write Byte 11h 03h

66

Unified Clock System (UCS)

SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Unified Clock System Module Registers

UCSCTLO, UCSCTLO_H, UCSCTLO_L, Unified Clock System Control Register 0

15 14 13 12 11 10 9 8
7 6 5 4 | 3 2 1 0
Reserved DCO
r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 | 3 2 1 0
MOD Reserved
rw-0 rw-0 rw-0 rw-0 rw-0 r0 r0 r0
Reserved Reserved. Reads back as 0.
UCSCTLO Bits 15-13
UCSCTLO_H Bits 7-5
DCO DCO tap selection. These bits select the DCO tap and are modified automatically during FLL operation.
UCSCTLO Bits 12-8
UCSCTLO_H Bits 4-0
MOD Modulation bit counter. These bits select the modulation pattern. All MOD bits are modified automatically
UCSCTLO Bits 7-3 during FLL operation. The DCO register value is incremented when the modulation bit counter rolls over
UCSCTLO_L Bits 7-3 from 31 to 0. If the modulation bit counter decrements from O to the maximum count, the DCO register
value is also decremented.
Reserved Reserved. Reads back as 0.
UCSCTLO Bits 2-0
UCSCTLO_L Bits 2-0
UCSCTL1, UCSCTL1_H, UCSCTL1_L, Unified Clock System Control Register 1
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved
r0 r0 r0 r0 r0 r0 r0 r0
7 6 5 4 3 2 1 0
Reserved DCORSEL Reserved Reserved DISMOD
(0] rw-0 rw-1 rw-0 (0] r0 rw-0 rw-0
Reserved Reserved. Reads back as 0.
UCSCTL1 Bits 15-8
UCSCTL1 _H Bits 7-0
Reserved Reserved. Reads back as 0.
UCSCTL1 Bit 7
UCSCTL1_L Bit 7
DCORSEL DCO frequency range select. These bits select the DCO frequency range of operation.
UCSCTL1 Bits 6-4
UCSCTL1_L Bits 6-4
Reserved Reserved. Reads back as 0.
UCSCTL1 Bits 3-2
UCSCTL1_L Bits 3-2
Reserved Reserved. Reads back as 0.
UCSCTL1 Bit 1
UCSCTL1_L Bit 1
DISMOD Modulation. This bit enables/disables the modulation.
UCSCTL1 Bit 0

0 Modulation enabled
1 Modulation disabled

UCSCTL1_L Bit 0

SLAU208-June 2008
Eubmit Documentation Feedbacl

Unified Clock System (UCS)

67

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Unified Clock System Module Registers www.ti.com
UCSCTL2, UCSCTL2_H, UCSCTL2_L, Unified Clock System Control Register 2
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved FLLD Reserved FLLN
r0 rw-0 rw-0 rw-1 r0 ro rw-0 rw-0
7 6 5 4 3 2 1 0
FLLN
rw-0 rw-0 rw-0 rw-1 rw-1 rw-1 rw-1 rw-1
Reserved Reserved. Reads back as 0.
UCSCTL2 Bit 15
UCSCTL2_H Bit 7
FLLD FLL loop divider. These bits select the DCO frequency range of operation.
UCSCTL2 Bits 14-12 000 f 1
UCSCTL2_H Bits 6-4 peoctk
011 fpcocLk/8
100 fDCOCLKlle
101 fDCOCLK/32
110 Reserved for future use. Defaults to fpcocLk/32.
111 Reserved for future use. Defaults to fpcocLk/32.
Reserved Reserved. Reads back as 0.
UCSCTL2 Bits 11-10
UCSCTL2_H Bits 3-2
FLLN Multiplier bits. These bits set the multiplier value N of the DCO. N must be greater than zero. Writing zero
UCSCTL2 Bits 9-0 to FLLN causes N to be set to one.
UCSCTL2_H Bits 1-0
UCSCTL2_L Bits 7-0

68 Unified Clock System (UCS)

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Unified Clock System Module Registers

UCSCTL3, UCSCTL3_H, UCSCTL3_L, Unified Clock System Control Register 3

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved
r0 ro r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
Reserved SELREF Reserved FLLREFDIV
r0 rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0
Reserved Reserved. Reads back as 0.
UCSCTL3 Bits 15-8
UCSCTL3_H Bits 7-0
Reserved Reserved. Reads back as 0.
UCSCTL3 Bit 7
UCSCTL3_L Bit 7
SELREF _ FLL reference select. These bits select the FLL reference clock source.
ST geEt ow xmicx
001 Reserved for future use. Defaults to XT1CLK.
010 REFOCLK
011 Reserved for future use. Defaults to REFOCLK.
100 Reserved for future use. Defaults to REFOCLK.
101 XT2CLK when available, otherwise REFOCLK.
110 Reserved for future use. XT2CLK when available, otherwise REFOCLK.
111 Reserved for future use. XT2CLK when available, otherwise REFOCLK.
Reserved Reserved. Reads back as 0.
UCSCTL3 Bit 3
UCSCTL3_L Bit 3
FLLREFDIV FLL reference divider. These bits define the divide factor for fr | rercLk. The divided frequency is used as
UCSCTL3 B@ts 2-0 the FLL reference frequency.
UCSCTL3_L Bits 2-0 000 frrercik/l
001 frLiReFCLK/2
010 frLireFcLK/4
011 friReFCLK/8
100 frureFcLK/12
101 frureFcLi/16
110 Reserved for future use. Defaults to fr | rercLk/16.
111 Reserved for future use. Defaults to fr | rercLk/16.

SLAU208-June 2008
Eubmit Documentation Feedbacl

Unified Clock System (UCS)

69

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Unified Clock System Module Registers www.ti.com
UCSCTL4, UCSCTL4 _H, UCSCTL4 L, Unified Clock System Control Register 4
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved SELA
r0 ro r0 ro r0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
Reserved SELS Reserved SELM
r0 rw-1 rw-0 rw-0 r0 rw-1 rw-0 rw-0
Reserved Reserved. Reads back as 0.
UCSCTL4 Bits 15-11
UCSCTL4_H Bits 7-3
SELA _ Selects the ACLK source
U, BRI o xmicx
001 VLOCLK
010 REFOCLK
011 DCOCLK
100 DCOCLKDIV
101 XT2CLK when available, otherwise DCOCLKDIV
110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
Reserved Reserved. Reads back as 0.
UCSCTL4 Bit 7
UCSCTL4 L Bit 7
SELS _ Selects the SMCLK source
U geEt ow xmiax
001 VLOCLK
010 REFOCLK
011 DCOCLK
100 DCOCLKDIV
101 XT2CLK when available, otherwise DCOCLKDIV
110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
Reserved Reserved. Reads back as 0.
UCSCTL4 Bit 3
UCSCTL4 L Bit 3
SELM _ Selects the MCLK source
001 VLOCLK
010 REFOCLK
011 DCOCLK
100 DCOCLKDIV
101 XT2CLK when available, otherwise DCOCLKDIV
110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

70 Unified Clock System (UCS)

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Unified Clock System Module Registers
UCSCTLS5, UCSCTL5 _H, UCSCTL5 L, Unified Clock System Control Register 5
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved DIVPA Reserved DIVA
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
Reserved DIVS Reserved DIVM
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
Reserved Reserved. Reads back as 0.
UCSCTL5 Bit 15
UCSCTL5_H Bit 7
DIVPA ACLK source divider available at external pin
UCSCTL5 Bits 14-12

000 facLk/l

001 facLk/2

010 facLk/4

011 facLk/8

100 facik/16

101 facik/32

110 Reserved for future use. Defaults to fac «/32.

UCSCTL5_H Bits 6-4

111 Reserved for future use. Defaults to fac «/32.

Reserved Reserved. Reads back as 0.
UCSCTL5 Bit 11

UCSCTL5_H Bit 3

DIVA ACLK source divider
UCSCTL5 Bits 10-8

000 facLk/l

001 facLk/2

010 facLk/4

011 facLk/8

100 facik/16

101 facik/32

110 Reserved for future use. Defaults to fac «/32.

UCSCTL5 H Bits 2-0

111 Reserved for future use. Defaults to fac «/32.

Reserved Reserved. Reads back as 0.
UCSCTL5 Bit 7

UCSCTL5_L Bit 7

DIVS SMCLK source divider
UCSCTL5 Bits 6-4

000 facLk/l

001 facLk/2

010 facLk/4

011 facLk/8

100 facik/16

101 facik/32

110 Reserved for future use. Defaults to fac «/32.

UCSCTLS5_L Bits 6-4

111 Reserved for future use. Defaults to fac k/32.

SLAU208-June 2008 Unified Clock System (UCS) 71
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers

13 TEXAS
INSTRUMENTS

www.ti.com

Reserved

UCSCTL5 Bit 3
UCSCTL5_L Bit 3
DIVM

UCSCTL5 Bits 2-0

UCSCTLS_L Bits 2-0

Reserved. Reads back as 0.

MCLK source divider

000
001
010
011
100
101
110
111

facLk/1
facLk/2
facLk/4

facLk/8

Reserved for future use. Defaults to fac «/32.
Reserved for future use. Defaults to fac «/32.

72

Unified Clock System (UCS)

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Unified Clock System Module Registers

UCSCTL6, UCSCTL6_H, UCSCTL6_L, Unified Clock System Control Register 6

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
XT2DRIVE Reserved XT2BYPASS Reserved XT20FF
rw-1 rw-1 r0 rw-0 r0 ro r0 rw-1
7 6 5 4 3 2 1 0
XT1DRIVE XTS XT1BYPASS XCAP SMCLKOFF XT10OFF
rw-1 rw-1 rw-0 rw-0 rw-1 rw-1 rw-0 rw-1
XT2DRIVE The XT2 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply
UCSCTL6 Bits 15-14 current for reliable and quick startup. If needed, user software can reduce the drive strength.

UCSCTL6_ H Bits 7-6

Reserved

UCSCTL6 Bit 13
UCSCTL6_H Bit 5
XT2BYPASS
UCSCTL6 Bit 12

UCSCTL6_ H Bit4

Reserved

UCSCTL6 Bits 11-9
UCSCTL6_H Bits 3-1
XT20FF

UCSCTL6 Bit 8

UCSCTL6_H Bit0

XT1DRIVE
UCSCTL6 Bits 7-6
UCSCTL6_L Bits 7-6

XTS
UCSCTL6 Bit 5
UCSCTL6_L Bit5

XTS
UCSCTL6 Bit 4
UCSCTL6_L Bit 4

XCAP
UCSCTL6 Bits 3-2
UCSCTL6_L Bits 3-2

00 Lowest current consumption. XT2 oscillator operating range is 4 MHz to 8 MHz.
01 Increased drive strength XT2 oscillator. XT2 oscillator operating range is 8 MHz to 16 MHz.
10 Increased drive capability XT2 oscillator. XT2 oscillator operating range is 16 MHz to 24 MHz.

11 Maximum drive capability and maximum current consumption for both XT2 oscillator. XT2 oscillator
operating range is 24 MHz to 32 MHz.

Reserved. Reads back as 0.

XT2 bypass select

0 XT2 sourced internally

1 XT2 sourced externally from pin
Reserved. Reads back as 0.

Turns off the XT2 oscillator.
0 XT2 is on if XT2 is selected via the port selection and XT2 is not in bypass mode of operation.

1 XT2 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference
source required for FLL operation.

The XT1 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply
current for reliable and quick startup. If needed, user software can reduce the drive strength.

00 Lowest current consumption for XT1 LF mode. XT1 oscillator operating range in HF mode is 4 MHz

to 8 MHz.

01 Increased drive strength for XT1 LF mode. XT1 oscillator operating range in HF mode is 8 MHz to
16 MHz.

10 Increased drive capability for XT1 LF mode. XT1 oscillator operating range in HF mode is 16 MHz to
24 MHz.

11 Maximum drive capability and maximum current consumption for XT1 LF mode. XT1 oscillator
operating range in HF mode is 24 MHz to 32 MHz.

XT1 mode select

0 Low frequency mode. XCAP bits define the capacitance at the XIN and XOUT pins.
1 High frequency mode. XCAP bits are not used.

XT1 bypass select

0 XT1 sourced internally

1 XT1 sourced externally from pin

Oscillator capacitor selection. These bits select the capacitors applied to the LF crystal or resonator in the
low-frequency mode (XTS = 0). The effective capacitance (seen by the crystal) is Cq = (Cxny + 2 pF)/2. It is
assumed, that Cy;y = Cxout and that a parasitic capacitance of 2 pF is added by the package and the
printed circuit board. For details about the typical internal and the effective capacitors refer to the device
specific datasheet.

SLAU208—-June 2008

Unified Clock System (UCS) 73

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers

13 TEXAS
INSTRUMENTS

www.ti.com

SMCLKOFF
UCSCTL6
UCSCTL6_L

XT10FF
UCSCTL6
UCSCTL6_L

Bit 1
Bit 1

Bit 0
Bit 0

SMCLK off. This bit turns off the SMCLK.

0
1

SMCLK off
SMCLK on

XT1 off. This bit turns off the XT1.

0
1

XT1 is on if XT1 is selected via the port selection and XT1 is not in bypass mode of operation.

XT1 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference

source required for FLL operation.

74 Unified Clock System (UCS)

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Unified Clock System Module Registers

UCSCTL7, UCSCTL7_H, UCSCTL7_L, Unified Clock System Control Register 7

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved FLLWARNEN | FLLULIE FLLUNLOCKHIS ‘ FLLUNLOCK
r0 r0 rw-0 rw-(0) rw-(1) rw-(1) r-1 r-1
7 6 5 4 3 2 1 0
Reserved | FLLULIFG XT20FFG | XTIHFOFFG | XTILFOFFG | DCOFFG |
r0 ro r0 rw-(0) rw-(0) rw-(0) rw-(1) rw-(1)
Reserved Reserved. Reads back as 0.
UCSCTLY Bit 15
UCSCTL7_H Bit 7
FLLWARNEN Warning enable. If this bit is set then an interrupt is generated based on the FLLUNLOCKHIS bits. If
UCSCTL7 Bit 13 FLLUNLOCKHIS is not equal to 00 then an OFIFG is generated.
UCSCTL7_H BitS 0 The FLLUNLOCKHIS status cannot set OFIFG.
1 The FLLUNLOCKHIS status can set OFIFG.
FLLULIE FLL unlock interrupt enable. If the FLLUIE bit is set a reset (PUC) is triggered if the FLLULIFG is set.
UCSCTLY Bit 12 The FLLULIFG indicates when FLLUNLOCK bits equal to 10. The FLLULIE is automatically cleared
UCSCTL7_H Bit 4 upon servicing the event. If FLLUIE is cleared (0), no PUC can be triggered by the FLLULIFG.
FLLUNLOCKHIS Unlock history bits. These bits indicate the FLL unlock condition history. As soon as any unlock
UCSCTLY Bits 11-10 condition happens the respective bits are set and remain set until cleared by software by writing 0 to it
UCSCTL7_H Bits 3-2 or by a POR.
00 FLL is locked. No unlock situation has been detected since the last reset of these bits.
01 DCOCLK has been too low since the bits were cleared.
10 DCOCLK has been too fast since the bits were cleared.
11 DCOCLK has been both too fast and too slow since the bits were cleared.
FLLUNLOCK Unlock. These bits indicate the current FLL unlock condition. These bits are both set as long as the
UCSCTLY Bits 9-8 DCOFFG flag is set.
UCSCTL7_H Bits 1-0 00 FLL is locked. No unlock condition currently active.
01 DCOCLK is currently too low.
10 DCOCLK is currently too fast.
11 DCOERROR. DCO out of range.
Reserved Reserved. Reads back as 0.
UCSCTLY Bits 7-5
UCSCTL7_L Bits 7-5
FLLULIFG FLL unlock interrupt flag. This flag is set when the FLLUNLOCK bits equal 10b (DCO too fast) If the
UCSCTL7 Bit 4 FLLUIFE is also set, a PUC will be triggered when FLLUIFG is set.
UCSCTL7_L Bit 4 0 FLLUNLOCK bits not equal to 10b
1 FLLUNLOCK bits equal to 10b
XT20FFG XT2 oscillator fault flag. If this bit is set, the OFIFG flag is also set. XT20FFG is set if a XT2 fault
UCSCTLY Bit 3 condition exists. The XT20FFG can be cleared via software. If the XT2 fault condition still remains, the
UCSCTL7_L Bit 3 XT20FFG is set.
0 No fault condition occurred after the last reset.
1 XT2 fault. An XT2 fault occurred after the last reset.
XT1HFOFFG XT1 oscillator fault flag (HF mode). If this bit is set, the OFIFG flag is also set. XTIHFOFFG is set if a
UCSCTLY Bit 2 XT1 fault condition exists. The XTIHFOFFG can be cleared via software. If the XT1 fault condition still
UCSCTL7_L Bit 2 remains, the XTIHFOFFG is set.

0 No fault condition occurred after the last reset.
1 XT1 fault. An XT1 fault occurred after the last reset.

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Unified Clock System (UCS) 75

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers

13 TEXAS
INSTRUMENTS

www.ti.com

XT1LFOFFG
UCSCTL7
UCSCTL7_L

DCOFFG
UCSCTL7
UCSCTL7_L

Note:

Bit 1
Bit 1

Bit 0
Bit 0

XT1 oscillator fault flag (LF mode). If this bit is set, the OFIFG flag is also set. XT1LFOFFG is set if a
XT1 fault condition exists. The XT1LFOFFG can be cleared via software. If the XT1 fault condition still

remains, the XT1LFOFFG is set.
0 No fault condition occurred after the last reset.
1 XT1 fault (LF mode). A XT1 fault occurred after the last reset.

DCO fault flag. If this bit is set, the OFIFG flag is also set. The DCOFFG bit is set if DCOx = 0 or
DCOx = 31. The DCOOFFG can be cleared via software. If the DCO fault condition still remains, the
DCOOFFG is set. As long as DCOFFG is set, FLLUNLOCK shows the DCOERROR condition.

0 No fault condition occurred after the last reset.

1 DCO fault. A DCO fault occurred after the last reset.

The FLLWAREN, FLLUIE, FLLUNLOCKHIS, and FLLUNLOCK bits and features are
currently under evaluation and may not be present in the final product.

UCSCTLS8, UCSCTL8_H, UCSCTL8_L, Unified Clock System Control Register 8

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
Reserved Reserved | Reserved ‘
r0 ro r0 ro r0 ro rw-(1) rw-(1)
7 6 5 4 3 2 1 0
Reserved Reserved MODOE?\ICREQ Reserved Reserved Reserved

r0 ro r0 rw-(1) rw-(0) rw-(1) rw-(1) rw-(1)

Reserved Reserved. Reads back as 0.

UCSCTLS8 Bits 15-10

UCSCTL8_H Bits 7-2

Reserved Reserved. Must always be written as 1.

UCSCTLS8 Bit 9

UCSCTL8_H Bit 1

Reserved Reserved. Must always be written as 1.

UCSCTLS8 Bit 8

UCSCTL8_H Bit 0

Reserved Reserved. Reads back as 0.

UCSCTLS8 Bits 7-5

UCSCTL8_L Bits 7-5

Reserved Reserved. Must always be written as 1.

UCSCTLS8 Bit 4

UCSCTL8_L Bit 4

MODOSCREQEN MODOSC clock request enable. Setting this enables module requests for the MODOSC.

UCSCTLS8 Bit 3 .

UCSCTLS_L Bit 3 0 MODOSC requests are disabled.

1 MODOSC requests are enabled.

Reserved Reserved. Must always be written as 1.

UCSCTLS8 Bit 2

UCSCTL8_L Bit 2

Reserved Reserved. Must always be written as 1.

UCSCTLS8 Bit 1

UCSCTL8_L Bit 1

Reserved Reserved. Must always be written as 1.

UCSCTLS8 Bit O

UCSCTL8_L Bit 0

76 Unified Clock System (UCS)

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 4
INSTRUMENTS SLAU208— June 2008

Power Management Module and Supply Voltage
Supervisor

This chapter describes the operation of the Power Management Module (PMM) and the Supply Voltage
Supervisors (SVS) of the MSP430x5xx devices.

Topic Page
v/ =1V \V/ W T a1 { o To [V o3 ([} o | A 79
4.2 PMM Operation]oe e ieeseeeieieiseaeieieiiaeaeeeieieeaeeeeeieincaeeeeeinzaeasn 8a
/o T =Y 1V W S T 1S O o 81
SLAU208-June 2008 Power Management Module and Supply Voltage Supervisor 77

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

PMM Introduction www.ti.com

4.1 PMM Introduction

The PMM features include:

» Wide supply voltage (DV¢c) range: 1.8 Vto 3.6 V

» Core voltage (Vcore) generation: 1.4 V, 1.6 V, 1.8 V, and 1.9 V (typical)

* Brown-out-reset (BOR)

» Supply voltage supervisor for DVcc and Veore

e Supply voltage monitor for DV and Vcore With eight programmable levels
» Software accessible power-fail conditions

» Software selectable power-on-reset at power-fail condition

» 1/O protection at power-fail condition

» Software selectable supervisor or monitor state output (optional)

The main digital logic of the MSP430 device requires a voltage that is lower than the range allowed by
DVcc. For this reason, the PMM incorporates an integrated low-dropout voltage regulator (LDO) that
generates a secondary core voltage rail, Vcore. The core voltage is programmable in four steps to allow
power consumption optimization. The required minimum voltage for the core depends on the selected
MCLK rate, as shown inFigure 4-7]

foys in MHz
A

25 F—————— - — ———————

20 -————————————

6 F———————

2 F——7T= > > >
[-°) o N <
- o I o
A A A A
> > > >
o o o a R
[00] [01] [10] [11] PMMCOREV[1:0]

Figure 4-1. System Frequency and Supply/Core Voltages

DVcc and Vcoge €can be supervised and monitored. Both supervision and monitoring detect when a
voltage has fallen under a specific threshold. Generally speaking, supervision results in a power-on reset
(POR) event, while monitoring results in the generation of an interrupt flag, which software can then
handle. As such, DV (the high-side of the LDO) is supervised and monitored by the high-side supervisor
(SVSy) and high-side monitor (SVMy), respectively. Vcore (the low-side of the LDO) is supervised and
monitored by the low-side supervisor (SVS,) and low-side monitor SVM,), respectively. The block diagram
of the PMM is shown in Figure 4-2.

78 Power Management Module and Supply Voltage Supervisor SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com PMM Introduction

Control bits PMMCOREV

1 ¢
DV.. | > te} Regulator { > Veore
E- .-E_’ SVS, Ref SVS, ‘_‘:- -E BOR | Toreset logic
| s svm, eference SVM, fed i g
by I
O
Ports ON {J}—| NOR OR [To reset logic

Figure 4-2. PMM Block Diagram

The 1/0s and all analog modules including the oscillators are supplied by DVc. Memories (Flash and
RAM) and the digital modules are supplied by the core voltage (Vcorg)-

SLAU208—-June 2008

Power Management Module and Supply Voltage Supervisor 79
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

PMM Operation www.ti.com

4.2

PMM Operation

The PMM can be configured for four possible levels of core voltage, correlating with four system speed
levels. For a given core voltage, there is an associated set of thresholds.

The PMM regulator supports two different load settings. The low current mode can be used if the system
consumes less than I(Vcogre) < 30 YA (see device specific datasheet). Higher system currents are
supported by the full-performance mode. The full-performance mode is required if:

» any internal high frequency clock (>32 kHz) is used by any module

e an interrupt is executed

» JTAG is active

* in active mode, LPMO, or LPM1

The PMM supports four system speed levels by adjusting the core voltage.

The selected core voltage level remains unchanged when entering a low-power mode. During the system
start-up the SVSy and SVS,; functions are enabled. The typical values of are shown in for DVcc
(high voltage) domain and for the Veore (low voltage) domain. shows how the
system behaves during power-up. If both the high side and the low side voltage supervisors levels are met
the system reset is released.

Voltage

A

DV, f———————
VS, F——————F——————

VCOHE -
SVS . |-—— - 77{

A
Resetfromsvs, [~~~ ~ ' I

AN\

v

Reset from SVS,

POR [~~~ _I » Time

Figure 4-3. Powering Up the System

Once the system is up and running, both voltage domains are supervised and monitored as long as the
respective modules are enabled. The PMM supply voltage supervisor levels selected after reset are 1.74
V (typical) for the high side and 1.34 V (typical) for the low side. Once both levels are exceeded the
system starts operation. The device specific values can be found in the device specific data sheet.

A power-fail at the high or low side voltage domains may cause system failures. Both high and low side
voltage levels are monitored by the supply voltage monitors. If DV falls below the supply voltage monitor
level for the high side, the supply voltage monitor interrupt flag for the high side, SVMHIFG, is set.
Similary, if Vqoge falls below the supply voltage monitor level of the low side, the supply voltage monitor
interrupt flag for the low side, SVMLIFG, is set.

When DV rises above the supply voltage monitor level of the high side, the supply voltage reached
interrupt flag SVMHVLRIFG is set. Similary, if Vcore rises above the supply voltage monitor level of the
low side, the supply voltage reached interrupt flag SVMLVLRIFG is set. When both the high side and low
side levels have been reached, the system can continue to operate normally.

80

Power Management Module and Supply Voltage Supervisor SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

when SVSLIFG is set.

Both the supply voltage supervisor and monitor interrupt flags remain set unless cleared by a BOR or by

software to allow the application software to determine the latest reset condition.

explains the high and low side power fails with respect to the supply voltage supervisor and

monitor levels and the respective interrupt flags.

Voltage

DV,
SVMH!SVSHJn
SVS, -

VCORE

SVMLsSVSLJn
SVS, .

Set SVMHIFG
Set SVMHVLRIFG
Set SVSHIFG
Set SVMLIFG
Set SVMLVLRIFG
Set SVSLIFG

POR

A

Figure 4-4. High-Side and Low-Side Voltage Failure

» Time

Table 4-1. High-Side Supply Voltage Supervisor and Monitor Levels (see the
device-specific datasheet)

Parameter High Side (DVcc) Voltage

DVecminin V| 21.80 >2.0 2.2 =24

SVMy — VisymH _iTegypy in V| 1740 1.94 2.14 2.26
SVMy — VisymH_m-aypy i V| 1.740 1.94 2.14 2.26

SVSy — VisvsH memaxy in V| 179 1.99 2.19 2.31
SVSy — Visvsh memim in V| 1.69@ 1.89 2.09 2.21
SVSH - VisvsH mmagy in V| 1.69@ 1.89 2.09 2.21
SVSy — Visvsh mminin V| 159 1.79 1.99 2.11

@ pefault value after reset

SLAU208-June 2008
Eubmit Documentation Feedbacl

Power Management Module and Supply Voltage Supervisor

PMM Operation

Supply voltages below the supply voltage supervisor levels cause a system reset (POR) if enabled.
Setting SVSHPE will cause a POR when SVSHIFG is set. Similarly, setting SVSLPE will cause a POR

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

PMM Operation www.ti.com

Table 4-2. Low-Side Supply Voltage Supervisor and Monitor Levels (see the
device specific datasheet)

Parameter Low Side (Vcore) Voltage
PMMCOREV oW 1 2 3

Veoregp inV| 1.400 1.60 1.80 1.92

SVML — Visymi_imstypy in V| 1340 1.54 1.74 1.84
SVML — VisymL_im-gypy i V| 1.34@ 1.54 1.74 1.84

SVS| - Visvst memaxy in V| 1390 1.59 1.79 1.89
SVS| - Visvsi_imemimyin V| 1.290 1.49 1.69 1.79
SVS| - Visvst m-magyin V| 1.320 1.52 1.72 1.82
SVSL - Visvst_iT-miny in V| 1.220 1.42 1.62 1.72

@ Default value after reset

4.2.1 Supply Voltage Supervisor and Monitor — High Side

The high side supply voltage supervisor/monitor operates in active mode and in the low-power modes. To
save power the operation speed can be reduced (default: SVMHFP=0, SVSHFP=0). The blockdiagram is

shown in Figure 4-5.
SVMHVLRPE
SVMHOVPE

SVMHIE =—

Set POR

SVM,, Interrupt

ulle

g

_c:) o Set SVMHIFG
IFG
SVMHFP m—
SVM
SVMHE =-|ON " L] ye[Eset SVMHVLRIFG
IFG
SVSMHRRVL = SVM,, Reached Interrupt
p SVMHVLRIE ®=——
SVSHFP = svs
! g Set SVSHIFG
ON
SVSHRVL SVSHPE D—» Set POR
SVSHE = \
SVSHMD L [FPfsa SVSMHDLYIFG
High power mode Del IFG
ey D—» High Side Delay Interrupt

LPM or SVSMHCTL SVSMHDLYIE =——
change
SVSMHEVM ::) >
Figure 4-5. High-Side Supply Voltage Supervisor and Monitor

The SVMy module is enabled by setting SVMHE=1. Its power consumption can be reduced by setting
SVMHFP=0. The voltage reset release level is defined by SVSMHRRVL. A rising DV level crossing the
SVMy level sets the SVMHVLRIFG interrupt flag. An interrupt is also triggered if SVYMHVLRIE = 1. A

82 Power Management Module and Supply Voltage Supervisor SLAU208-June 2008
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com PMM Operation

falling DVc level crossing the SVMH level sets the SVMHIFG interrupt flag. An interrupt is also triggered
if SVMHIE = 1. When DV remains lower than the SVMy level and SVMHIFG is cleared by software,
then it is immediately set again by hardware. If desired, a POR can also be generated if SYVMHVLRPE =1
and SVMHOVPE = 0. The SVM,, module also contains overvoltage detection. If DVc exceeds safe
device operation, a POR will be generated when SVMHOVPE = 1 and SVMHVLRPE = 1.

The SVS, module is enabled by setting SVSHE=1. Its power consumption can be reduced by setting
SVSHFP=0. The voltage reset release level is defined by SVSHRVL. A falling DV level crossing the
SVS, level sets the SVSHIFG interrupt flag, as well as causes a POR if SVSHPE = 1. When DV
remains lower than the SVS, level and SVSHIFG is cleared by software, then it is immediately set again
by hardware. The SVS, is disabled in low-power modes 2, 3, and 4 unless the SVSHMD forces the SVSy
circuit on.

If the power mode of the SVMy or SVSy or a voltage level is altered, a delay element masks the interrupts
and POR sources until the SVMy and SVSy circuits have settled. SYVYSMHDLYIFG is set indicating when
the delay has completed. An interrupt can also be generated if SVSMHDLYIE = 1.

4.2.2 Supply Voltage Supervisor and Monitor — Low Side

The low side supply voltage supervisor/monitor operates in active mode and in the low-power modes. To
save power the operation speed can be reduced (default: SVMLFP=0, SVSLFP=0). The blockdiagram is

shown in Eigure 4-8.
SVMLVLRPE
SVMLOVPE

0

Set POR

1

SVMLIE =—

wlle

SVM, Interrupt

L
(7
(]
-

_ " SVMLIFG
IFG
SVMLFP =
SVM
SVMLE ={ON ’ -) »[A]>set SVMLVLRIFG
IFG
SVSMLRRVL = SVM, Reached Interrupt
1 SVMLVLRIE =—
SVSLFP m
SVS,
4 Set SVSLIFG
ON
SVSLRVL SVSLPE :)—» Set POR
SVSLE = \
SVSLMD —j "—l E I—P Set SVSMLDLYIFG
High power mode Del IFG
ey D—> Low Side Delay Interrupt

LPM or SVSMLCTL SVSMLDLYIE =—]
change
SVSMLEVM
Figure 4-6. Low Side Supply Voltage Supervisor and Monitor

The SVM, module is enabled by setting SVMLE=1. Its power consumption can be reduced by setting
SVMLFP=0. The voltage reset release level is defined by SVSMLRRVL. A rising Vcoge level crossing the
SVM, level sets the SVMLVLRIFG interrupt flag. An interrupt is also triggered if SVMLVLRIE = 1. A falling

SLAU208-June 2008 Power Management Module and Supply Voltage Supervisor 83
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

PMM Operation www.ti.com

4.2.3

42.4

Vcore level crossing the SVM, level sets the SVMLIFG interrupt flag. An interrupt is also triggered if
SVMLIE = 1. When Vore remains lower than the SVM, level and SVMLIFG is cleared by software, then it
is immediately set again by hardware. If desired, a POR can also be generated if SVMLVLRPE =1 and
SVMLOVPE = 0. The SVM, module also contains overvoltage detection. If Voore €xceeds safe device
operation, a POR will be generated when SVMLOVPE = 1 and SVMLVLRPE = 1.

The SVS, module is enabled by setting SVSLE=1. Its power consumption can be reduced by setting
SVSLFP=0. The voltage reset release level is defined by SVSLRVL. A falling Vcore level crossing the
SVS, level sets the SVSLIFG interrupt flag, as well as, causes a POR if SVSLPE = 1. When
Vcoreremains lower than the SVSL level and SVSLIFG is cleared by software then it is immediately set
again by hardware. The SVS, is disabled in low-power modes 2, 3, and 4 unless the SVSLMD forces the
SVS, circuit on.

If the power mode of the SVM, or SVS, or a voltage level is altered a delay element masks the interrupts
and POR sources until the SVM, and SVS, circuits have settled. SVSMLDLYIFG is set indicating when
the delay has completed. An interrupt can also be generated if SVSMLDLYIE = 1.

Supply Voltage Monitor Output (SVMOUT, Optional)

The state of the SVMLIFG, SVMLVLRIFG, SVMHIFG and SVMLVLRIFG can be monitored on the external
SVMOUT pin. Each of these interrupt flags can be enabled (SVMLOE, SVMLVLROE, SVMHOE,
SVMLVLROE) to generate an output signal. The polarity of the output is selected by the SYMOUTPOL bit.
If SYMOUTPOL is set then the output is set to 1 if an enabled interrupt flag is set.

Performance Optimization

The CPU and the digital modules are supplied by the regulated core voltage (Vcoge)- If the CPU has to
run at full speed the core voltage has to be programmed to the highest level (see Figure 4-7)). If the full
CPU performance is not required the core voltage can be reduced to the desired level to save
considerable power. During reset the core voltage defaults to the lowest voltage of 1.4 V (typical). The
SVM, and SVS, levels are selected accordingly during reset. shows how the core voltage can
be programmed from one level to another using the built-in supply voltage monitor and supervisor for safe
operation.

Steps 1 to 4 show the sequence how the core voltage is increased while Steps 5 and 6 show how the
core voltage is decreased.

Step 1: Program the SVM, to the new level and wait for (SVSMLDLYIFG) to be set.

Step 2: Program PMMCOREYV to the new Ve level.

Step 3: Wait for the voltage level reached (SVMLVLRIFG) interrupt.

Step 4: Program the SVS, to the new level.
The desired core voltage level is reached and both the supply voltage monitor and the supply voltage
supervisor levels are programmed accordingly. The system speed can now be increased.
Decreasing the core voltage level:

Step 5: Decrease the system speed to the target speed. Program the SVS, and SVM, level to the
target values.

Step 6: Program Voge to the new level.

The delay element shown in is triggered if the configuration registers for the high- or low-side
SVS or SVM is changed or if the power-mode (active mode, LPMx) is changed.

84

Power Management Module and Supply Voltage Supervisor SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com PMM Operation

Voltage

A

SVM

BN

» Time

Figure 4-7. Changing Vcore and the SVM, and SVS, Levels

4.2.5 Voltage Reference

The voltage reference supplies the voltage regulator, the supply voltage supervisors and the supply
voltage monitors. In low-power modes 2, 3, and 4 the reference is clocked by a PWM signal (switched
mode) to save power. In LPM5 the reference is switched off. In the other modes the reference is in static
mode. In the static mode the reference is more accurate than in switched mode. In switched mode the
power consumption and the accuracy of the reference can be further reduced by setting the
(PMMREFACC) bit.

4.2.6 Brown-Out Reset (BOR)

The BOR circuit generates a brown-out reset signal which initializes the system at power-up and starts the
supply voltage supervisors. The brown-out reset always triggers a POR followed by a PUC.

4.2.7 Manual Control of the Power Management Module

PMM operation requires minimal software involvement. The core voltage and the supply voltage
supervisor and monitor of DV¢ and Vore are selected by the user, while the hardware manages proper
operation. If the application allows, the user can manually switch off or degrade functionality to save
power.

4.2.7.1 Manual Control of the Voltage Regulator

The regulator current mode (full performance or low current) is selected by the hardware. The application
software can also manually select the current mode by setting voltage regulator current mode bits

(PMMCMD).
Table 4-3. Power Mode Overwrite (see also device specific datasheet)
PMMCMD I(VcorE) Description
(1 [0]
0 Oorl 0to 25 mA Hardware controlled performance mode
0 <30 pA Manually selected low-current mode
1 <25 mA Manually selected full-performance mode

4.2.7.2 Controlling the SVSy | and SVM,, Performance

The supply voltage supervisors and supply voltage monitors are detecting supply voltage changes. If the
application allows, the power consumption of the SVMy | and SVS,;, can be reduced by lowering their
reaction speed (low power mode). SVMy | and SVS,, can be disabled separately by clearing the

SLAU208-June 2008 Power Management Module and Supply Voltage Supervisor 85
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

PMM Operation www.ti.com

respective enable bits. A predefined performance selection can be enabled by setting SVSHACE=1
(SVSLACE=1) for the supply voltage supervisor and the supply voltage monitor of the high (low) voltage
side. If the SVSHACE (SVSLACE) bit is not set, the SVS,, and SVMy (SVS, and SVM,) operation mode is
controlled only by SVSHFP (SVSLFP) and can be disabled by clearing the enable bits SVSHE and
SVMHE (SVSLE and SVMLE).

Table 4-4. SVS,, and SVMy Performance When SVSHACE = SVSLACE =0

. : Active mode, LPM2, LPM3,
Control Bit Setting LPMO, LPM1 LPM4 LPM5
SVSHFP, SYMHFP, SVSLFP,| O Slow Slow Off
SVMLFP| 3 Fast Fast off

Table 4-5. SVS,, and SVMy Performance When SVSHACE = SVSLACE =1

. . Active mode, LPM2, LPMS,
Control Bit Setting LPMO, LPM1 LPM4 LPM5
SVSHFP, SYMHFP, SVSLFP,| 0 Slow Off Off
SVMLFP| 3 Fast Slow off

4.2.7.3 Disabling the Core Voltage Regulator — LPM5

4.2.8

4.2.9

The voltage regulator is disabled by setting the PMMREGOFF bit to 1 and entering LPM4. The current
consumption is reduced below ~100 nA (see device specific datasheet). Device wake-up is done through
the RST/NMI pin or any other wake-up capable enabled 1/0-pin (see device specific datasheet).

; Code Sequence to enter LPMb.
MOV #PMVPWREGOFF, &PMMCTLO . Set REGOFF
BI S #LPM4, SR ;. Enter LPMA

The voltage regulator is turned off when LPM4 is entered while the REGOFF bit is set. An active clock
request prevents turning off the voltage regulator. Once the clock request is deasserted the device turns
off the voltage regulator and enters LPMS5. If an interrupt request clears the REGOFF bit before the
voltage regulator is turned off the device enters active mode immediately.

I/O-Port Control

As long as the system is not powered up completely or during a low-voltage condition, the digital input
path of the digital I/O is disabled by locking the latest logical level. The data-in registers keep their values
and the interrupts associated with digital inputs are not detected. Digital outputs stop driving and weak
pullup/pulldown resistors are disabled.

PMM Interrupts

The PMM module generates reset signals and interrupt requests. The reset signals and the interrupt flags
are routed to the system control module (SYS) and are together with other reset and interrupt sources
making up the reset vector word and the system NMI vector word. For the priorities and the details of
these vector words, see the System Control Module chapter.

86

Power Management Module and Supply Voltage Supervisor SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

PMM Registers

4.3 PMM Registers

The PMM registers are listed in [[able 4-§. The base address of the PMM module can be found in the
devices specific datasheet. The address offset of each PMM register is given in [Table 4-g. The password
defined in the PMMCTLO register controls access to all PMM, SVS, and SVM registers. Once the correct
password is written the write access is enabled. The write access is disabled by writing a wrong password
in byte mode to the PMMCTLO upper byte. Word accesses to PMMCTLO with a wrong password triggers a
PUC. A write access to a register other than PMMCTLO while write access is not enabled causes a PUC.

Table 4-6. PMM Registers

Register Short Form Register Type Address Initial State

PMM control register 0 PMMCTLO Read/write 00h 0000h

PMM control register 1 PMMCTL1 Read/write 02h 0000h

SVS and SVM high side control register SVSMHCTL Read/write 04h 4400h

SVS and SVM low side control register SVSMLCTL Read/write 06h 4400h

SVSIN ans SVMOUT control register .

(optional) SVSMIO Read/write 08h 0020h

PMM interrupt flag register PMMIFG Read/write 0Ch 0000h

PMM interrupt enable register PMMRIE Read/write OEh 0000h

SLAU208-June 2008 Power Management Module and Supply Voltage Supervisor 87

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
PMM Registers www.ti.com
PMMCTLO, Power Management System Control Register 0
15 14 13 12 11 10 9 8
PMMKEY, Read as 96h, Must be written as A5h
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
PMMHPMRE Reserved PMMREGOFF | PMMSWPOR PMMSWBOR ‘ PMMCOREV ‘
rw-0 r-0 r-0 rw-0 rw-0 rw-0 rw-[0] rw-[0]
PMMKEY Bits 15-8 = PMM password. Always read as 096h. Must be written with 0A5h or a PUC will be generated.
PMMHPMRE Bit 7 Global High Power Module Request Enable. If the PMMHPMRE bit is set any module is able to request
the PMM high power mode.
Reserved Bits 6-5 Reserved. Always read 0.
PMMREGOFF Bit 4 Regulator off. See chapter "Disabling the Core Voltage Regulator - LPM5"
PMMSWPOR Bit 3 Software POR. Setting this bit to 1 triggers a POR. This bit is self-clearing.
PMMSWBOR Bit 2 Software BOR. Setting this bit to 1 triggers a BOR. This bit is self-clearing.
PMMCOREV Bits 1-0 Core voltage. For details please refer to the devices specific datasheet.

00 Vcore is typical at 1.4 V.
01 Vcore is typical at 1.6 V.
10 Vcore is typical at 1.8 V.
11 Vcore is typical at 1.9 V.

PMMCTL1, Power Management System Control Register 1

15 14 13 12 11 10 9 8
Reserved
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
7 6 5 4 3 2 1 0
Reserved ‘ PMMCMD Reserved PMMREFACC | PMMREFMD
r-0 r-0 rw-[0] rw-[0] r-0 r-0 rw-0 rw-0
Reserved Bits 15-6 Reserved. Always read 0.
PMMCMD Bits 5-4 Voltage regulator current mode
00 The voltage regulator current range is defined by the low-power mode
01 The voltage regulator current range is defined by the low-power mode.
10 The voltage regulator is forced into low-current mode.
11 The voltage regulator is forced into full-performance mode.
Reserved Bits 3-2 Reserved. Always read 0.
PMMREFACC Bit 1 PMM reference accuracy. If PMMREFACC is set to 1 the power consumption of the voltage reference is
reduced. The accuracy of the voltage reference decreases especially at higher temperatures.
PMMREFMD Bit 0 PMM reference mode. If the voltage regulator is in full performance mode the voltage reference operates
in continuous (static) mode. If PMMREFMD is set and the voltage regulator is in full-performance mode
the voltage reference current consumption is reduced. The accuracy of the voltage reference decreases.
88 Power Management Module and Supply Voltage Supervisor SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

PMM Registers

SVSMHCTL, High Side Supply Voltage Supervisor and Monitor Control Register

15 14 13 12 11 10 9 8
| SVMHFP SVMHE | Reserved | SVMHOVPE SVSHFP | SVSHE SVSHRVL |
rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 rw-[0] rw-[0]
7 6 5 4 3 2 1 0
| SVSMHACE | SVSMHEVM Reserved | SVSHMD | SVSMHDLYST | SVSMHRRVL |
rw-[0] rw-0 r-0 rw-0 rw-0 rw-[0] rw-[0] rw-[0]
SVMHFP Bit 15 SVM high side full-performance mode. If this bit is set the SVMy operates in full-performance mode.
0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.
SVMHE Bit 14 SVM high side enable. If this bit is set the SVMy is enabled.
Reserved Bit 13 Reserved. Always read 0.
SVMHOVPE Bit 12 SVM high side over-voltage enable. If this bit is set the SVMy overvoltage detection is enabled.
SVSHFP Bit 11 SVS high side full-performance mode. If this bit is set the SVS operates in full-performance mode.
0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.
SVSHE Bit 10 SVS high side enable. If this bit is set the SVS, is enabled.
SVSHRVL Bits 9-8 SVS high side reset voltage level. If DV falls short of the SVSy voltage level selected by SVSHRVL a
reset is triggered (if SVS, is enabled). The voltage levels are defined in the device specific datasheet.
SVSMHACE Bit 7 SVS and SVM high side automatic control enable. If this bit is set the low-power mode of the SVSy and
SVMy circuits is under hardware control.
SVSMHEVM Bit 6 SVS and SVM high side event mask. If this bit is set the SVS, and SVMy events are masked.
0 No events are masked
1 All events are masked.
Reserved Bit 5 Reserved. Always read 0.
SVSHMD Bit 4 SVS high side mode. If this bit is set the SVS, interrupt flag is set in LPM2, LPM3, and LPM4 in case of
power fail conditions. If this bit is not set the SVSy interrupt is not set in LPM2, LPM3, and LPM4.
SVSMHDLYST Bit 3 SVS and SVM high side delay status. If this bit is set the SVS,; and SVMy events are masked for some
delay time. The delay time depends on the power-mode of the SVS, and SVMy. If SVMHFP = 1 and
SVSHFP =1 itis ~2 ps in all other cases it is ~150 ps. See the device-specific data sheet for details.
The bit is cleared by hardware if the delay has expired.
SVSMHRRVL Bits 2-0 SVS and SVM high side reset release voltage level. These bits define the reset release voltage level of

the SVS,,. It is also used for the SVMy, to define the voltage reached level. The voltage levels are defined

in the device specific datasheet.

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Power Management Module and Supply Voltage Supervisor 89

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
PMM Registers www.ti.com
SVSMLCTL, Low Side Supply Voltage Supervisor and Monitor Control Register
15 14 13 12 11 10 9 8
| SVMLFP SVMLE | Reserved | SVMLOVPE | SvsLFP | svsLE | SVSLRVL
rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 rw-[0] rw-[0]
7 6 5 4 3 2 1 0
| SVSMLACE | SVSMLEVM Reserved | SVSLMD | SVSMLDLYST | SVSMLRRVL
rw-[0] rw-0 r-0 rw-0 rw-0 rw-[0] rw-[0] rw-[0]
SVMLFP Bit 15 SVM low side full-performance mode. If this bit is set the SVM_ operates in full-performance mode.
0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.

SVMLE Bit 14 SVM low side enable. If this bit is set the SVM_ is enabled.

Reserved Bit 13 Reserved. Always read 0.

SVMLOVPE Bit 12 SVM low side over-voltage enable. If this bit is set the SVM_ overvoltage detection is enabled.

SVSLFP Bit 11 SVS low side full-performance mode. If this bit is set the SVS_ operates in full-performance mode.

0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.

SVSLE Bit 10 SVS low side enable. If this bit is set the SVS,_is enabled.

SVSLRVL Bits 9-8 SVS low side reset voltage level. If DV falls short of the SVS,_ voltage level selected by SVSHRVL a
reset is triggered (if SVS, is enabled). The voltage levels are defined in the device specific datasheet.

SVSMLACE Bit 7 SVS and SVM low side automatic control enable. If this bit is set the low-power mode of the SVS, and
SVM,_ circuits is under hardware control.

SVSMLEVM Bit 6 SVS and SVM low side event mask. If this bit is set the SVS, and SVM, events are masked.

0 No events are masked.
1 All events are masked.

Reserved Bit 5 Reserved. Always read 0.

SVSLMD Bit 4 SVS low side mode. If this bit is set the SVS, interrupt flag is set in LPM2, LPM3 and LPM4 in case of a
power fail conditions. If this bit is not set the SVS,_ interrupt is not set in LPM2, LPM3, and LPM4.

SVSMLDLYST Bit 3 SVS and SVM low side delay status. If this bit is set the SVS, and SVM_ events are masked for some
delay time. The delay time depends on the power-mode of the SVS, and SVM,. If SYMLFP = 1 and
SVSLFP = 1itis ~2 ps in all other cases it is ~150 us. The bit is cleared by hardware if the delay has
expired.

SVSMLRRVL Bits 2-0 SVS and SVM low side reset release voltage level. These bits define the reset release voltage level of
the SVS,. It is also used for the SVM, to define the voltage reached level. The voltage levels are defined
in the device specific datasheet.

90 Power Management Module and Supply Voltage Supervisor SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

PMM Registers

SVSMIO, SVSIN, and SVMOUT Control Register

15 14 13 12 11 10 9 8
Reserved | SYMLVLROE | SVMHOE | Reserved |
r-0 r-0 r-0 rw-[0] rw-[0] r-0 r-0 r-0
7 6 5 4 3 2 1 0
Reserved | SYMOUTPOL | SVMLVLROE | SVMLOE | Reserved
r-0 r-0 rw-[1] rw-[0] rw-[0] r-0 r-0 r-0
Reserved Bits 15-13 Reserved. Always read 0.
SVMLVLROE Bit 12 SVM high side voltage level reached output enable. If this bit is set the SVMLVLRIFG bit is output to the
device SVMOUT pin. The device specific port logic has to be configured accordingly.
SVMHOE Bit 11 SVM high side output enable. If this bit is set the SVMHIFG bit is output to the device SYMOUT pin. The
device specific port logic has to be configured accordingly.
Reserved Bits 10-6 Reserved. Always read 0.
SVMOUTPOL Bit 5 SVMOUT pin polarity. If this bit is set SVMOUT is active high. An error condition is signaled by a 1 at
SVMOUT. If SYMOUTPOL is cleared the error condition is signaled by a 0 at the SVMOUT pin.
SVMLVLROE Bit 4 SVM low side voltage level reached output enable. If this bit is set the SVMLVLRIFG bit is output to the
device SVMOUT pin. The device specific port logic has to be configured accordingly.
SVMLOE Bit 3 SVM low side output enable. If this bit is set the SVMLIFG bit is output to the device SVMOUT pin. The
device specific port logic has to be configured accordingly.
Reserved Bits 2-0 Reserved. Always read 0.

SLAU208-June 2008
Eubmit Documentation Feedbacl

Power Management Module and Supply Voltage Supervisor

91

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

PMM Registers

I

TEXAS
INSTRUMENTS

www.ti.com

PMMIFG, Power Management System and Supply Voltage Supervisor and Monitor Interrupt Flag Register

15 14 13 12 11 10 9 8
PMMRSTLPM5 Reserved SVSLIFG?! SVSHIFG?! Reserved PMMPORIFG | PMMRSTIFG | PMMBORIFG
IF1G
rw-[0] r-0 rw-[0] rw-[0] r-0 rw-[0] rw-[0] rw-[0]
7 6 5 4 3 2 1 0
Reserved SVMHVLRIFG! SVMHIFG SVSMEDLYIF Reserved SVMLVLRIFG! SVMLIFG SVSMLDLYIFG
r-0 rw-[0] rw-[0] rw-0 r-0 rw-[0] rw-[0] rw-0

1 After power up the reset value depends
on the power sequence.

PMMRSTLPMS5IFG Bit 15

LPMS5 Flag. This bit is set if the system was in LPM5 before. The bit is cleared by software or by reading
the reset vector word. A power-failure on the DVc domain clears the bit.

0 No interrupt pending
1 Interrupt pending
Reserved Bit 14 Reserved. Always read 0.
SVSLIFG Bit 13 SVS low side interrupt flag. The bit is cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending
SVSHIFG Bit 12 SVS high side interrupt flag. The bit is cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending
Reserved Bit 11 Reserved. Always read 0.
PMMPORIFG Bit 10 PMM software POR interrupt flag. This interrupt flag is set if a software POR is triggered. The bit is
cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending
PMMRSTIFG Bit 9 PMM RST pin interrupt flag. This interrupt flag is set if the RST/NMI pin is the reset source. The bit is
cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending
PMMBORIFG Bit 8 PMM software BOR interrupt flag. This interrupt flag is set if a software BOR (PMMSWBOR) is triggered.
The bit is cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending
Reserved Bit 7 Reserved. Always read 0.
SVMHVLRIFG Bit 6 SVM high side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset
vector (SVSHPE = 1) word or by reading the interrupt vector (SVSHPE = 0) word.
0 No interrupt pending
1 Interrupt pending
SVMHIFG Bit 5 SVM high side interrupt flag. The bit is cleared by software.
0 No interrupt pending
1 Interrupt pending
SVSMHDLYIFG Bit 4 SVS and SVM high side delay expired interrupt flag. This interrupt flag is set if the delay element expired.
The bit is cleared by software or by reading the interrupt vector word.
0 No interrupt pending
1 Interrupt pending
Reserved Bit 3 Reserved. Always read 0.
SVMLVLRIFG Bit 2 SVM low side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset
vector (SVSLPE = 1) word or by reading the interrupt vector (SVSLPE = 0) word.
0 No interrupt pending
1 Interrupt pending
92 Power Management Module and Supply Voltage Supervisor SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com PMM Registers
SVMLIFG Bit 1 SVM low side interrupt flag. The bit is cleared by software.

SVSMLDLYIFG

Bit O

0 No interrupt pending
1 Interrupt pending

SVS and SVM low side delay expired interrupt flag. This interrupt flag is set if the delay element expired.
The bit is cleared by software or by reading the interrupt vector word.

0 No interrupt pending
1 Interrupt pending

PMMRIE, Power Management System Reset Enable and Interrupt Enable Register

15 14 13 12 11 10 9 8
Reserved | SYMHVLRPE | SVSHPE | Reserved | SYMLVLRPE | sSVSLPE |
r-0 r-0 rw-[0] rw-[0] r-0 r-0 rw-[0] rw-[0]
7 6 5 4 3 2 1 0
Reserved | SVMHVLRIE | SVMHIE | SVSMHDLYIE | Reserved SVMLVLRIE | SVMLIE | SVSMLDLYIE |

r-0 rw-0 rw-0 rw-0 r-0 rw-0 rw-0 rw-0

Reserved Bits 15-14 Reserved. Always read 0.

SVMHVLRPE Bit 13 SVM high side voltage level reached POR enable. If this bit is set, exceeding the SVM,, voltage level

triggers a POR.

SVSHPE Bit 12 SVS high side POR enable. If this bit is set, falling below the SVS, voltage level triggers a POR.

Reserved Bits 11-10 Reserved. Always read 0.

SVMLVLRPE Bit 9 SVM low side voltage level reached por enable. If this bit is set, exceeding the SVM_ voltage level

triggers a POR.

SVSLPE Bit 8 SVS low side POR enable. If this bit is set, falling below the SVS, voltage level triggers a POR.

Reserved Bit 7 Reserved. Always read 0.

SVMHVLRIE Bit 6 SVM high side reset voltage level interrupt enable

SVMHIE Bit 5 SVM high side interrupt enable. This bit is cleared by software or if the interrupt vector word is read.

SVSMHDLYIE Bit 4 SVS and SVM high side delay expired interrupt enable

Reserved Bit 3 Reserved. Always read 0.

SVMLVLRIE Bit 2 SVM low side reset voltage level interrupt enable

SVMLIE Bit 1 SVM low side interrupt enable. This bit is cleared by software or if the interrupt vector word is read.

SVSMLDLYIE Bit O SVS and SVM low side delay expired interrupt enable

SLAU208-June 2008
Eubmit Documentation Feedbacl

Power Management Module and Supply Voltage Supervisor 93

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

94 Power Management Module and Supply Voltage Supervisor SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS

INSTRUMENTS

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB memory access, its
addressing modes, and instruction set. The MSP430X CPU is implemented in the MSP430F5xx devices.

Note: The MSP430X CPU implemented on MSP430F5xx devices has, in some cases, slightly
different cycle counts from the MSP430X CPU implemented on the 2xx and 4xx families.

Topic Page
SR o1 = U o] o To [01e3 To] o| I 94
W () =14 40] o) & 98
RGN o =l U N o= To [151 1 8S| 99
54 Addressing Modes[... oo 103
55 MSP430 and MSP430X INStructionS[...eeeieiieieieieaeaeeieieieieieieaeerne.. 123
5.6 Instruction Set DeSCriptioON]iee i ieeeeeaeerarereieieieieeeaeararaeererereeees 139

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Chapter 5

SLAU208—-June 2008

CPUX

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

CPU Introduction www.ti.com

5.1 CPU Introduction
The MSP430X CPU incorporates features specifically designed for modern programming techniques such
as calculated branching, table processing and the use of high-level languages such as C. The MSP430X
CPU can address a 1-MB address range without paging. The MSP430X CPU is completely backwards
compatible with the MSP430 CPU.
The MSP430X CPU features include:
* RISC architecture
* Orthogonal architecture
» Full register access including program counter, status register and stack pointer
» Single-cycle register operations
» Large register file reduces fetches to memory.
e 20-bit address bus allows direct access and branching throughout the entire memory range without
paging.
» 16-bit data bus allows direct manipulation of word-wide arguments.
» Constant generator provides the six most often used immediate values and reduces code size.
» Direct memory-to-memory transfers without intermediate register holding.
» Byte, word, and 20-bit address-word addressing
The block diagram of the MSP430X CPU is shown in Fiqure 5-1.
96 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com CPU Introduction
MDB - Memor y Data Bus Memory Address Bus - MAB
AN N\
19 16 15
<):">iROIPC Program Counter o N
| |
<):(> R1/SP Pointer Stack 0 —1/_,\
| |
<):(>R2/SR Status Register | —>
| |
ﬁ R3/CG2 Constant Generator)
| |
<):> R4 General Purpose —N
T T
<):"> R5 General Purpose —N
| |
<):> R6 General Purpose —N
T T
<):‘/’\ R7 General Purpose —N
| |
<):> R8 General Purpose —\
| |
<):|/’\ R9 General Purpose —N
| |
<::> R10 General Purpose :>
| |
<):|/’\ R11 General Purpose | —)
T T
<):‘/'\ R12 General Purpose —N
| |
<):|/'\ R13 General Purpose —N
T T
<):|> R14 General Purpose _l/_'\
T T
—N
<):|/’\ R15 General Purpose y
N 41 20
16 S~ I~
Zero, Z L]
Carry, C
Overflam.y 16/20-bit ALU MCLK
Negative,N
N
Figure 5-1. MSP430X CPU Block Diagram
SLAU208-June 2008 CPUX 97

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Interrupts www.ti.com
5.2 Interrupts
The MSP430X has the following interrupt structure:
» Vectored interrupts with no polling necessary
» Interrupt vectors are located downward from address OFFFEh.
The interrupt vectors contain 16-bit addresses that point into the lower 64-KB memory. This means all
interrupt handlers must start in the lower 64-KB memory.
During an interrupt, the program counter and the status register are pushed onto the stack as shown in
Eiqure 5-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by appending the
PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction is executed,
the full 20-bit PC is restored making return from interrupt to any address in the memory range possible.
SP,, —» ltem n-1
PC.15:0
SP —»| PC.19:16 SR.11:0
Figure 5-2. Program Counter Storage on the Stack for Interrupts
98 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com CPU Registers

5.3 CPU Registers

The CPU incorporates sixteen registers RO to R15. Registers RO, R1, R2, and R3 have dedicated
functions. R4 to R15 are working registers for general use.

5.3.1 Program Counter (PC)

The 20-bit program counter (PC/R0) points to the next instruction to be executed. Each instruction uses an
even number of bytes (two, four, six, or eight bytes), and the PC is incremented accordingly. Instruction
accesses are performed on word boundaries, and the PC is aligned to even addresses. shows
the program counter.

19 16 15 10

Program Counter Bits 19 to 1 0

Figure 5-3. Program Counter
The PC can be addressed with all instructions and addressing modes. A few examples:

MOV. W #LABEL, PC ; Branch to address LABEL (| ower 64 KB)
MOVA #LABEL, PC ; Branch to address LABEL (1MB nenory)

MOV. W LABEL, PC : Branch to address in word LABEL
i (lower 64 KB)

MOV. W @R14, PC ; Branch indirect to address in
; R14 (I ower 64 KB)

ADDA #4, PC ; Skip two words (1 MB nenory)

The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64-KB
address range can be reached with the BR or CALL instruction. When branching or calling, addresses
beyond the lower 64-KB range can only be reached using the BRA or CALLA instructions. Also, any
instruction to directly modify the PC does so according to the used addressing mode. For example,
MOV. W #val ue, PC will clear the upper four bits of the PC because it is a .W instruction.

The program counter is automatically stored on the stack with CALL, or CALLA instructions, and during an
interrupt service routine. shows the storage of the program counter with the return address
after a CALLA instruction. A CALL instruction stores only bits 15:0 of the PC.

SP,, —» ltem n

PC.19:16

SP —», PC.15:0

Figure 5-4. Program Counter Storage on the Stack for CALLA

The RETA instruction restores bits 19:0 of the program counter and adds 4 to the stack pointer. The RET
instruction restores bits 15:0 to the program counter and adds 2 to the stack pointer.

SLAU208-June 2008 CPUX 99
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

CPU Registers www.ti.com

5.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and
interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be used by software

with all instructions and addressing modes. shows the SP. The SP is initialized into RAM by the
user, and is always aligned to even addresses.
shows the stack usage. shows the stack usage when 20-bit address-words are
pushed.
19 1.0
Stack Pointer Bits 19 to 1 0
MOV.W 2 (SP) ,R6 ; Copy Item I2 to R6
MOV.W R7,0 (SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h on stack
POP R8 ; R8 = 0123h

Figure 5-5. Stack Pointer

Address PUSH #0123h POP R8

Oxxxh h] h] b

Oxxxh - 2 12 12 12

Oxxxh - 4 I3 [«—SP 13 I3 [«—SP
Oxxxh - 6 0123h [«—SP

Oxxxh - 8

Figure 5-6. Stack Usage

SP,, —» ltem n-1

Item.19:16

SP —bp Item.15:0

Figure 5-7. PUSHX.A Format on the Stack

The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Eigure 5-8.

PUSH SP POP SP

SP,, —»
sp, —» SP, sp,—» SP,

The stack pointer is changed after The stack pointer is not changed after a POP SP
a PUSH SP instruction. instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2 = SP1)

Figure 5-8. PUSH SP, POP SP Sequence

100

CPUX SLAU208—-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com CPU Registers

5.3.3 Status Register (SR)

The 16-bit status register (SR/R2), used as a source or destination register, can only be used in register
mode addressed with word instructions. The remaining combinations of addressing modes are used to
support the constant generator. shows the SR bits. Do not write 20-bit values to the SR.
Unpredictable operation can result.

15 9 8 7 0
OSC|CPU
Reserved V | SCG1 | SCGO OFF | OFF GIE|N|Z|C
V
rw-0

Figure 5-9. Status Register Bits

describes the status register bits.

Table 5-1. Description of Status Register Bits

Bit Description

Reserved Reserved

\% Overflow bit. This bit is set when the result of an arithmetic operation overflows the signed-variable range.
ADD(.B), ADDX(.B,.A), Set when:

ADDC(.B), ADDCX(.B.A), ADDA Ppositive + positive = negative
negative + negative = positive
otherwise reset

SUB(.B), SUBX(.B,.A), Set_v_vhen: ' _
SUBC(. B), SUBCX(. B, . A), SUBA, Positive — negative = negative

CVP(.B), OWPX(.B,.A), CMPA negative — positive = positive
' ' ' otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc generator, if DCOCLK is not used for MCLK or
SMCLK.

SCGO System clock generator 0. This bit, when set, turns off the FLL+ loop control.

OSCOFF Oscillator off. This bit, when set, turns off the LFXT1 crystal oscillator, when LFXT1CLK is not used for MCLK or
SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable interrupts. When reset, all maskable interrupts are
disabled.

N Negative bit. This bit is set when the result of an operation is negative and cleared when the result is positive.

4 Zero bit. This bit is set when the result of an operation is zero and cleared when the result is not zero.

C Carry bit. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.

SLAU208-June 2008 CPUX 101

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Constant Generator — Expanded Instruction Set www.ti.com

5.3.4 Constant Generator Registers (CG1 and CG2)

Six commonly used constants are generated with the constant generator registers R2 (CG1) and R3
(CG2), without requiring an additional 16-bit word of program code. The constants are selected with the
source register addressing modes (As), as described in [[able 5-2.

Table 5-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 - Register mode

R2 01 0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh -1, word processing

The constant generator advantages are:

* No special instructions required

* No additional code word for the six constants

» No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an

immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional, emulated instructions. For example, the single-operand
instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MoV R3, dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
I NC dst

is replaced by:
ADD 0(R3), dst

102 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I,

TEXAS

INSTRUMENTS

www.ti.com Constant Generator — Expanded Instruction Set

5.3.5 General Purpose Registers R4 to R15

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU
register clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT
instruction. The SXT instruction extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data. Note the reset of the
leading MSBs, if a register is the destination of a byte or word instruction.

shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a
destination memory byte and for a source memory byte and a destination register.

Register-Byte Operation Byte-Register Operation
High Byte Low Byte High Byte Low Byte
19 16 15 87 0
Un- .
used Unused Register Memory
19 16 15 87 0
Un- .
U d
Memory used nuse Register
A 4 A 4
Operation) (Operation)
y y
Memory 0 0 Register

Figure 5-10. Register-Byte/Byte-Register Operation

Figure 5-17] and Figure 5-17 show 16-bit word handling (\W suffix). The handling is shown for a source
register and a destination memory word and for a source memory word and a destination register.

Register-Word Operation

High Byte Low Byte

19 16 15 87 0
Un- .
used Register
Memory

A

(Operation)

Memory

Figure 5-11. Register-Word Operation

SLAU208—-June 2008 CPUX 103
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Constant Generator — Expanded Instruction Set

13 TEXAS
INSTRUMENTS

www.ti.com

Word-Register Operation

High Byte Low Byte

Memory
19 16 15 8|7 0
Un- .
used Register

(Operation

)

Register

Figure 5-12. Word-Register Operation

Eigure 5-13 and Eigure 5-14 show 20-bit address-word handling (.A suffix). The handling is shown for a
source register and a destination memory address-word and for a source memory address-word and a

destination register.

Memory +2

Memory +2

Register - Ad dress-Word Operation

High Byte Low Byte

19 16 15

87 0

Unused

Operation)

Register

Memory

Memory

Figure 5-13. Register — Address-Word Operation

104 CPUX

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

Address-Word - Register Operation
High Byte Low Byte

19 16 15 87 0
Memory +2 Unused Memory
Register

(Operation)
Register

Figure 5-14. Address-Word — Register Operation

5.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand
use 16-bit or 20-bit addresses (see [[able 5-3). The MSP430 and MSP430X instructions are usable
throughout the entire 1-MB memory range.

Table 5-3. Source/Destination Addressing

As/Ad Addressing Mode Syntax Description
00/0 Register mode Rn Register contents are operand.
01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X is stored in the next word, or stored in

combination of the preceding extension word and the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X is stored in the next word, or stored in
combination of the preceding extension word and the next word. Indexed mode
X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction contains the absolute address. X is stored in
the next word, or stored in combination of the preceding extension word and the
next word. Indexed mode X(SR) is used.

10/~ Indirect register mode @Rn Rn is used as a pointer to the operand.

11/~ Indirect autoincrement @Rn+ Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B
instructions. by 2 for .W instructions, and by 4 for .A instructions.

11/~ Immediate mode #N N is stored in the next word, or stored in combination of the preceding extension
word and the next word. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels. They have no special meaning.

SLAU208-June 2008 CPUX 105
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Addressing Modes

13 TEXAS
INSTRUMENTS

www.ti.com

5.4.1 Register Mode

Operation:

Length:

Comment:
Byte operation:

Word operation:

Address-word

operation:

SXT exception:

The operand is the 8-, 16-, or 20-bit content of the used CPU register.
One, two, or three words
Valid for source and destination

Byte operation reads only the 8 LSBs of the source register Rsrc and writes the
result to the 8 LSBs of the destination register Rdst. The bits Rdst.19:8 are cleared.
The register Rsrc is not modified.

Word operation reads the 16 LSBs of the source register Rsrc and writes the result
to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared.
The register Rsrc is not modified.

Address-word operation reads the 20 bits of the source register Rsrc and writes the
result to the 20 bits of the destination register Rdst. The register Rsrc is not
modified

The SXT instruction is the only exception for register operation. The sign of the low
byte in bit 7 is extended to the bits Rdst.19:8.

Example: Bl S. WR5, R6 ;
This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.
Before: After:
Address Register Address Register
Space Space
21036h| xxxxh R5| AA550h 21036h| xxxxh | PC R5| AA550h
21034h| Ds506h | PC R6| 11111h 21034h | D506h R6| 0B551h
A550h.or.1111h = B551h
Example: Bl SX. AR5, R6 ;
This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.
The extension word contains the A/L-bit for 20-bit data. The instruction word uses
byte mode with bits A/L:B/W = 01. The result of the instruction is:
Before: After:
Address Register Address Register
Space Space
21036h| xxxxh R5(AA550h 21036h| xxxxh | PC R5| AA550h
21034h| D546h R6[11111h 21034h| D546h R6| BB551h
21032h| 1800h | PC 21032h| 1800h
AA550h.or.11111h = BB551h
106 CPUX SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Indexed Mode in Lower 64-KB Memory
5.4.2 Indexed Mode
The Indexed mode calculates the address of the operand by adding the signed index to a CPU register.
The Indexed mode has three addressing possibilities:
» Indexed mode in lower 64-KB memory
* MSP430 instruction with Indexed mode addressing memory above the lower 64-KB memory
* MSP430X instruction with Indexed mode
Indexed Mode in Lower 64-KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory range, the calculated
memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit
index. This means, the calculated memory address is always located in the lower 64 KB and does not
overflow or underflow out of the lower 64-KB memory space. The RAM and the peripheral registers can be

accessed this way and existing MSP430 software is usable without modifications as shown in Figure 5-15.
Lower 64 KB
Rn.19:16 = 0
- 19 16 15 0
FFFFF
0 CPU Register Rn

S 16-bit byte index | 16-bit signed index

_ 10000
OFFFF

y

(16-bit signed add)

Rn.19:0 >\

7
00

_ 00000 0 Memory address

Figure 5-15. Indexed Mode in Lower 64 KB

Length: Two or three words

Operation: The signed 16-bit index is located in the next word after the instruction and is added to
the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit
memory address, which points to an operand address in the range 00000h to OFFFFh.
The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the register index and inserts
it.

Example: ADD. B 1000h(R5) , OFO00h(R6) ;

This instruction adds the 8-bit data contained in source byte 1000h(R5) and the
destination byte OFO00h(R6) and places the result into the destination byte. Source and
destination bytes are both located in the lower 64 KB due to the cleared bits 19:16 of
registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after
truncation to a 16-bit address.

Destination: The byte pointed to by R6 + FOOOh results in address 01778h + FOOOh = 00778h after
truncation to a 16-bit address.

SLAU208-June 2008 CPUX 107
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
MSP430 Instruction With Indexed Mode in Upper Memory www.ti.com
Before: After:
Address Register Address Register
Space Space
1103Ah xxxxh R5| 0479Ch 1103Ah xxxxh PC R5| 0479Ch
11038h FO00h R6| 01778h 11038h FO0O0h R6| 01778h
11036h 1000h 11036h 1000h
11034h | 55D6h | PC 11034h | 55D6h
01778h 32h src
0077Ah xxxxh +F000h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h Sum
0479Ch
0579Eh xxxxh +1000h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch | xx32h

MSP430 Instruction With Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory, the Rn bits 19:16 are used

for the address calculation of the operand. The operand may be located in memory in the range Rn +32

KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow
or underflow into the lower 64-KB memory space (see Figure 5-19 and Figure 5-17).

Upper Memory
Rn.19:16 >0

—— 19 1615 0
FFFFF

1..15 CPU Register Rn

Rn.19:0 —» Rn £+ 32 KB

. : 16-bit signed index
16-
S S 6-bit byte index (sign extended to 20 bits)

10000
OFFFF o v

< (20-bit signed add)
©
]
£
S Y y

00000 Memory address

Figure 5-16. Indexed Mode in Upper Memory
108 CPUX SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

i3 TEXAS
INSTRUMENTS

www.ti.com MSP430 Instruction With Indexed Mode in Upper Memory

ARRRNRNRNNRNY

L Rn.19:0 }:\\\\\\\\\\\\\)
FEFEF DONNNANN

NNy A

707?0322 \\\ \ 777777 Y S§§\\

,ogogc \\ NN

Figure 5-17. Overflow and Underflow for the Indexed Mode

A 4

P

+32 KB

Lower 64 KB

Length: Two or three words

Operation: The sign-extended 16-bit index in the next word after the instruction is added to the
20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an
address in the range 0 to FFFFFh. The operand is the content of the addressed
memory location.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.
Example: ADD. W8346h(R5), 2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the destination
addresses and places the 16-bit result into the destination. Source and destination
operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index 8346h is sign-extended,
which results in address 23456h + F8346h = 1B79Ch.
Destination: The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h.
SLAU208—-June 2008 CPUX 109

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
MSP430X Instruction With Indexed Mode www.ti.com
Before: After:
Address Register Address Register
Space Space
1103Ah xxxxh R5| 23456h 1103Ah xxxxh PC R5| 23456h
11038h 2100h R6| 15678h 11038h | 2100h R6| 15678h
11036h 8346h 11036h | 8346h
11034h 5596h PC 11034h | 5596h
15678h 05432h src
1777Ah xxxxh +02100h 1777Ah xxxxh +02345h dst
17778h | 2345h 17778h 17778h | 7777h 07777h Sum
23456h
1B79Eh xxxxh +F8346h 1B79Eh xxxxh
1B79Ch | 5432h 1B79Ch 1g7och | 5432h

Figure 5-18. Example for the Indexed Mode

MSP430X Instruction With Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the

range of Rn + 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit CPU register content and the 20-bit
index. The four MSBs of the index are contained in the extension word, the 16
LSBs are contained in the word following the instruction. The CPU register is not
modified

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX. A 12346h(R5), 32100h(R6) ;
This instruction adds the 20-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in address 23456h + 12346h =
3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in address 45678h + 32100h =
77778h.

110 CPUX SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

i3 TEXAS
INSTRUMENTS

www.ti.com

Symbolic Mode in Lower 64 KB

The extension word contains the MSBs of the source index and of the destination index and the A/L-bit for
20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01.

Before:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

3579Eh
3579Ch

5.4.3 Symbolic Mode

Address
Space

xxxxh

2100h

2346h

55D6h

1883h

0001h

2345h

0006h

5432h

R5
R6

PC

Register

23456h

45678h

45678h
+32100h
77778h

23456h
+12346h
3579Ch

After:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

3579Eh
3579Ch

Address Register
Space
xxxxh PC R5| 23456h
2100h R6| 45678h
2346h
55D6h
1883h

65432h src
0007h +12345h dst
7777h 77777h Sum
0006h
5432h

The Symbolic mode calculates the address of the operand by adding the signed index to the program
counter. The Symbolic mode has three addressing possibilities:

» Symbolic mode in lower 64-KB memory
* MSP430 instruction with symbolic mode addressing memory above the lower 64-KB memory.
* MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the calculated memory address
bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means, the calculated
memory address is always located in the lower 64 KB and does not overflow or underflow out of the lower
64-KB memory space. The RAM and the peripheral reglsters can be accessed this way and existing
MSP430 software is usable without modifications as shown in Figure 5-19.

SLAU208-June 2008
Bubmit Documentation FeedbacH

CPUX 111

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Symbolic Mode in Lower 64 KB www.ti.com
Lower 64 KB
PC.19:16 =0 1 16 1 o
—_ 5
FFFFF 0 Program
counter PC
S 16-bit byte index| 16-0it signed
PC index
__10000
ENNNE '
\\\ ~\\ x 16-bit signed add
NNy [
PC.19:0—PR\ \ .
S
Q\ \ 3 r
00000 b\ SN NN N 0 Memory address
Figure 5-19. Symbolic Mode Running in Lower 64 KB
Operation: The signed 16-bit index in the next word after the instruction is added temporarily to

the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range 00000h, to OFFFFh. The
operand is the content of the addressed memory location.

Length: Two or three words

Comment: Valid for source and destination. The assembler calculates the PC index and
inserts it.

Example: ADD. B EDE, TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI. Bytes EDE and
TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC + 4766h where the PC
index 4766h is the result of 0579Ch - 01036h = 04766h. Address 01036h is the
location of the index for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated
16-bit result of 00778h — 1038h = FF740h. Address 01038h is the location of the
index for this example.

112 CPUX SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com MSP430 Instruction with Symbolic Mode in Upper Memory
Before: After:
Address Address
Space Space
0103Ah xxxxh 0103Ah xxxxh PC
01038h F740h 01038h F740h
01036h 4766h 01036h 4766h
01034h 05D0h | PC 01034h 50D0h
01038h 32h src
0077Ah xxxxh +0F740h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h Sum
01036h
0579Eh xxxxh +04766h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits 19:16 are used for the address
calculation of the operand. The operand may be located in memory in the range PC +32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into
the lower 64-KB memory space as shown in Figure 5-20 and Figure 5-21].

Upper Memory
PC.19:16 >0

S 19 1615 0
FFFFF

Program
counter PC

PC.19:0 ¥} PC +32 KB

y

; : 16-bit signed PC index
16-
S S 6-bit byte index (sign extended to 20 bits)

10000
OFFFF o v

< (20-bit signed add)
©
b
=
3 A A

00000 Memory address

Figure 5-20. Symbolic Mode Running in Upper Memory
SLAU208—-June 2008 CPUX 113

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430 Instruction with Symbolic Mode in Upper Memory

i3 TEXAS

INSTRUMENTS

www.ti.com

Length:
Operation:

Comment:

Example:

Source:

Destination:

“FRFRF

PC.19:0—>

A

AN\

ANV NN RNRNNY

A
MO

5

10000 777773&13:073\\\\\\\\\ g
0FFFF§ S% 2 \\\\\\\ N\ &

Q\ NI \ N\,
0000C N\ N NN

Figure 5-21. Overflow and Underflow for the Symbolic Mode

Two or three words

The sign-extended 16-bit index in the next word after the instruction is added to the
20 bits of the PC. This delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the addressed memory location.

Valid for source and destination. The assembler calculates the PC index and
inserts it

ADD. WEDE, &TONI ;

This instruction adds the 16-bit data contained in source word EDE and destination
word TONI and places the 16-bit result into the destination word TONI. For this
example, the instruction is located at address 2,F034h.

Word EDE at address 3379Ch, pointed to by PC + 4766h which is the 16-bit result
of 3379Ch - 2F036h = 04766h. Address 2F036h is the location of the index for this
example.

Word TONI located at address 00778h pointed to by the absolute address 00778h.

114

CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com MSP430X Instruction with Symbolic Mode
Before: After:

Address Address

Space Space
2F03Ah xxxxh 2F03Ah xxxxh PC
2F038h 0778h 2F038h 0778h
2F036h 4766h 2F036h 4766h
2F034h 5092h PC 2F034h 5092h

2F036h
3379Eh xxxxh +04766h 3379Eh xxxxh
3379Ch 5432h 3379Ch 3379Ch 5432h
5432h src

0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 7777n 7777h - Sum

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the
range of PC + 19 bits.

Length:
Operation:

Comment:

Example:

Source:

Destination:

Three or four words

The operand address is the sum of the 20-bit PC and the 20-bit index. The four
MSBs of the index are contained in the extension word, the 16 LSBs are contained
in the word following the instruction.

Valid for source and destination. The assembler calculates the register index and
inserts it.

ADDX. B EDE, TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI.

Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit
result of 3579Ch - 21036h = 14766h. Address 21036h is the address of the index in
this example.

Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit
result of 77778h - 21038h = 56740h. Address 21038h is the address of the index in
this example.

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

CPUX 115

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Absolute Mode in Lower 64 KB

13 TEXAS

Before:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

3579Eh
3579Ch

5.4.4 Absolute Mode
The Absolute mode uses the contents of the word following the instruction as the address of the operand.

The Absolute mode has two addressing possibilities:
» Absolute mode in lower 64-KB memory
» MSP430X instruction with Absolute mode

Address Space

xxxxh

6740h

4766h

50D0h

18C5h

xxxxh

xx45h

xxxxh

xx32h

Absolute Mode in Lower 64 KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value
and therefore points to an address in the lower 64 KB of the memory range. The address is calculated as
an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers
can be accessed this way and existing MSP430 software is usable without modifications.

PC

21038h

+56740h

77778h

21036h

+14766h

3579Ch

INSTRUMENTS
www.ti.com
After: Address Space
2103Ah xxxxh PC
21038h 6740h
21036h 4766h
21034h 50D0h
21032h 18C5h
32h src
7777Ah xxxxh +45h dst
77778h | xx77h 77h Sum
3579Eh xxxxh
3579Ch xx32h

Length: Two or three words

Operation: The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the index from 0 and
inserts it.

Example: ADD. W&EDE, &TONI ;
This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

116 CPUX SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

MSP430X Instruction with Absolute Mode

MSP430X Instruction with Absolute Mode

Before: Address Space

2103Ah
21038h
21036h
21034h

0777Ah
07778h

0579Eh
0579Ch

xxxxh

7778h

579Ch

5292h

xxxxh

2345h

xxxxh

5432h

PC

After: Address Space

2103Ah
21038h
21036h
21034h

0777Ah
07778h

0579Eh
0579Ch

xxxxh

PC

7778h

579Ch

5292h

5432h

xxxxh

7777h

7777h

xxxxh

5432h

+2345h

src
dst
Sum

If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value

and therefore points to any address in the memory range. The address value is calculated as an index

from 0. The four MSBs of the index are contained in the extension word, and the 16 LSBs are contained in

the word following the instruction.

Length:
Operation:
Comment:

Example:

Source:

Destination:

Three or four words

The operand is the content of the addressed memory location.

Valid for source and destination. The assembler calculates the index from 0 and
inserts it.

ADDX. A &EDE, &TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Two words beginning with address EDE
Two words beginning with address TONI

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

CPUX

117

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430X Instruction with Absolute Mode

13 TEXAS
INSTRUMENTS

www.ti.com

Before:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

3579Eh
3579Ch

Address
Space

xxxxh

7778h

579Ch

52D2h

1987h

0001h

2345h

0006h

5432h

5.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The
Indirect Register mode always uses a 20-bit address.

Length:
Operation:

Comment:

Example:

Source:

Destination:

One, two, or three words

PC

After:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

3579Eh
3579Ch

Address
Space

xxxxh

7778h

579Ch

52D2h

1987h

0007h

7777h

0006h

5432h

PC

65432h

+12345h

77777h

src
dst
Sum

The operand is the content the addressed memory location. The source register

Rsrc is not modified.

Valid only for the source operand. The substitute for the destination operand is

O(Rdst).

ADDX. W@R5, 2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Word pointed to by R5. R5 contains address 3579Ch for this example.
Word pointed to by R6 + 2100h which results in address 45678h + 2100h = 7778h.

118 CPUX

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com MSP430X Instruction with Absolute Mode
Before: After:

Address Register Address Register

Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Ch
21036h 2100h R6| 45678h 21036h 2100h R6| 45678h
21034h 55A6h PC 21034h 55A6h

45678h 5432h src

4777Ah xxxxh +02100h 4777Ah xxxxh +2345h dst
47778h | 2345h AT778h a7778h | 7777h 7777h Sum
3579Eh xxxxh 3579Eh xxxxh
3579Ch 5432h | R5 3579Ch 5432h | R5

5.4.6 Indirect, Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc
is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for
address-word instructions immediately after accessing the source operand. If the same register is used for

source and destination, it contains the incremented address for the destination access. Indirect

Autoincrement mode always uses 20-bit addresses.

Length:
Operation:
Comment:
Example:

Source:

Destination:

One, two, or three words

The operand is the content of the addressed memory location.

Valid only for the source operand
ADD. B @5+, 0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Byte pointed to by R5. R5 contains address 3,579Ch for this example

Byte pointed to by R6 + Oh which results in address 0778h for this example

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

CPUX 119

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430 Instructions With Immediate Mode

TEXAS
INSTRUMENTS

www.ti.com

Before:

21038h
21036h
21034h

0077Ah
00778h

3579Dh
3579Ch

5.4.7 Immediate Mode

odeThe Immediate mode allows accessing constants as operands by including the constant in the
memory location following the instruction. The program counter PC is used with the Indirect Autoincrement
mode. The PC points to the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or address-word instructions. The

Immediate mode has two addressing possibilities:

Address

Space

xxxxh

0000h

55F6h

xxxxh

xx45h

xxh

32h

PC

R5

R5
R6

___+0000h

Register

3579Ch

00778h

00778h

00778h

After:

21038h
21036h
21034h

0077Ah
00778h

3579Dh
3579Ch

e 8-bit or 16-bit constants with MSP430 instructions
* 20-bit constants with MSP430X instruction

MSP430 Instructions With Immediate Mode
If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value

and is stored in the word following the instruction.

Length:

Operation:

Comment:
Example:

Source:

Destination:

Address Register
Space
xxxxh | PC R5| 3579Dh
0000h R6| 00778h
55F6h

32h src
xxxxh +45h dst
Xx77h 77h Sum
xxh R5
xx32h

Two or three words. One word less if a constant of the constant generator can be
used for the immediate operand.

The 16-bit immediate source operand is used together with the 16-bit destination

operand.

Valid only for the source operand
ADD #3456h, &TONI
This instruction adds the 16-bit immediate operand 3456h to the data in the

destination address TONI.

16-bit immediate value 3456h
Word at address TONI

120 CPUX

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com MSP430X Instructions With Immediate Mode
Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 0778h 21038h 0778h
21036h 3456h 21036h 3456h
21034h | 50B2h | PC 21034h | 50B2h

3456h src

0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | s79Bn | 5379Bh Sum

MSP430X Instructions With Immediate Mode

If an MSP430X instruction is used with immediate addressing mode, the constant is a 20-bit value. The 4
MSBs of the constant are stored in the extension word and the 16 LSBs of the constant are stored in the
word following the instruction.

Length:

Operation:

Comment:
Example:

Source:

Destination:

Three or four words. One word less if a constant of the constant generator can be
used for the immediate operand.

The 20-bit immediate source operand is used together with the 20-bit destination

operand.

Valid only for the source operand

ADDX. A#23456h, &TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the

destination address TONI.

20-bit immediate value 23456h
Two words beginning with address TONI

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX

121

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430X Instructions With Immediate Mode

13 TEXAS
INSTRUMENTS

www.ti.com

Before:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

Address
Space

xxxxh

7778h

3456h

50F2h

1907h

0001h

2345h

PC

After:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

Address
Space

xxxxh

7778h

3456h

50F2h

1907h

0003h

579Bh

PC

23456h

+12345h

3579Bh

src
dst
Sum

122

CPUX

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

MSP430 and MSP430X Instructions

5.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are

used throughout the 1-MB memory range unless their 16-bit capability is exceeded. The MSP430X
instructions are used when the addressing of the operands or the data length exceeds the 16-bit capability

of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and MSP430X instruction:
» To use only the MSP430 instructions: The only exceptions are the CALLA and the RETA instruction.

This can be done if a few, simple rules are met:

— Placement of all constants, variables, arrays, tables, and data in the lower 64 KB. This allows the
use of MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit

addresses are needed.

— Placement of subroutine constants immediately after the subroutine code. This allows the use of

the symbolic addressing mode with its 16-bit index to reach addresses within the range of PC +32

KB.

» To use only MSP430X instructions: The disadvantages of this method are the reduced speed due to

the additional CPU cycles and the increased program space due to the necessary extension word for

any double operand instruction.

« Use the best fitting instruction where needed
The following sections list and describe the MSP430 and MSP430X instructions.

5.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the lower 64 KB or beyond it.

The only exceptions are the instructions CALL and RET which are limited to the lower 64 KB address

range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the
entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

shows the format of the MSP430 double operand instructions. Source and destination words
are appended for the Indexed, Symbolic, Absolute and Immediate modes. lists the twelve

MSP430 double operand instructions.

15 12 1

8 7 6 5

Op-code Rsrc

Ad |B/W

As

Rdst

Source or Destination 15:0

Destination 15:0

Figure 5-22. MSP430 Double Operand Instruction Format

Table 5-4. MSP430 Double Operand Instructions

S-Reg,

Status Bits®

Mnemonic D-Reg Operation N 5
MOV(. B) src,dst src — dst - -
ADIY . B) src,dst src + dst - dst * *
ADDC(. B) src,dst src + dst + C - dst * *
SUB(. B) src,dst dst + .not.src + 1 - dst * *
SUBC(. B) src,dst dst + .not.src + C - dst * *

(@ * = The status bit is affected.
— = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX

123

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
MSP430 Single Operand (Format Il) Instructions www.ti.com
Table 5-4. MSP430 Double Operand Instructions (continued)
. Status Bits®
Mnemonic ggig Operation v N 5 c
CMVP(. B) src,dst dst - src * * * *
DADD(. B) src,dst src + dst + C - dst (decimally) * * * *
Bl T(. B) src,dst src .and. dst 0 * * 4
Bl C(. B) src,dst .not.src .and. dst - dst - - - -
Bl S(. B) src,dst src .or. dst — dst - - - -
XOR(. B) src,dst src .xor. dst - dst * * * z
AND . B) src,dst src .and. dst - dst 0 * * 4
MSP430 Single Operand (Format Il) Instructions
shows the format for MSP430 single operand instructions, except RETI. The destination word

is appended for the Indexed, Symbolic, Absolute and Immediate modes. lists the seven single
operand instructions.

15 12 N 8 7 6 5 4 0

Op-code Rsrc Ad |B/W As Rdst

Source or Destination 15:0

Destination 15:0

Figure 5-23. MSP430 Single Operand Instructions

Table 5-5. MSP430 Single Operand Instructions

Jumps

} Status Bits®
Mnemonic S-Reg, Operation
D-Reg \Y N Z C
RRC(. B) dst C -~ MSB -....LSB - C * * * *
RRA(. B) dst MSB - MSB -...LSB - C 0 * * *
PUSH(. B) src SP-2 - SP, src - SP - - - -
SWPB dst bit 15...bit 8 « bit 7...bit 0 - - - -
CALL dst Call subroutine in lower 64 KB - - - -
RETI TOS - SR,SP+2 - SP * * * *
TOS - PC,SP+2 - SP
Register mode: bit 7 - bit 8...bit 19
SXT dst Other modes: bit 7 - bit 8...bit 15 0 i i z
@ * = The status bit is affected.
— = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.
shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset

of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit
program counter. This allows jumps in a range of -511 to +512 words relative to the program counter in
the full 20-bit address space Jumps do not affect the status bits. lists and describes the eight
jump instructions.

124

CPUX SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Emulated Instructions
15 13 12 10 9 8 0
Op-Code Condition S 10-Bit Signed PC Offset
Figure 5-24. Format of the Conditional Jump Instructions

Table 5-6. Conditional Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ JZ Label Jump to label if zero bit is set

JNE/ INZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) =0

JL Label Jump to label if (N .XOR. V) =1

JwWP Label Jump to label unconditionally

Emulated Instructions
In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make

code easier to write and read, but do not have op-codes themselves. Instead, they are replaced
automatically by the assembler with a core instruction. There is no code or performance penalty for using
emulated instructions. The emulated instructions are listed in [Table 5-7.

Table 5-7. Emulated Instructions

Status Bits®

Instruction Explanation Emulation
\ N z

ADC(. B) dst Add Carry to dst ADDC(. B) #0, dst * * *
BRdst Branch indirectly dst MOV dst , PC - - -
CLR(. B) dst Clear dst MOV(. B) #0, dst - - -
CLRC Clear Carry bit Bl C#1, SR - - -
CLRN Clear Negative bit Bl C#4, SR - 0 -
CLRZ Clear Zero bit Bl C#2, SR - - 0
DADC(. B) dst Add Carry to dst decimally DADD(. B) #0, dst * * *
DEC(. B) dst Decrement dst by 1 SUB(. B) #1, dst * * *
DECD(. B) dst Decrement dst by 2 SUB(. B) #2, dst * * *
DI NT Disable interrupt Bl C#8, SR - - -
El NT Enable interrupt Bl S #8, SR - - -
I NC(. B) dst Increment dst by 1 ADD(. B) #1, dst * * *
I NCD(. B) dst Increment dst by 2 ADD(. B) #2, dst * * *
I NV(. B) dst Invert dst XOR(. B) #-1, dst * * *
NOP No operation MOV R3, R3 - - -
POP dst Pop operand from stack MOV @5P+, dst - - -
RET Return from subroutine MOV @BP+, PC - - -
RLA(. B) dst Shift left dst arithmetically ADD(. B) dst, dst * * *
RLC(. B) dst Shift left dst logically through Carry ADDC(. B) dst, dst * * *
SBC(. B) dst Subtract Carry from dst SUBC(. B) #0, dst * * *
@) = The status bit is affected.

— = The status bit is not affected.

0 = The status bit is cleared.

1 = The status bit is set.

SLAU208-June 2008 CPUX 125

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

MSP430 Instruction Execution www.ti.com

Table 5-7. Emulated Instructions (continued)

Status Bits®

Instruction Explanation Emulation

\Y N z C
SETC Set Carry bit Bl S#1, SR - - - 1
SETN Set Negative bit Bl S#4, SR - 1 - -
SETZ Set Zero bit Bl S#2, SR - - 1 -
TST(. B) dst Test dst (compare with 0) CMP(. B) #0, dst 0 * * 1

MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used - not the instruction itself. The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines
lists the length and the CPU cycles for reset, interrupts, and subroutines.

Table 5-8. Interrupt, Return, and Reset Cycles and Length

Action Execution Time Length of Instruction
(MCLK Cycles) (Words)

Return from interrupt RETI 5 1

Return from subroutine RET 4 1

Interrupt request service (cycles needed before 6 _

first instruction)

WDT reset 4 —

Reset (RST/NMI) 4 -

Format-Il (Single Operand) Instruction Cycles and Lengths
lists the length and the CPU cycles for all addressing modes of the MSP430 single operand

instructions.
Table 5-9. MSP430 Format-II Instruction Cycles and Length
Addressing No. of Cycles Length of
Mode ST/{/?I?BRng PUSH CALL Instruction Example

Rn 1 3 4 1 SWPB R5
@Rn 3 3 4 1 RRC @9
@Rn+ 3 3 4 1 SWPB @R10+
#N N/A 3 4 2 CALL #LABEL
X(Rn) 4 4 5 2 CALL 2(R7)
EDE 4 4 5 2 PUSH EDE
&EDE 4 6 2 SXT &EDE

Jump Instructions Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute, regardless of whether
the jump is taken or not.

Format-1 (Double Operand) Instruction Cycles and Lengths
lists the length and CPU cycles for all addressing modes of the MSP430 format-I instructions.

126 CPUX SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Format-I (Double Operand) Instruction Cycles and Lengths
Table 5-10. MSP430 Format-I Instructions Cycles and Length
Addressing Mode No. of Length of Example
Source Destination Cycles Instruction
Rn Rm 1 1 MOV R5, R8
PC 3 1 BRR9
X(Rm) 4™ 2 ADD R5, 4(R6)
EDE 4™ 2 XOR R8, EDE
&EDE 4™ 2 MOV R5, &EDE
@Rn Rm 2 1 AND @4, R5
PC 4 1 BR @8
X(Rm) 51 2 XOR @5, 8(R6)
EDE 51 2 MOV @5, EDE
&EDE 51 2 XOR @5, &EDE
@Rn+ Rm 2 1 ADD @5+, R6
PC 4 1 BR @9+
x(Rm) 51 2 XOR @5, 8(R6)
EDE 51 2 MOV @R9+, EDE
&EDE 51 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20, RO
PC 3 2 BR #2AEh
x(Rm) 51 3 MOV #0300h, 0(SP)
EDE 51 3 ADD #33, EDE
&EDE 51 3 ADD #33, &EDE
x(Rn) Rm 3 2 MOV 2(R5) , R7
PC 5 2 BR 2(R6)
TONI 6M 3 MV 4(R7), TONI
x(Rm) 6M 3 ADD 4(R4) , 6(R9)
&TONI 6M 3 MV 2(R4) , &TONI
EDE Rm 3 2 AND EDE, R6
PC 5 2 BR EDE
TONI 6M 3 CMP EDE, TONI
x(Rm) 6M 3 MOV EDE, 0(SP)
&TONI 6M 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE, R8
PC 5 2 BR &EDE
TONI 6M 3 MOV &EDE, TONI
x(Rm) 6M 3 MOV &EDE, 0(SP)
&TONI 6M 3 MOV &EDE, &TONI

@ Mov, BIT, and CMP instructions execute in one fewer cycle.

5.5.2 MSP430X Extended Instructions
The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most

MSP430X instructions require an additional word of op-code called the extension word. Some extended

instructions do not require an additional word and are noted in the instruction description. All addresses,

indexes and immediate numbers have 20-bit values, when preceded by the extension word.

There are two types of extension word:

» Register/register mode for Format-I instructions and register mode for Format-Il instructions
» Extension word for all other address mode combinations

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX

127

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

i3 TEXAS

INSTRUMENTS
Register Mode Extension Word www.ti.com
Register Mode Extension Word
The register mode extension word is shown in and described in [Table 5-T1]. An example is
shown in Figure 5-27.
15 12 11 10 9 8 7 6 5 4 3 0
0001 1 00 ZC | # |AL| O 0 (n-1)/Rn
Figure 5-25. Extension Word for Register Modes
Table 5-11. Description of the Extension Word Bits for Register Mode
Bit Description
15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.
10:9 Reserved
ZC Zero carry bit
0 The executed instruction uses the status of the carry bit C.
1 The executed instruction uses the carry bit as 0. The carry bit will be defined by the result of the final
operation after instruction execution.
Repetition bit
0 The number of instruction repetitions is set by extension-word bits 3:0.
1 The number of instructions repetitions is defined by the value of the four LSBs of Rn. See description for bits
3:0.
AL Data length extension bit. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used

data length of the instruction.
A/L B/W Comment

0 0 Reserved
0 1 20-bit address word
1 0 16-bit word
1 1 8-bit byte
5:4 Reserved
3:0 Repetition count

#=0 These four bits set the repetition count n. These bits contain n — 1.
#=1 These four bits define the CPU register whose bits 3:0 set the number of repetitions. Rn.3:0 contain n — 1.

Non-Register Mode Extension Word

The extension word for non-register modes is shown in d and described in [[able 5-17. An
example is shown in Figure 5-28.

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 | A/L| 0 0 |Destination bits 19:16

Figure 5-26. Extension Word for Non-Register Modes

Table 5-12. Description of the Extension Word Bits for Non-Register Modes

Bit Description
15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.
Source Bits The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an
19:16 immediate operand, an index or to an absolute address.
128 CPUX SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Non-Register Mode Extension Word

Table 5-12. Description of the Extension Word Bits for Non-Register Modes (continued)

Bit Description

A/L Data length extension bit. Together with the B/W-bits of the following MSP430 instruction, the AL bit defines the used

data length of the instruction.
A/L B/W Comment
0 0 Reserved
0 1 20-bit address word
1 0 16-bit word
1 1 8-bit byte
5:4 Reserved

Destination The four MSBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may
Bits 19:16 belong to an index or to an absolute address.

Note: B/W and A/L Bit Settings for SWPBX and SXTX
The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 N/A
1 0 SWPB.W, SXTX.W
1 1 N/A

i5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

0o 0o o0 1 1 00 zc| # [AL| Rsvd (n-1)/Rn

Op-code Rsrc Ad |B/W As Rdst

XORX.A R9,R8

1: Repetition count
in bits 3:0

0: Use Carry | 01:Address word

}

0 0 0 1 1 0 0 0 0 0 0
14(XOR) 9 0 1 0 8(R8)
XORX instruction Source R9 T Destination R8
Destination

register mode
9 Source

register mode

Figure 5-27. Example for an Extended Register/Register Instruction

SLAU208—-June 2008 CPUX
Eubmit Documentafion FeedbacH

129

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
Extended Double Operand (Format-I) Instructions www.ti.com
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16
Op-code Rsrc Ad | B/W As Rdst
Source 15:0
Destination 15:0
XORX.A #12345h, 45678h(R15)
X(®B 01 Address
word @PC+
18xx extension word 12345h
0 0 0 1 1 1 l Ol 0 4
14 (XOR) 0 (PC) 1 1 3 15 (R15)
Immediate operand LSBs: 2345h
Index destination LSBs: 5678h
Figure 5-28. Example for an Extended Immediate/Indexed Instruction
Extended Double Operand (Format-I) Instructions
All twelve double-operand instructions have extended versions as listed in Table 1-13.
Table 5-13. Extended Double Operand Instructions
)) Status Bits®
Mnemonic Operands Operation
\% N z C
MOVX(. B, . A) src,dst src - dst — - - -
ADDX(. B, . A) src,dst src + dst — dst * * * *
ADDCX(. B, . A) src,dst src + dst + C - dst * * * *
SUBX(. B, . A) src,dst dst + .not.src + 1 - dst * * * *
SUBCX(. B, . A) src,dst dst + .not.src + C - dst * * * *
CWPX(. B, . A) src,dst dst — src * * * *
src + dst + C - dst
DADDX(. B, . A) src,dst (decimal) * * * *
BI TX(. B, . A) src,dst src .and. dst 0 * * 4
BI CX(. B, .A) src,dst .not.src .and. dst - dst - - - -
Bl SX(. B, . A) src,dst src .or. dst — dst - - - -
XORX(. B, . A) src,dst src .xor. dst — dst * * * 4
ANDX(. B, . A) src,dst src .and. dst — dst 0 * * 4

(€}

* = The status bit is affected.

— = The status bit is not affected.
0 = The status bit is cleared.

1 = The status bit is set.

130

CPUX

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Extended Double Operand (Format-I) Instructions
The four possible addressing combinations for the extension word for format-I instructions are shown in
Figure »-29.
15 14 13 12 11 10 9 8 7 6 5 4 3 0
o|lo]of1 1 o|lojzc| # |ALl O] O n-1/Rn
Op-code src 0 |[B/W| 0 0 dst
o|lo]of1 1 src.19:16 ALlo|]o]Jo|o|]o]oO
Op-code src Ad |B/W As dst
src.15:0
o|lo]of1 1 ojojJo|oJAaLlO]|oO dst.19:16
Op-code src Ad |B/W As dst
dst.15:0
o|lo]of1 1 src.19:16 ALl O | O dst.19:16
Op-code src Ad |B/W As dst
src.15:0
dst.15:0

Figure 5-29. Extended Format-I Instruction Formats

If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then
two words are used for this operand as shown in Figure 5-30.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

AdAresS+2| 0 coovcreccirrcerrrsers s rrserrssserssss s e s s e e s sn s e nn e e n e e e snn e nnnnes 0 19:16

Address Operand LSBs 15:0

Figure 5-30. 20-Bit Addresses in Memory

SLAU208—-June 2008 CPUX 131
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Extended Single Operand (Format-Il) Instructions www.ti.com

Extended Single Operand (Format-Il) Instructions
Extended MSP430X Format-ll instructions are listed in [Table 5-14.

Table 5-14. Extended Single-Operand Instructions

Status Bits®

Mnemonic Operands Operation

n \% N Zz C
CALLA dst Call indirect to subroutine (20-bit address) - - - -
POPM A #n,Rdst Pop n 20-bit registers from stack ltol6 * * * *
POPM W #n,Rdst Pop n 16-bit registers from stack ltol6 * * * *
PUSHM A #n,Rsrc Push n 20-bit registers to stack ltol6 * * * *
PUSHM W #n,Rsrc Push n 16-bit registers to stack ltol6 * * * *
PUSHX(. B, . A) src Push 8/16/20-bit source to stack * * * *
RRCM . A) #n,Rdst Rotate right Rdst n bits through carry (16-/20-bit register) lto4 * * * *
RRUM . A) #n,Rdst Rotate right Rdst n bits unsigned (16-/20-bit register) lto4 0 * * 4
RRAM . A) #n,Rdst Rotate right Rdst n bits arithmetically (16-/20-bit register) lto4 - - - -
RLAM . A) #n,Rdst Rotate left Rdst n bits arithmetically (16-/20-bit register) lto4 - - -
RRCX(. B, . A) dst Rotate right dst through carry (8-/16-/20-bit data) 1 * * * Z
RRUX(. B, . A) dst Rotate right dst unsigned (8-/16-/20-bit) 1 0 * * 4
RRAX(. B, . A) dst Rotate right dst arithmetically 1
SWPBX(. A) dst Exchange low byte with high byte 1
SXTX(. A) Rdst Bit7 - bit8 ... bit19 1
SXTX(. A) dst Bit7 - bit8 ... MSB 1

@ = The status bit is affected.
— = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

The three possible addressing mode combinations for format-Il instructions are shown in Eigure 5-31].

15 14 13 12 11 10 9 8 7 6 5 4 3 0
1] 0 0 1 1 0 0 |zC| # |AL| O 0 n-1/Rn
Op-code B/wW| 0 0 dst

Op-code B/wW| 1 X dst
0 0 0 1 1 0 0 0] 0 |AL| O 0 dst.19:16
Op-code B/W| X 1 dst
dst.15:0

Figure 5-31. Extended Format-Il Instruction Format

132 CPUX SLAU208—-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Extended Format Il Instruction Format Exceptions

Extended Format Il Instruction Format Exceptions
Exceptions for the Format Il instruction formats are shown in through Figure 5-35.
15 8 7 4 3 0

Op-code n-1 Rdst - n+1

Figure 5-32. PUSHM/POPM Instruction Format

15 12 11 10 9 4 3 0

Cc n-1 Op-code Rdst

Figure 5-33. RRCM, RRAM, RRUM and RLAM Instruction Format

15 12 1 8 7 4 3 0

(o Rsrc Op-code 0(PC)

Cc #imm/abs19:16 Op-code 0(PC)

#imm15:0 / &abs15:0

Cc Rsrc Op-code 0(PC)

index15:0

Figure 5-34. BRA Instruction Format

15 4 3 0
Op-code Rdst
Op-code Rdst
index15:0
Op-code #imm/ix/abs19:16
#imm15:0 / index15:0 / &abs15:0

Figure 5-35. CALLA Instruction Format

SLAU208—-June 2008 CPUX
Eubmit Documentafion FeedbacH

133

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Extended Emulated Instructions

13 TEXAS
INSTRUMENTS

www.ti.com

Extended Emulated Instructions

The extended instructions together with the constant generator form the extended emulated instructions.
lists the emulated instructions.

Table 5-15. Extended Emulated Instructions

Instruction Explanation Emulation

ADCX(. B, . A) dst Add carry to dst ADDCX(. B, . A) #0, dst
BRA dst Branch indirect dst MOVA dst , PC

RETA Return from subroutine MOVA @P+, PC

CLRA Rdst Clear Rdst MOV #0, Rdst

CLRX(. B, . A) dst Clear dst MOVX(. B, . A) #0, dst

DADCX(. B, . A) dst
DECX(. B, . A) dst
DECDA Rdst
DECDX(. B, . A) dst
I NCX(. B, . A) dst
| NCDA Rdst

I NCDX(. B, . A) dst
I NVX(. B, .A) dst
RLAX(. B, . A) dst
RLCX(. B, . A) dst
SBCX(. B, . A) dst
TSTA Rdst

TSTX(. B, . A) dst
POPX dst

Add carry to dst decimally
Decrement dst by 1
Decrement Rdst by 2
Decrement dst by 2
Increment dst by 1
Increment Rdst by 2
Increment dst by 2

Invert dst

Shift left dst arithmetically
Shift left dst logically through carry
Subtract carry from dst
Test Rdst (compare with 0)
Test dst (compare with 0)
Pop to dst

DADDX(. B, . A) #0, dst
SUBX(. B, . A) #1, dst
SUBA #2, Rdst

SUBX(. B, . A) #2, dst
ADDX(. B, . A) #1, dst
ADDA #2, Rdst

ADDX(. B, . A) #2, dst
XORX(. B, . A) #-1, dst
ADDX(. B, . A) dst, dst
ADDCX(. B, . A) dst, dst
SUBCX(. B, . A) #0, dst
CMPA #0, Rdst

CWPX(. B, . A) #0, dst
MOVX(. B, . A) @P+, dst

134

CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com MSP430X Address Instructions

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the register mode and the Immediate mode,
except for the MOVA instruction as listed in [Table 5-16. Restricting the addressing modes removes the
need for the additional extension-word op-code improving code density and execution time. Address
instructions should be used any time an MSP430X instruction is needed with the corresponding restricted
addressing mode.

Table 5-16. Address Instructions, Operate on 20-Bit Register Data

Status Bits®
V N z
ADDA Rsrc, Rdst Add source to destination register * * * *
#i M0, Rdst
MOVA Rsrc, Rdst Move source to destination - - - =
#i M0, Rdst
z16(Rsrc), Rdst
EDE, Rdst
&abs?20, Rdst
@Rsr c, Rdst
@Rsr c+, Rdst
Rsrc, z16(Rdst)
Rsrc, &bs20
CVPA ADDA Compare source to destination register * * * *
ADDA

SUBA ADDA Suptract source from destination
register

Mnemonic Operands Operation

(@]

ADDA

(@M * = The status bit is affected.
— = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

SLAU208-June 2008 CPUX 135
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430X Instruction Execution

13 TEXAS

INSTRUMENTS

www.ti.com

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format
and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-Il (Single-Operand) Instruction Cycles and Lengths

lists the length and the CPU cycles for all addressing modes of the MSP430X extended

single-operand instructions.

Table 5-17. MSP430X Format Il Instruction Cycles and Length

Instruction

Execution Cycles/Length of Instruction (Words)

RN @Rn @Rn+ #N X(Rn) EDE &EDE
RRAM n/1 - - - - - -
RRCM n/1 - - - - - -
RRUM n/1 - - - - - -
RLAM n/1 - - - - - -
PUSHM 2+n/1 - - - - - -
PUSHM.A 2+2n/1 - - - - - -
POPM 2+n/1 - - - - - -
POPM.A 2+2n/1 - - - - - -
CALLA 5/1 6/1 6/1 5/2 5Mj2 712 72
RRAX(.B) 1+n/2 a2 a2 - 5/3 5/3 5/3
RRAX.A 1+n/2 6/2 6/2 - 713 713 713
RRCX(.B) 1+n/2 a2 a2 - 5/3 5/3 5/3
RRCX.A 1+n/2 6/2 6/2 - 713 713 713
PUSHX(.B) 42 42 4/2 43 503 5/3 5/3
PUSHX.A 52 6/2 6/2 5/3 7073 713 713
POPX(.B) 32 - - - 5/3 5/3 5/3
POPX.A a2 - - - 713 713 713

(@ Add one cycle when Rn = SP.

136

CPUX

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths

MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths

lists the length and CPU cycles for all addressing modes of the MSP430X extended format-I

instructions.
Table 5-18. MSP430X Format-I Instruction Cycles and Length
Addressing Mode No. of Cycles Ir%:{:'%tchtigp Examples
Source Destination .B/W A .B/.WIA
RN Rm® 2 2 2 BI TX. BR5, R8
PC 4 4 2 ADDX R9, PC
X(Rm) 5@ 70 3 ANDX. AR5, 4(R6)
EDE 5@ 70 3 XORX R8, EDE
&EDE 5@ 70 3 BI TX. WR5, &EDE
@Rn Rm 3 4 2 BI TX @5, R8
PC 5 6 2 ADDX @9, PC
X(Rm) 6@ 9@ 3 ANDX. A @5, 4(R6)
EDE 6@ 9@ 3 XORX @8, EDE
&EDE 6@ 9@ 3 BI TX. B @5, &EDE
@Rn+ Rm 3 4 2 Bl TX @5+, R8
PC 5 6 2 ADDX. A @9+, PC
X(Rm) 6@ 9@ 3 ANDX @5+, 4(R6)
EDE 6@ 9@ 3 XORX. B @8+, EDE
&EDE 6@ 9@ 3 Bl TX @5+, &EDE
#N Rm 3 3 33 BI TX #20, R8
pc® 4 4 3 ADDX. A #FE000h, PC
X(Rm) 6@ 8® 4 ANDX #1234, 4(R6)
EDE 6@ 8@ 4 XORX #A5A5h, EDE
&EDE 6@ 8® 4 BI TX. B#12, &EDE
x(Rn) Rm 4 5 3 BI TX2(R5), R8
pc® 6 7 3 SUBX. A 2(R6), PC
TONI 7@ 10® 4 ANDX 4(R7) , 4(R6)
X(Rm) 7@ 10® 4 XORX. B 2(R6) , EDE
&TONI 7@ 10® 4 BI TX 8(SP) , &EDE
EDE Rm 4 5 3 BI TX. B EDE, R8
pc® 6 7 3 ADDX. A EDE, PC
TONI 7@ 10® 4 ANDX EDE, 4(R6)
x(Rm) 7@ 10® 4 ANDX EDE, TONI
&TONI 7@ 10® 4 Bl TX EDE, &TONI
&EDE Rm 4 5 3 Bl TX &EDE, R8
pc® 6 7 3 ADDX. A &EDE, PC
TONI 7@ 10® 4 ANDX. B &EDE, 4(R6)
x(Rm) 7@ 10® 4 XORX &EDE, TONI
&TONI 7@ 10® 4 Bl TX &EDE, &TONI

()]
(@)
®)
4)

Repeat instructions require n+1 cycles where n is the number of times the instruction is executed.
Reduce the cycle count by one for MOV, BIT, and CMP instructions.

Reduce the cycle count by two for MOV, BIT, and CMP instructions.

Reduce the cycle count by one for MOV, ADD, and SUB instructions.

SLAU208-June 2008 CPUX
Eubmit Documentation Feedbacl

137

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430X Address Instruction Cycles and Lengths

13 TEXAS
INSTRUMENTS

www.ti.com

MSP430X Address Instruction Cycles and Lengths

lists the length and the CPU cycles for all addressing modes of the MSP430X address
instructions.

Table 5-19. Address Instruction Cycles and Length

Addressing Mode IZ\);IeCcLuéi%r;/(‘l:'ligc)a Length of Instruction
o MOVA CMPA CMPA Example
Source Destination BRA ADDA MOVA ADDA
SUBA SUBA
Rn Rn 1 1 CMPAR5, R8
PC 3 1 SUBA R9, PC
x(Rm) 4 - 2 - MOVA R5, 4(R6)
EDE 4 - 2 - MOVA R8, EDE
&EDE 4 - 2 - MOVA R5, &EDE
@Rn Rm 3 - 1 - MOVA @Rr5, R8
PC 5 - 1 - MOVA @R9, PC
@Rn+ Rm 3 - 1 - MOVA @r5+, R8
PC 5 - 1 - MOVA @R9+, PC
#N Rm 2 3 2 2 CMPA #20, R8
PC 3 3 2 2 SUBA #FEO00Oh, PC
x(Rn) Rm 4 - 2 - MOVA 2(R5) , R8
PC 6 - 2 - MOVA 2(R6) , PC
EDE Rm 4 - 2 - MOVA EDE, R8
PC 6 - 2 - MOVA EDE, PC
&EDE Rm 4 - 2 - MOVA &EDE, R8
PC 6 - 2 - MOVA &EDE, PC
138 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Set Description

5.6

Instruction Set Description

shows all available instructions:

Table 5-20. Instruction Map of MSP430X

000 040 080 0Co 100 140 180 1Cco 200 240 280 2C0 300 340 380 3C0
Oxxx MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM
10xx | RRC RFéC' SWPB RRA RFéA' SXT PUSH Pl_J:H CALL RETI C/;\ALL
14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W
18xx
1oxx Extension Word For Format | and Format Il Instructions
20xx JNE/INZ
24xx JEQNZ
28xx JNC
2Cxx JC
30xx JN
34xx JGE
38xx JL
3Cxx JMP
AXXX MOV, MOV.B
5xxx ADD, ADD.B
BXXX ADDC, ADDC.B
TXXX SUBC, SUBC.B
8XxXX SUB, SUB.B
9XXX CMP, CMP.B
AXXX DADD, DADD.B
Bxxx BIT, BIT.B
CXXX BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B
SLAU208—-June 2008 CPUX 139

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

5.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown in the following tables.

Instruction Insct;rrléﬁtri’on src or data.19:16 ITjgnut(i:ftign dst
15 12 11 8 7 4
MOVA 0O/ 00O src o|0|0]|O dst MOVA @Rrsr ¢, Rdst
0 src 0 1 dst MOVA @Rrsr ¢+, Rdst
olo|lo]|o &abs.19:16 olo|1]o0 dst MOVA &abs 20, Rdst
&abs.15:0
o[ofo]o src [o]o1]1 dst MOVA x(Rsr c) , Rdst
x.15:0 +15-bit index x
o[ofo]o src o[1]1]0] s&abs19:16 |MVARsrc,8abs20
&abs.15:0
o[ofo]o src lo[1]1]1 dst MOVA Rsr ¢, X(Rdst)
x.15:0 +15-bit index x
o/ofo|o| immieae |1]o0fo0]o0 dst MOVA #i m20, Rdst
imm.15:0
CMPA o[ofo]o imm.19:16 | 1] 0] 0|1 dst CVPA #i rm20, Rdst
imm.15:0
ADDA o[ofo]o imm.19:16 | 1] 0] 1]o0 dst ADDA #i 20, Rdst
imm.15:0
SUBA o[ofo]o imm.19:16 | 1] 0] 11 dst SUBA #i m20, Rdst
imm.15:0
MOVA 0O/ 00O src 1/1|0]|O0 dst MOVA Rsr ¢, Rdst
CMPA 0O/ 00O src 1]1]|0]|1 dst CMPA Rsr ¢, Rdst
ADDA o000 src 1]1|1]|0 dst ADDA Rsr c, Rdst
SUBA 0O/ 00O src 11|11 dst SUBA Rsr ¢, Rdst
. Instruction Bit Loc. | Inst. ID Instru_ct‘ion dst
Instruction Group Identifier
15 12 11 10 9 8 7 4
RRCM.A olololo| n-1]lololo|l1]lo0]o dst RRCM A #n, Rdst
RRAM.A olololo| n-12]lol1lo|l2]l0]o0 dst RRAM A #n, Rdst
RLAM.A olololo| n-12|2]loflo|l1]0]o0 dst RLAM A #n, Rdst
RRUM.A olololo| n-2|2l2]lo|l2]l0]o0 dst RRUM A #n, Rdst
RRCM.W olololo| n-1]lololo|l1]lo0]12 dst RRCM Win, Rdst
RRAM.W olololo| n-12]lol1lo|l21]0]12 dst RRAM Wi#n, Rdst
RLAM.W olololo| n-12|2]lolo|l1]l0]12 dst RLAM Wi#n, Rdst
RRUM.W olololo| n-12|2l2lo|l2]l0]2 dst RRUM Win, Rdst

140 CPUX

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
) Instruction Identifier | dst
Instruction
15 12 11 8 7 6 5 4 3 0
RETI 0 1[ofofofofofofo]o
CALLA 1 1{o0|1|0]oO dst CALLA Rdst
0 1{0|1|0]1 dst CALLA x(Rdst)
x.15:0
1 1{o0[1|1]0 dst CALLA @Rdst
0 1]0 dst CALLA @dst +
0 1|1 &abs.19:16 CALLA &abs20
&abs.15:0
ojofofafofof1][2]1]o]0]1 x.19:16 CALLA EDE
x.15:0 CALLA x(PC)
ojofofafofof1]2]1]o]1]1 imm.19:16 | CALLA #i rm20
imm.15:0
Reserved 0 0 0 1 0 0 1 1 1 1 0 X X X X
Reserved 0 0 0 1 0 0 1 1 1 X X X
PUSHM.A ojlolo|1]0|1]|]0]oO n-1 dst PUSHM A #n, Rdst
PUSHM.W ojlolo|1]0|1]0]|1 n-1 dst PUSHM Wi#n, Rdst
POPM.A ojlofo|1]0|1]|1]o0 n-1 dst—n+1 POPM A #n, Rdst
POPM.W ojloflo|1]0|1]|1]1 n-1 dst—n+1 POPM W#n, Rdst

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX 141

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
5.6.2 MPS430 Instructions
The MSP430 instructions are listed and described on the following pages.
142 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* ADC[.W] Add carry to destination
* ADC.B Add carry to destination
Syntax ADC dst or ADC. Wdst
ADC. B dst
Operation dst + C - dst
Emulation ADDC #0, dst
ADDC. B #0, dst
Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise
C: Setif dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise
V: Setif an arithmetic overflow occurs, otherwise reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.
ADD @r13, 0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MsD
Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.
ADD. B @Rr13, O(R12) : Add LSDs
ADC. B 1(R12) ; Add carry to MsD

SLAU208—-June 2008

CPUX 143

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

ADD[.W] Add source word to destination word
ADD.B Add source byte to destination byte
Syntax ADDsr c, dst or ADD. Wsr c, dst
ADD. B sr c, dst
Operation src + dst — dst
Description The source operand is added to the destination operand. The previous content of the
destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Setif result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 16-bit counter CNTR located in lower 64 K.
ADD. W #10, &CNTR ; Add 10 to 16-bit counter
Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label
TONI is performed on a carry.
ADD. W @5, R6 ; Add table word to R6. R6.19:16 = 0
JC TONI ; Junp i f carry
; No carry
Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 =0
ADD. B @5+, R6 ; Add byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Junmp if no carry
; Carry occurred
144 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
ADDCI[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte
Syntax ADDC sr ¢, dst or ADDC. Wsr c, dst
ADDC. B src, dst
Operation src + dst + C - dst

Description The source operand and the carry bit C are added to the destination operand. The
previous content of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z Set if result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise
Y,

Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant value 15 and the carry of the previous instruction are added to the 16-bit
counter CNTR located in lower 64 K.

ADDC. W #15, &CNTR ; Add 15 + Cto 16-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry. R6.19:16 =0

ADDC. W @5, R6 ; Add table word + Cto R6
JC TONI ; Junp if carry
. ; No carry
Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The

jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1. R6.19:8 =0

ADDC. B @5+, R6 ; Add table byte + Cto R6. RS + 1
JNC TONI ; Junp if no carry
; Carry occurred

SLAU208-June 2008 CPUX 145
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

AND[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte
Syntax AND sr c, dst or AND. Wsr c, dst
AND. B sr c, dst
Operation src .and. dst - dst
Description The source operand and the destination operand are logically ANDed. The result is
placed into the destination. The source operand is not affected.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Setif result is zero, reset otherwise
C: Setif the result is not zero, reset otherwise. C = (.not. Z)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in
the lower 64 K. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0
MOV #AA55h, R5 ; Load 16-bit mask to R5
AND R5, &TOM ; TOM.and. R5 -> TOM
JZ TONI ; Junp if result O
; Result >0
or shorter:
AND #AA55h, &TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Junp if result O
Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0
AND. B @5+, R6 ; AND table byte with R6. RS + 1
146 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
BIC[.W] Clear bits set in source word in destination word
BIC.B Clear bits set in source byte in destination byte
Syntax Bl Csrc, dst or Bl C. Wsr ¢, dst
Bl C. Bsrc, dst
Operation (-not. src) .and. dst - dst

Description The inverted source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0
BI C #0C000h, R5 ; Clear R5.19:14 bits
Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 =0
BIC W @85, R7 ; Clear bits in R7 set in @5
Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Portl.
BIC. B @r5, &P10OUT ; Clear 1/Oport Pl bits set in @5
SLAU208—-June 2008 CPUX 147

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

BIS[.W] Set hits set in source word in destination word
BIS.B Set bits set in source byte in destination byte
Syntax Bl Ssrc, dst or Bl S. Wsr ¢, dst
Bl S. Bsrc, dst
Operation src .or. dst — dst
Description The source operand and the destination operand are logically ORed. The result is placed
into the destination. The source operand is not affected.
Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0
Bl S #A000h, R5 ; Set R5 bits
Example A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0
BISW @85, R7 ; Set bits in R7
Example A table byte pointed to by R5 (20-bit address) is used to set bits in Portl. R5 is
incremented by 1 afterwards.
BIS. B @r5+, &P1OUT ; Set /O port P1 bits. R5 + 1
148 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Set Description

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte
Syntax Bl T src, dst or Bl T. Wsr ¢, dst
BI T.Bsrc, dst
Operation src .and. dst
Description The source operand and the destination operand are logically ANDed. The result affects
only the status bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared!
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Setif result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this
is the case. R5.19:16 are not affected.
BIT #C000h, R5 ; Test R5.15:14 bits
JINZ TONI . At least one bit is set in R5
Both bits are reset
Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set. R7.19:16 are not affected.
BIT W @5, R7 ; Test bits in R7
JC TONI . At |east one bit is set
Both are reset
Example A table byte pointed to by R5 (20-bit address) is used to test bits in output Portl. Jump
to label TONI if no bit is set. The next table byte is addressed.
BIT.B @5+, &P1OUT ; Test I/Oport P1 bits. RB + 1
JNC TONI ; No corresponding bit is set
At least one bit is set

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX 149

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* BR, Branch to destination in lower 64K address space
BRANCH
Syntax BRdst
Operation dst -~ PC
Emulation MOV dst , PC
Description An unconditional branch is taken to an address anywhere in the lower 64K address
space. All source addressing modes can be used. The branch instruction is a word
instruction.
Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.
BR #EXEC ; Branch to | abel EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @°C+, PC
BR EXEC ; Branch to the address contai ned in EXEC
; Core instruction MOV X(PC), PC
; Indirect address
BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0), PC
; Indirect address
BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5, PC
; Indirect RS
BR @5 : Branch to the address contained in the word
; pointed to by R5.
: Core instruction MOV @v5, PC
; Indirect, indirect RS
BR @5+ ; Branch to the address contained in the word pointed
; to by R5 and increnment pointer in R5 afterwards.
; The next time-S/Wflow uses R5 pointer-it can
; alter program execution due to access to
; next address in a table pointed to by R5
: Core instruction MOV @r5, PC
; Indirect, indirect R5 with autoi ncrenment
BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a | abel
; Core instruction MOV X(R5), PC
o Indirect, indirect RS + X
150 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
CALL Call a subroutine in lower 64 K
Syntax CALL dst
Operation dst -~ PC 16-bit dst is evaluated and stored
SP-2 . SP
PC - @SP updated PC with return address to TOS
tmp - PC saved 16-bit dst to PC
Description A subroutine call is made from an address in the lower 64 K to a subroutine address in
the lower 64 K. All seven source addressing modes can be used. The call instruction is a
word instruction. The return is made with the RET instruction.
Status Bits Status bits are not affected.
PC.19:16 cleared (address in lower 64 K)
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.
Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly to address.
CALL #EXEC ; Start address EXEC
CALL #0AA04h : Start address 0AA04h
Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC.
EXEC is located at the address (PC + X) where X is within PC + 32 K.
CALL EXEC ; Start address at @EXEC. z16(PC)
Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address
EXEC in the lower 64 K.
CALL &EXEC ; Start address at @EXEC
Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0.
CALL R5 : Start address at R5
Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by
register R5 (20-bit address).
CALL @r5 ; Start address at @5

SLAU208—-June 2008

CPUX 151

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* CLR[.W] Clear destination
*CLR.B Clear destination
Syntax CLRdst or CLR Wadst
CLR Bdst
Operation 0 - dst
Emulation MOV #0, dst
MOV. B #0, dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ;0 -> TON
Example Register R5 is cleared.
CLR R5
Example RAM byte TONI is cleared.
CLR B TONI 0 -> TON
152 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* CLRC Clear carry bit
Syntax CLRC

Operation 0-C
Emulation Bl C#1, SR
Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.
Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by
R12.
CLRC ; C=0: defines start
DADD @rl3, 0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter
SLAU208—-June 2008 CPUX 153

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* CLRN Clear negative bit
Syntax CLRN
Operation 0- N
or
(.NOT.src .AND. dst - dst)
Emulation Bl C#4, SR
Description The constant 04h is inverted (OFFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.
Status Bits N: Resetto0
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The Negative bit in the status register is cleared. This avoids special treatment with
negative numbers of the subroutine called.
CLRN
CALL SUBR
SUBR JN o SUBRET ; If input is negative: do nothing and return
SUBRET RET
154 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
*CLRZ Clear zero bit
Syntax CLRz
Operation 0-7Z

or
(.NOT.src .AND. dst - dst)
Emulation Bl C#2, SR

Description The constant 02h is inverted (OFFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.

Status Bits N: Not affected

Z: ResettoO

C: Not affected

V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The zero bit in the status register is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the
word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5
afterwards by 2. The next time the software uses R5 as a pointer, it can alter the
program execution due to access to the next word address in the table pointed to by R5.

CALL @5+ ; Start address at @5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address
pointed to by register (R5 + X), e.g. a table with addresses starting at X. The address is
within the lower 64 KB. X is within +32 KB.

CALL X(R5) ; Start address at @R5+X). z16(R5)

SLAU208-June 2008 CPUX 155
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

CMP[.W] Compare source word and destination word
CMP.B Compare source byte and destination byte
Syntax CWP src, dst or CMP. Wsr c, dst
CWP. Bsrc, dst
Operation (.not.src) + 1 + dst
or
dst — src
Emulation Bl C#2, SR
Description The source operand is subtracted from the destination operand. This is made by adding
the 1's complement of the source + 1 to the destination. The result affects only the status
bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared.
Status Bits N: Setif result is negative (src > dst), reset if positive (src = dst)
Z: Setif result is zero (src = dst), reset otherwise (src # dst)
C: Setif there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the
constant. The address of EDE is within PC + 32 K.
cawP #01800h, EDE ; Conmpare word EDE with 1800h
JEQ TONI : EDE contai ns 1800h
Not equal
Example A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7
contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the
source operand is a 20-bit address in full memory range.
CWP. W 10(R5), R7 ; Conpare two signed nunbers
JL TONI ; R7 < 10(R5)
R7 >= 10(R5)
Example A table byte pointed to by R5 (20-bit address) is compared to the value in output Portl.
Jump to label TONI if values are equal. The next table byte is addressed.
CWVP. B @5+, &P10OUT ; Conpare Pl bits with table. RS + 1
JEQ TONI ; Equal contents
Not equal
CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Instruction Set Description

* DADC[.W]
* DADC.B
Syntax

Operation
Emulation
Description
Status Bits

Mode Bits
Example

CLRC

DADD
DADC

Example

CLRC

DADD. B
DADC

Add carry decimally to destination

Add carry decimally to destination

DADC dst or DADC. Wdst

DADC. B dst

dst + C - dst (decimally)

DADD #0, dst DADD. B #0, dst

The carry bit (C) is added decimally to the destination.

N:
Z:
C:

V:

Setif MSB is 1

Set if dst is O, reset otherwise

Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise
Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit decimal number
pointed to by R8.

; Reset carry
: next instruction's start condition is defined

R5, O(R8) . Add LSDs + C
2(R8)

; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.

; Reset carry
; next instruction's start condition is defined

R5, 0(R8) ; Add LSDs + C
1(R8) ; Add carry to MsDs

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX 157

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com

* DADD[.W] Add source word and carry decimally to destination word

* DADD.B Add source byte and carry decimally to destination byte

Syntax DADD sr ¢, dst or DADD. Wsr c, dst
DADD. B src, dst

Operation src + dst + C - dst (decimally)

Description The source operand and the destination operand are treated as two (.B) or four (W)
binary coded decimals (BCD) with positive signs. The source operand and the carry bit C
are added decimally to the destination operand. The source operand is not affected. The
previous content of the destination is lost. The result is not defined for non-BCD
numbers.

Status Bits N: Setif MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.

Z: Setif result is zero, reset otherwise
C: Setif the BCD result is too large (word > 9999h, byte > 99h), reset otherwise
V: Undefined
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.
DADD #10h, &DECCNTR ; Add 10 to 4-digit BCD counter

Example The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5
contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry

DADD. W &BCD, R4 ; Add LSDs. R4.19:16 =0

DADD. W &BCD+2, R5 ; Add MSDs with carry. R5.19:16 = 0

JC OVERFLOW ; Result >9999,9999: go to error routine
; Result ok

Example The two-digit BCD number contained in word BCD (16-bit address) is added decimally to
a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = OCLRC ;
Clear carryDADD.B &BCD,R4 ; Add BCD to R4 decimally. R4: 0,00ddh

CLRC ; Clear carry
DADD. B &BCD, R4 ; Add BCD to R4 decimally.
R4: 0, 00ddh
158 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description

* DEC[.W] Decrement destination
* DEC.B Decrement destination
Syntax DECdst or DEC. Wdst

DEC. B dst
Operation dst—1 - dst
Emulation SUB #1, dst

SUB. B #1, dst
Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Setif dst contained 1, reset otherwise

C: Resetif dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 1.
DEC R10 . Decrenent R10
Move a bl ock of 255 bytes fromnenory |ocation starting with EDE to

; menory location starting with TONI. Tabl es should not overlap: start of

; desti

L$1

nati on address TONl nust not be within the range EDE to EDE+OFEh

MOV #EDE, R6
MoV #510, R10
MOV @6+, TONI - EDE- 1(R6)
DEC R10
JINzZ L$1
Do not transfer tables using the routine above with the overlap shown in Figure 5-34.
EDE
4« >
TONI
EDE+254
TONI+254

Figure 5-36. Decrement Overlap

SLAU208—-June 2008

CPUX 159

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Instruction Set Description www.ti.com

* DECDI[.W] Double-decrement destination

* DECD.B Double-decrement destination
Syntax DECD dst or DECD. Wdst
DECD. B dst

Operation dst—2 - dst
Emulation SUB #2, dst
SUB. B #2, dst
Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained 2, reset otherwise
C: Resetif dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.
Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.

DECD R10 ; Decrenent R10 by two

; Move a bl ock of 255 bytes fromnenory location starting with EDE to

; menory location starting with TON.

; Tabl es should not overlap: start of destination address TONI nust not
; be within the range EDE to EDE+OFEh

MOV #EDE, R6
MOV #255, R10
L$1 MOV. B @r6+, TONI - EDE- 2(R6)
DECD R10
JNZ L$1
Example Memory at location LEO is decremented by two.
DECD.B LEO ; Decrenent MEM LEO

Decrement status byte STATUS by two.

DECD. B STATUS

160 CPUX SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* DINT Disable (general) interrupts
Syntax DI NT
Operation 0 - GIE

or
(OFFF7h .AND. SR — SR/ .NOT.src .AND. dst — dst)

Emulation Bl C#8, SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR). The
result is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow a
nondisrupted move of a 32-bit counter. This ensures that the counter is not modified
during the move by any interrupt.

DI NT ; Al interrupt events using the GE bit are disabl ed
NOP

MoV COUNTHI , RS ; Copy counter

MoV COUNTLO, R6

El NT ; Al interrupt events using the GE bit are enabl ed

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, DINT should be executed at
least one instruction before the beginning of the uninterruptible sequence, or it should be
followed by a NOP instruction.

SLAU208-June 2008 CPUX 161
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* EINT Enable (general) interrupts
Syntax El NT
Operation 1- GIE
or
(0008h .OR. SR - SR/ .src .OR. dst - dst)
Emulation Bl S #8, SR
Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result is placed
into the SR.
Status Bits Status bits are not affected.
Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the status register is set.
PUSH. B &P1I N
BIC. B @BP, &P1I FG ; Reset only accepted flags
El NT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed
BIT #Mask, @P
JEQ MaskK ; Flags are present identically to mask: junp
Mask OK BIC #Mask, @P

INCD SP ; Housekeeping: inverse to PUSH i nstruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always executed, even if
an interrupt service request is pending when the interrupts are enabled.

162

CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* INC[.W] Increment destination
*INC.B Increment destination
Syntax I NCdst or | NC. Wdst

| NC. Bdst
Operation dst+1 - dst
Emulation ADD #1, dst
Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
V: Setif dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch
to OVFL is taken.

INC.B STATUS
CWP.B #11, STATUS
JEQ OVFL

SLAU208-June 2008 CPUX 163
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Instruction Set Description www.ti.com

* INCD[.W] Double-increment destination

* INCD.B Double-increment destination
Syntax | NCDdst or | NCD. Wdst
| NCD. B dst

Operation dst +2 - dst
Emulation ADD #2, dst
Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise
C: Setif dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise
V: Setif dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.
PUSH R5 : R5 is the result of a calculation, which is stored
; in the system stack
I NCD SP ; Renove TOS by doubl e-increnent from stack
; Do not use INCD.B, SP is a word-aligned register
RET
Example The byte on the top of the stack is incremented by two.
INCD.B 0O(SP) ; Byte on TOS is increnent by two
164 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* INV[.W] Invert destination
* INV.B Invert destination
Syntax I NV dst or | NV. Wdst
| NV. B dst
Operation .not.dst - dst

Emulation XOR #0FFFFh, dst

XOR. B #0FFh, dst
Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Setif dst contained OFFFFh, reset otherwise

Set if dst contained OFFh, reset otherwise

C: Setif result is not zero, reset otherwise (= .NOT. Zero)

V: Set if initial destination operand was negative, otherwise reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MoV #00AEh, R5 ; R5 = 00OAEh
I NV R5 ; Invert R5, R5 = OFF51h
I NC R5 ; R5 is now negat ed, R5 = OFF52h

Example Content of memory byte LEO is negated.
MOV. B #0AEh, LEO ; MEM LEO) = OAEh
I NV. B LEO ; Invert LEQ MEM LEO) = 051h
INC.B LEO ; MEMLEO is negated, MEMLEO = 052h

SLAU208—-June 2008 CPUX 165

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
JC Jump if carry
JHS Jump if higher or same (unsigned)
Syntax JCI abel
JHS | abel
Operation If C=1: PC + (2 x Offset) - PC
If C = 0: execute the following instruction
Description The carry bit C in the status register is tested. If it is set, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range —511 to +512 words relative to the
PC in the full memory range. If C is reset, the instruction after the jump is executed.
JC is used for the test of the carry bit C.
JHS is used for the comparison of unsigned numbers.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the port 1 pin P1IN.1 bit defines the program flow.
BIT.B #2, &P1I N ; Port 1, bit 1 set? Bit ->C
JC Label 1 ; Yes, proceed at Labell
: No, continue
Example If R5 = R6 (unsigned) the program continues at Label2
cwP R6,R 5 ; 1s R5 >= R6? Info to C
JHS Label 2 ; Yes, C=1
: No, R5 < R6. Continue
Example If R5 = 12345h (unsigned operands) the program continues at Label2
CVPA #12345h, R ; Is R5 >= 12345h? Info to C
JHS Label 2 ; Yes, 12344h < R5 <= F,FFFFh. C =1
: No, R5 < 12345h. Conti nue
166 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Set Description

JEQ Jump if equal
Jz Jump if zero
Syntax JEQI abel
JZ | abel
Operation If Z=1: PC + (2 x Offset) - PC
If Z = 0: execute following instruction
Description The zero bit Z in the status register is tested. If it is set, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range —511 to +512 words relative to the
PC in the full memory range. If Z is reset, the instruction after the jump is executed.
JZ is used for the test of the zero bit Z.
JEQ is used for the comparison of operands.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the P2IN.O bit defines the program flow.
BIT.B #1, &P21 N ; Port 2, bit O reset?
Jz Label 1 ; Yes, proceed at Labell
; No, set, continue
Example If R5 = 15000h (20-bit data) the program continues at Label2.
CVPA #15000h, R5 ; Is R5 = 15000h? Info to SR
JEQ Label 2 ; Yes, R6 = 15000h. Z =1
; No, R5 not equal 15000h. Conti nue
Example R7 (20-bit counter) is incremented. If its content is zero, the program continues at
Label4.
ADDA #1, R7 i Increment R7
Jz Label 4 ; Zero reached: Go to Label 4

; R7 not equal 0. Continue here.

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX 167

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
JGE Jump if greater or equal (signed)
Syntax JCGE| abel
Operation If (N .xor. V) =0: PC + (2 x Offset) - PC
If (N .xor. V) = 1: execute following instruction
Description The negative bit N and the overflow bit V in the status register are tested. If both bits are
set or both are reset, the signed 10-bit word offset contained in the instruction is
multiplied by two, sign extended, and added to the 20-bit program counter PC. This
means a jump in the range -511 to +512 words relative to the PC in full Memory range. If
only one bit is set, the instruction after the jump is executed.
JGE is used for the comparison of sighed operands: also for incorrect results due to
overflow, the decision made by the JGE instruction is correct.
Note that JGE emulates the non-implemented JP (jump if positive) instruction if used
after the instructions AND, BIT, RRA, SXTX and TST. These instructions clear the V bit.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE (lower 64 K) contains positive data, go to Labell. Software can run in the full
memory range.
TST. B &EDE ; |'s EDE positive? V<- 0
JCE Label 1 ; Yes, JCGE enul ates JP
; No, 80h <= EDE <= FFh
Example If the content of R6 is greater than or equal to the memory pointed to by R7, the program
continues a Label5. Signed data. Data and program in full memory range.
CWP @Rr7, R6 i ls R6 >= @R7?
JGE Label 5 ; Yes, go to Label5
; No, continue here
Example If RS = 12345h (signed operands) the program continues at Label2. Program in full
memory range.
CVPA #12345h, R ; Is R5 >= 12345h?
JGE Label 2 : Yes, 12344h < R5 <= 7FFFFh
; No, 80000h <= R5 < 12345h
168 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
JL Jump if greater or equal (signed)
Syntax JL | abel

Operation If (N .xor. V) =1: PC + (2 x Offset) - PC
If (N .xor. V) = 0: execute following instruction

Description The negative bit N and the overflow bit V in the status register are tested. If only one is
set, the signed 10-bit word offset contained in the instruction is multiplied by two, sign
extended, and added to the 20-bit program counter PC. This means a jump in the range
—511 to +512 words relative to the PC in full memory range. If both bits N and V are set
or both are reset, the instruction after the jump is executed.

JL is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If byte EDE contains a smaller, signed operand than byte TONI, continue at Labell. The
address EDE is within PC £ 32 K.

CWVP. B &TONI , EDE . Is EDE < TONI
JL Label 1 . Yes
: No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit address) the
program continues at Label Label5. Data and program in full memory range.

CwWP @r7, R6 i Is R < @7?
JL Label 5 ; Yes, go to Label5
: No, continue here

Example If RS < 12345h (signed operands) the program continues at Label2. Data and program in
full memory range.

CVPA #12345h, R5 ; Is R5 < 12345h?
JL Label 2 ; Yes, 80000h =< R5 < 12345h
; No, 12344h < R5 <= 7FFFFh

SLAU208-June 2008 CPUX 169
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

JMP Jump unconditionally
Syntax JWP | abel
Operation PC + (2 x Offset) » PC
Description The signed 10-bit word offset contained in the instruction is multiplied by two, sign
extended, and added to the 20-bit program counter PC. This means an unconditional
jump in the range -511 to +512 words relative to the PC in the full memory. The JMP
instruction may be used as a BR or BRA instruction within its limited range relative to the
program counter.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower
64 K, program in full memory range.
MOV. B #10, &STATUS ; Set STATUS to 10
JwP MAI NLOOP ; Go to main | oop
Example The interrupt vector TAIV of Timer_A3 is read and used for the program flow. Program in
full memory range, but interrupt handlers always starts in lower 64K.
ADD &TAI'V, PC ; Add Tinmer_A interrupt vector to PC
RETI ; No Tiner_A interrupt pending
JWP | HCCR1 ; Timer block 1 caused interrupt
J\VP | HCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return
170 CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
JN Jump if negative
Syntax JNI abel

Operation If N=1: PC + (2 x Offset) -~ PC
If N = 0: execute following instruction

Description The negative bit N in the status register is tested. If it is set, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range -511 to +512 words relative to the
PC in the full memory range. If N is reset, the instruction after the jump is executed.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The byte COUNT is tested. If it is negative, program execution continues at Label0. Data
in lower 64 K, program in full memory range.

TST.B &COUNT ; I's byte COUNT negative?
JN Label O ; Yes, proceed at Label 0
; COUNT >= 0
Example R6 is subtracted from R5. If the result is negative, program continues at Label2. Program

in full memory range.

SUB R6, R5 ; RS - R6 -> R5
JN Label 2 ; R5 is negative: R6 > R5 (N = 1)
;. R5 >= 0. Continue here.

Example R7 (20-bit counter) is decremented. If its content is below zero, the program continues at
Label4. Program in full memory range.

SUBA #1, R7 ; Decrement R7
JN Label 4 ; R7 < 0: Go to Label4
: R7 >= 0. Continue here.

SLAU208-June 2008 CPUX 171
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
JNC Jump if no carry
JLO Jump if lower (unsigned)
Syntax JNCI abel
JLOI abel
Operation If C=0: PC + (2 x Offset) - PC
If C = 1: execute following instruction
Description The carry bit C in the status register is tested. If it is reset, the sighed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range —511 to +512 words relative to the
PC in the full memory range. If C is set, the instruction after the jump is executed.
JNC is used for the test of the carry bit C.
JLO is used for the comparison of unsigned numbers.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE < 15 the program continues at Label2. Unsigned data. Data in lower 64 K,
program in full memory range.
CWP. B #15, &EDE ; Is EDE < 15? Info to C
JLO Label 2 ; Yes, EDE < 15. C=0
; No, EDE >= 15. Conti nue
Example The word TONI is added to R5. If no carry occurs, continue at Label0. The address of
TONI is within PC = 32 K.
ADD TONI, RS ; TONL + RS -> R5. Carry -> C
JNC Label O ; No carry
; Carry = 1: continue here
172 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
JNZ Jump if not zero
JNE Jump if not equal
Syntax JNZ | abel

JNE | abel

Operation If Z=0: PC + (2 x Offset) - PC
If Z = 1: execute following instruction

Description The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range —511 to +512 words relative to the
PC in the full memory range. If Z is set, the instruction after the jump is executed.

JNZ is used for the test of the zero bit Z.
JNE is used for the comparison of operands.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The byte STATUS is tested. If it is not zero, the program continues at Label3. The
address of STATUS is within PC + 32 K.

TST.B STATUS ; |I's STATUS = 0?
JINZ Label 3 ; No, proceed at Label 3
e ; Yes, continue here

Example If word EDE # 1500 the program continues at Label2. Data in lower 64 K, program in full
memory range.

CwWP #1500, &EDE ; I's EDE = 1500? Info to SR
JNE Label 2 ; No, EDE not equal 1500.
e ;. Yes, R5 = 1500. Conti nue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program continues at
Label4. Program in full memory range.

SUBA #1, R7 ; Decrement R7
JINZ Label 4 ; Zero not reached: Go to Label 4
: Yes, R7 = 0. Continue here.

SLAU208-June 2008 CPUX 173
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

MOVI[.W] Move source word to destination word
MOV.B Move source byte to destination byte
Syntax MOV src, dst or MOV. Wsr ¢, dst
MOV. B src, dst
Operation src — dst
Description The source operand is copied to the destination. The source operand is not affected.
Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).
MoV #01800h, &EDE ; Move 1800h to EDE
Example The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The
length of the tables is 030h words. Both tables reside in the lower 64K.
MoV #EDE, R10 ; Prepare pointer (16-bit address)
Loop MoV @r10+, TOM EDE- 2(R10) ; R10 points to both tables.
;. R10+2
CwP #EDE+60h, R10 : End of table reached?
JLO Loop ; Not yet
; Copy conpl et ed
Example The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The
length of the tables is 020h bytes. Both tables may reside in full memory range, but must
be within R10 + 32 K.
MOVA #EDE, R10 ; Prepare pointer (20-bit)
MoV #20h, RO ; Prepare counter
Loop MOV. B @R10+, TOW EDE- 1(R10) ; RLO points to both tables.
; R10+1
DEC R9 ;. Decrenent counter
JNz Loop ; Not yet done
; Copy conpl eted
174 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* NOP No operation
Syntax NOP
Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.

Status Bits Status bits are not affected.

SLAU208-June 2008 CPUX 175
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination
Syntax POP dst

POP. B dst
Operation @SP - temp

SP+2 - SP

temp - dst

Emulation MOV @P+, dst or MOV. W@P+, dst
MOV. B @BP+, dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the destination. The

stack pointer is incremented by two afterwards.
Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.
POP R7 . Restore R7
POP SR ; Restore status register
Example The contents of RAM byte LEO is restored from the stack.
POP. B LEO ; The low byte of the stack is nmoved to LEO
Example The contents of R7 is restored from the stack.
POP.B R7 ; The low byte of the stack is noved to R7,
; the high byte of R7 is 00h
Example The contents of the memory pointed to by R7 and the status register are restored from
the stack.
POP.B O(R7) ; The low byte of the stack is noved to the

; the byte which is pointed to by R7
. Exanpl e: R7 = 203h

; Mem(R7) = | ow byte of system stack

Exanmpl e: R7 = 20Ah

; Mem(R7) = | ow byte of system stack

POP SR ; Last word on stack noved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent of the byte suffix.

176 CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack
Syntax PUSH dst or PUSH. Wdst
PUSH. B dst
Operation SP-2 . SP
dst - @SP
Description The 20-bit stack pointer SP is decremented by two. The operand is then copied to the
RAM word addressed by the SP. A pushed byte is stored in the low byte, the high byte is
not affected.
Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the two 16-bit registers R9 and R10 on the stack.
PUSH R9 ; Save R9 and R10 XXXXh
PUSH R10 ; YYYYh
Example Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are
within PC + 32 K.
PUSH. B EDE Save EDE XX XXh
PUSH B TONI ; Save TONI xXYYh

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX 177

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
RET Return from subroutine
Syntax RET
Operation @SP -PC.15:0 Saved PCto PC.15:.0. PC.19:16 - O
SP+2 - SP
Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL instruction is
restored to the PC. The program continues at the address following the subroutine call.
The four MSBs of the program counter PC.19:16 are cleared.
Status Bits Status bits are not affected.
PC.19:16: Cleared
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR in the lower 64 K and return to the address in the lower 64K
after the CALL.
CALL #SUBR ; Call subroutine starting at SUBR
; Return by RET to here
SUBR PUSH R14 ; Save R14 (16 bit data)
e ; Subroutine code
POP R14 ;. Restore R14
RET ; Return to lower 64 K
Item n SP—» Iltemn
SP—> PCruum
Stack before RET Stack after RET
instruction instruction
Figure 5-37. Stack After a RET Instruction
178 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description

RETI Return from interrupt

Syntax RETI

Operation @SP - SR.15:0 Restore saved status register SR with PC.19:16
SP+2 - SP
@SP - PC.15:0 Restore saved program counter PC.15:0
SP+2 - SP House keeping

Description The status register is restored to the value at the beginning of the interrupt service
routine. This includes the four MSBs of the program counter PC.19:16. The stack pointer
is incremented by two afterward.
The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits)
and PC.15:0. The 20-bit program counter is restored to the value at the beginning of the
interrupt service routine. The program continues at the address following the last
executed instruction when the interrupt was granted. The stack pointer is incremented by
two afterward.

Status Bits N: Restored from stack
C: Restored from stack
Z. Restored from stack
V: Restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack.

Example Interrupt handler in the lower 64 K. A 20-bit return address is stored on the stack.

I NTRPT PUSHM A #2, R14 ; Save R14 and R13 (20-bit data)

- ; Interrupt handl er code
POPM A #2, R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full nenmory range

SLAU208—-June 2008

CPUX 179

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* RLA[.W] Rotate left arithmetically
*RLA.B Rotate left arithmetically
Syntax RLA dst or RLA. Wdst
RLA. B dst
Operation C - MSB - MSB-1....LSB+1 « LSB ~ 0
Emulation ADD dst , dst ADD. B dst, dst
Description The destination operand is shifted left one position as shown in Figure 5-38. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.
An overflow occurs if dst = 04000h and dst < 0C000h before operation is performed: the
result has changed sign.
Word 15 0
+++++++++++++++++++ =
Byte 7 0
Figure 5-38. Destination Operand—Arithmetic Shift Left
An overflow occurs if dst = 040h and dst < 0COh before the operation is performed: the
result has changed sign.
Status Bits N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:the initial value is 04000h < dst < 0C00O0h; reset
otherwise
Set if an arithmetic overflow occurs:the initial value is 040h < dst < 0COh; reset
otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.
RLA R7 . Shift left R7 (x 2)
Example The low byte of R7 is multiplied by 4.
RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

Note: RLA Substitution

The assembler does not recognize the instructions:
RLA @R5+ RLA.B @5+ RLA(. B) @5

They must be substituted by:
ADD @5+, - 2(R5) ADD. B @5+, - 1(R5) ADD(. B) @5

180 CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Set Description

* RLC[.W] Rotate left through carry

*RLC.B Rotate left through carry
Syntax RLCdst or RLC. Wdst
RLC. B dst

Operation C - MSB - MSB-1....LSB+1 - LSB - C
Emulation ADDC dst , dst

Description The destination operand is shifted left one position as shown in Figure 5-39. The carry bit
(C) is shifted into the LSB and the MSB is shifted into the carry bit (C).
Word 15 0

7777777777777777777
Byte 7 0

Figure 5-39. Destination Operand—Carry Left Shift

Status Bits N: Set if result is negative, reset if positive
Z. Setif result is zero, reset otherwise
C: Loaded from the MSB
V: Setif an arithmetic overflow occurs:the initial value is 04000h < dst < 0C000h; reset
otherwise
Set if an arithmetic overflow occurs:the initial value is 040h < dst < 0COh; reset
otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted left one position.
RLC R5 i (R x2) +C->R5
Example The input P1IN.1 information is shifted into the LSB of R5.
BIT.B #2, &P1I N ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of Rb5
Example The MEM(LEO) content is shifted left one position.
RLC.B LEO : Mem(LEO) x 2 + C -> Men{LEO

Note: RLA Substitution

The assembler does not recognize the instructions:

RLC @5+ RLC.B @5+ RLC(.B) @5
They must be substituted by:

ADDC @5+, -2(R5) ADDC.B @5+, - 1(R5) ADDC(.B) @5

SLAU208-June 2008 CPUX 181
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
RRA[.W] Rotate right arithmetically destination word
RRA.B Rotate right arithmetically destination byte
Syntax RRA. B dst or RRA. Wdst
Operation MSB - MSB - MSB-1 - ...LSB+1 - LSB - C
Description The destination operand is shifted right arithmetically by one bit position as shown in
Figure 5-40. The MSB retains its value (sign). RRA operates equal to a signed division
by 2. The MSB is retained and shifted into the MSB-1. The LSB+1 is shifted into the
LSB. The previous LSB is shifted into the carry bit C.
Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Setif result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 16-bit number in R5 is shifted arithmetically right one position.
RRA R5 ; RB/2 -> RS
Example The signed RAM byte EDE is shifted arithmetically right one position.
RRA. B EDE ; EDE/ 2 -> EDE
19 15 7 0
oooooooooooormsa—»ma
— W
19 15 0
oooorMSB » | LSB
[=]
Figure 5-40. Rotate Right Arithmetically RRA.B and RRA.W
182 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
RRC[.W] Rotate right through carry destination word
RRC.B Rotate right through carry destination byte
Syntax RRC dst or RRC. Wdst
RRC. B dst
Operation C - MSB - MSB-1 - ...LSB+1 - LSB - C
Description The destination operand is shifted right by one bit position as shown in Figure 5-41]. The

carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C.

Status Bits N:

Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Setif result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.
SETC ; Prepare carry for MSB
RRC EDE : EDE = EDE >> 1 + 8000h
19 15 7 0
000000000000MSB—>LSB
x
19 15 0
r 0 0 0 O|MSB » | LSB
x

Figure 5-41. Rotate Right Through Carry RRC.B and RRC.W

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX

183

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination
Syntax SBCdst or SBC. Wdst
SBC. B dst
Operation dst + OFFFFh + C - dst
dst + OFFh + C - dst
Emulation SUBC #0, dst
SUBC. B #0, dst
Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise
Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by
R12.
SUB @r13, 0(R12) i Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD
Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.
SUB. B @r13, 0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1
184 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
*SETC Set carry bit
Syntax SETC

Operation 1-C
Emulation Bl S#1, SR
Description The carry bit (C) is set.
Status Bits N: Not affected
Z: Not affected
C. Set
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally.

Assume that R5 = 03987h and R6 = 04137h.

DSUB ADD #06666h, R5 ; Move content R5 fromO0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDh

I NV R5 ; Invert this (result back to 0-9)
; RB = .NOT. R5 = 06012h

SETC ; Prepare carry =1

DADD R5, R6 ; Emul ate subtraction by addition of:
; (010000h - R5 - 1)
; R = R6 + R5 + 1
; R6 = 0150h

SLAU208-June 2008 CPUX 185

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

*SETN Set carry bit
Syntax SETN
Operation 1-N
Emulation Bl S#4, SR
Description The negative bit (N) is set.
Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
186 CPUX SLAU208-June 2008

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* SETZ Set zero bit
Syntax SETZ
Operation 1-N
Emulation Bl S#2, SR
Description The zero bit (Z) is set.
Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX

187

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
SUB[.W] Subtract source word from destination word
SUB.B Subtract source byte from destination byte
Syntax SUB sr ¢, dst or SUB. Wsr c, dst
SUB. B src, dst
Operation (.not.src) + 1 + dst - dst or dst—src - dst
Description The source operand is subtracted from the destination operand. This is made by adding
the 1's complement of the source + 1 to the destination. The source operand is not
affected, the result is written to the destination operand.
Status Bits N: Set if result is negative (src > dst), reset if positive (src < dst)
Z: Setif result is zero (src = dst), reset otherwise (src # dst)
C: Setif there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from RAM word EDE.
SUB #7654h, &EDE ; Subtract 7654h from EDE
Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7
contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0.
SuB @5+, R7 ; Subtract table number fromR7. RS + 2
JZ TONI ; R7 = @5 (before subtraction)
; R7 <> @5 (before subtraction)
Example Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC £ 32
K. The address R12 points to is in full memory range.
SUB.B CNT, O(R12) ; Subtract CNT from @rl2
188 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
SUBCI[.W] Subtract source word with carry from destination word
SUBC.B Subtract source byte with carry from destination byte
Syntax SUBC sr ¢, dst or SUBC. Wsr ¢, dst
SUBC. B sr c, dst
Operation (.not.src) + C +dst - dst or dst—(src—1)+C - dst
Description The source operand is subtracted from the destination operand. This is done by adding
the 1's complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Used for 32, 48, and 64-bit
operands.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Setif result is zero, reset otherwise
C: Setif there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from R5 with the carry from the previous
instruction. R5.19:16 = 0
SUBC. W #7654h, R5 ; Subtract 7654h + C fromR5
Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The
address R7 points to is in full memory range.
SuUB @5+, 0(R7) ; Subtract LSBs. R5 + 2
SUBC @5+, 2(R7) ; Subtract MDs with C. RS + 2
SUBC @5+, 4(R7) ; Subtract MsBs with C. RS + 2
Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction
is used. The address of CNT is in lower 64 K.
SUBC. B &CNT, 0(R12) ; Subtract byte CNT from @Rr12

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX 189

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

SWPB Swap bytes
Syntax SWPB dst
Operation dst.15:8 <> dst.7:0
Description The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in
register mode.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM word EDE (lower 64 K).
MoV #1234h, &EDE ; 1234h -> EDE
SWPB &EDE ; 3412h -> EDE
Before SWPB
15 8 7 0
High Byte Low Byte
After SWPB
15 8 7 0
Low Byte High Byte
Figure 5-42. Swap Bytes in Memory
Before SWPB
19 16 15 8 0
X High Byte Low Byte
After SWP
19 16 15 8 0
0 .. 0 Low Byte High Byte
Figure 5-43. Swap Bytes in a Register
190 CPUX SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
SXT Extend sign
Syntax SXT dst
Operation dst.7 - dst.15:8, dst.7 - dst.19:8 (register mode)
Description Register mode: the sign of the low byte of the operand is extended into the bits
Rdst.19:8.
Rdst.7 = 0: Rdst.19:8 = 000h afterwards
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards
Other Modes: the sign of the low byte of the operand is extended into the high byte.
dst.7 = 0: high byte = 00h afterwards
dst.7 = 1: high byte = FFh afterwards
Status Bits N: Set if result is negative, reset otherwise
Z: Setif result is zero, reset otherwise
C: Setif result is not zero, reset otherwise (C = .not.Z)
\% Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the 16-bit
signed data in R7.
MOV. B &EDE, RS ;. EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5, R7 ; Add signed 16-bit val ues
Example The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data
in R7.
MOV. B EDE, R5 ;. EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5, R7 ; Add signed 20-bit val ues

SLAU208—-June 2008

CPUX

Bubmit Documentafion FeedbacK

191

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* TST[.W] Test destination
*TST.B Test destination
Syntax TST dst or TST. Wdst
TST. Bdst
Operation dst + OFFFFh + 1
dst + OFFh + 1
Emulation CMP #0,dst
CMP.B #0,dst
Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.
Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C. Set
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at
R7POS.
TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO . R7 is zero
R7POS ; R7 is positive but not zero
R7TNEG ; R7 is negative
R7ZERO ; R7 is zero
Example The low byte of R7 is tested. If it is negative, continue at R7NEG,; if it is positive but not
zero, continue at R7POS.
TST. B R7 ; Test |low byte of R7
JN R7NEG ; Low byte of R7 is negative
Jz R7ZERO ; Low byte of R7 is zero
R7PCs ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero
192 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
XOR[.W] Exclusive OR source word with destination word
XOR.B Exclusive OR source byte with destination byte
Syntax XORsrc, dst or XOR. Wsr c, dst
XOR. Bsrc, dst
Operation src .xor. dst - dst

Description The source and destination operands are exclusively ORed. The result is placed into the
destination. The source operand is not affected. The previous content of the destination
is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Setif result is zero, reset otherwise

C: Setif result is not zero, reset otherwise (C = .not. Z)

V: Set if both operands are negative before execution, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI.
Both operands are located in lower 64 K.

XOR &TONI , &CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0.
XOR @5, R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE.

R7.19:8 = 0. The address of EDE is within PC + 32 K.

XOR B EDE, R7 ; Set different bits to 1 in R7.
I NV. B R7 ; Invert low byte of R7, high byte is Oh
SLAU208-June 2008 CPUX 193

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Instruction Set Description
5.6.3 Extended Instructions

www.ti.com

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space.
MSP430X instructions require an additional word of op-code called the extension word. All addresses,
indexes, and immediate numbers have 20-bit values, when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following pages.

194 CPUX SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Set Description

* ADCX.A Add carry to destination address-word
* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte
Syntax ADCX. A dst
ADCX dst or ADCX. Wdst
ADCX. B dst
Operation dst + C - dst
Emulation ADDCX. A #0, dst
ADDCX #0, dst
ADDCX. B #0, dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Setif result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise
\Y,

Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 40-bit counter, pointed to by R12 and R13, is incremented.
INCX. A @R12 ; Increnent |ower 20 bits
ADCX. A @13 ; Add carry to upper 20 bits
SLAU208—-June 2008 CPUX 195

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
ADDX.A Add source address-word to destination address-word
ADDX.[W] Add source word to destination word
ADDX.B Add source byte to destination byte
Syntax ADDX. Asrc, dst

ADDX sr c, dst or ADDX. Wsr ¢, dst
ADDX. B sr c, dst
Operation src + dst - dst

Description The source operand is added to the destination operand. The previous contents of the
destination are lost. Both operands can be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z Set if result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise
Y,

Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and
CNTR+2 (MSBs).

ADDX. A #10, CNTR ; Add 10 to 20-bit pointer
Example A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed on a carry.
ADDX. W @R5, R6 ; Add table word to R6
JC TONI ; Junmp i f carry
; No carry
Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1.
ADDX. B @5+, R6 ; Add table byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Junmp if no carry

; Carry occurred

Note: Use ADDA for the following two cases for better code density and execution.

ADDX. A Rsr c, Rdst
ADDX. A #i mm20, Rdst

196

CPUX SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Set Description

ADDCX.A Add source address-word and carry to destination address-word
ADDCX.[JW] Add source word and carry to destination word
ADDCX.B Add source byte and carry to destination byte
Syntax ADDCX. A src, dst
ADDCX sr ¢, dst or ADDCX. Wsr ¢, dst
ADDCX. B src, dst
Operation src + dst + C - dst

Description The source operand and the carry bit C are added to the destination operand. The
previous contents of the destination are lost. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z Set if result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise
Y,

Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant 15 and the carry of the previous instruction are added to the 20-bit counter
CNTR located in two words.

ADDCX. A #15,&NTR ; Add 15 + Cto 20-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry.

ADDCX. W @R5, R6 ; Add table word + Cto R6

JC TONI ; Junp if carry

. ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The

jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDCX. B @®5+, R6 ; Add table byte + Cto R6. RS + 1

JNC TONI ; Junp if no carry

; Carry occurred

SLAU208-June 2008 CPUX 197
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

ANDX.A Logical AND of source address-word with destination address-word
ANDX.[W] Logical AND of source word with destination word
ANDX.B Logical AND of source byte with destination byte
Syntax ANDX. Asrc, dst
ANDX sr ¢, dst or ANDX. Wsr ¢, dst
ANDX. B sr c, dst
Operation src .and. dst - dst
Description The source operand and the destination operand are logically ANDed. The result is
placed into the destination. The source operand is not affected. Both operands may be
located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Setif result is zero, reset otherwise
C: Setif the result is not zero, reset otherwise. C = (.not. Z)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM
located in two words. If the result is zero, a branch is taken to label TONI.
MOVA #AAA55h, RS ; Load 20-bit mask to R5
ANDX. A R5, TOM ; TOM.and. R5 -> TOM
JZ TONI ; Junp if result O
; Result >0
or shorter:
ANDX. A #AAA55h, TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Junp if result O
Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0.
The table pointer is auto-incremented by 1.
ANDX. B @B+, R6 ; AND table byte with R6. RS + 1
198 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

BICX. W @R5, R7 ;

Example

BICX. B

Clear bits in R7
A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1.

@r5, &P10OUT Clear 1/Oport Pl bits

INSTRUMENTS
www.ti.com Instruction Set Description

BICX.A Clear bits set in source address-word in destination address-word

BICX.[W] Clear bits set in source word in destination word

BICX.B Clear bits set in source byte in destination byte

Syntax Bl CX. Asrc, dst
Bl CX'src, dst or Bl CX. Wsr ¢, dst
Bl CX. Bsrc, dst

Operation (.not. src) .and. dst — dst

Description The inverted source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected. Both operands
may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 19:15 of R5 (20-bit data) are cleared.

BI CX. A #0F8000h, R5 ; Clear R5.19:15 bits
Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0.

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX

199

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
BISX.A Set bits set in source address-word in destination address-word
BISX.[W] Set bits set in source word in destination word
BISX.B Set hits set in source byte in destination byte
Syntax Bl SX. Asrc, dst
Bl SX src, dst or Bl SX. Wsr ¢, dst
Bl SX. Bsrc, dst
Operation src .or. dst — dst
Description The source operand and the destination operand are logically ORed. The result is placed
into the destination. The source operand is not affected. Both operands may be located
in the full address space.
Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 16 and 15 of R5 (20-bit data) are set to one.
Bl SX. A #018000h, R5 ; Set R5.16:15 bits
Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.
BISX W @5, R7 ; Set bits in R7
Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Portl.
Bl SX. B @r5, &P10OUT ; Set /O port P1 bits
200 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
BITX.A Test bits set in source address-word in destination address-word
BITX.[W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte
Syntax Bl TX. Asrc, dst
Bl TXsrc, dst or Bl TX. Wsr c, dst
Bl TX. Bsrc, dst
Operation src .and. dst - dst

Description The source operand and the destination operand are logically ANDed. The result affects
only the status bits. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z. Setif result is zero, reset otherwise
C: Setif the result is not zero, reset otherwise. C = (.not. Z)

V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.
BI TX. A #018000h, R5 ; Test R5.16:15 bits
JINZ TONI ;. At least one bit is set
Both are reset
Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label

TONI if at least one bit is set.

BITX. W @R5, R7 : Test bits in R7: C= .not.Z
JC TONI . At |east one is set
Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in input Portl. Jump to
label TONI if no bit is set. The next table byte is addressed.

BI TX. B @5+, &P1I N ; Test input Pl bits. RS + 1
JNC TONI ; No corresponding input bit is set
At |east one bit is set

SLAU208-June 2008 CPUX 201
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX. Adst
CLRX dst or CLRX. Wdst
CLRX. Bdst
Operation 0 - dst
Emulation MOVX. A #0, dst
MOVX #0, dst
MOVX. B #0, dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is cleared.
CLRX. A TONI ;0 -> TONI
202 CPUX SLAU208-June 2008

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
CMPX.A Compare source address-word and destination address-word
CMPX.[W] Compare source word and destination word
CMPX.B Compare source byte and destination byte
Syntax CWPX. Asrc, dst
CVMPX src, dst or CMPX. Wsr ¢, dst
CWPX. Bsrc, dst
Operation (.not. src) + 1 + dst or dst—src

Description The source operand is subtracted from the destination operand by adding the 1's

complement of the source + 1 to the destination. The result affects only the status bits.

Both operands may be located in the full address space.
Status Bits N: Set if result is negative (src > dst), reset if positive (src < dst)
Z: Setif result is zero (src = dst), reset otherwise (src # dst)
C: Setif there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand

from a negative destination operand delivers a positive result, reset otherwise (no

overflow)
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the
constant.
CWVPX. A #018000h, EDE ; Conpare EDE with 18000h
JEQ TONI : EDE contai ns 18000h
C Not equal
Example A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI
if R7 contains a lower, signed, 16-bit number.
CWPX. W @»5, R7 ; Conpare two signed nunbers
JL TONI . R7T < @5
R7 >= @5
Example A table byte pointed to by R5 (20-bit address) is compared to the input in /0O Portl.
Jump to label TONI if the values are equal. The next table byte is addressed.
CWPX. B @5+, &P1I N ; Conpare Pl bits with table. RS + 1
JEQ TONI ; Equal contents
Not equal

Note: Use CMPA for the following two cases for better density and execution.

CMVPA Rsr ¢, Rdst
CVPA #i R0, Rdst
SLAU208-June 2008 CPUX 203

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

* DADCX.A Add carry decimally to destination address-word
* DADCX.[W] Add carry decimally to destination word
* DADCX.B Add carry decimally to destination byte
Syntax DADCX. A dst
DADCX dst or DADCX. Wdst
DADCX. B dst
Operation dst + C - dst (decimally)
Emulation DADDX. A #0, dst
DADDX #0, dst
DADDX. B #0, dst
Description The carry bit (C) is added decimally to the destination.
Status Bits N: Setif MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset
if MSB is O
Z: Setif result is zero, reset otherwise
C: Setif the BCD result is too large (address-word > 99999h, word > 9999h, byte >
99h), reset otherwise
V: Undefined
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.
DADDX. A #1, O(R12) ; Increnent |ower 20 bits
DADCX. A O(R13) ; Add carry to upper 20 bits
204 CPUX SLAU208-June 2008

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Set Description

DADDX.A Add source address-word and carry decimally to destination address-word

DADDX.[W] Add source word and carry decimally to destination word

DADDX.B Add source byte and carry decimally to destination byte

Syntax DADDX. A sr c, dst
DADDX sr c, dst or DADDX. Wsr ¢, dst
DADDX. B sr c, dst

Operation src + dst + C - dst (decimally)

Description The source operand and the destination operand are treated as two (.B), four (W), or
five (.A) binary coded decimals (BCD) with positive signs. The source operand and the
carry bit C are added decimally to the destination operand. The source operand is not
affected. The previous contents of the destination are lost. The result is not defined for
non-BCD numbers. Both operands may be located in the full address space.

Status Bits N: Setif MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset

if MSB is 0.
Z: Setif result is zero, reset otherwise
C: Setif the BCD result is too large (address-word > 99999h, word > 9999h, byte >
99h), reset otherwise
V: Undefined
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words.
DADDX. A #10h, &DECCNTR ; Add 10 to 20-bit BCD counter

Example The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added
decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain
the MSDs).

CLRC ; Clear carry

DADDX. W BCD, R4 ; Add LSDs

DADDX. W BCD+2, R5 ; Add MSDs with carry

JC OVERFLOW ; Result >99999999: go to error routine
Resul t ok

Example The two-digit BCD number contained in 20-bit address BCD is added decimally to a
two-digit BCD number contained in R4.

CLRC ; Clear carry
DADDX. B BCD, R4 ; Add BCD to R4 decimally.

R4: 000ddh

SLAU208—-June 2008

CPUX 205

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* DECX.A Decrement destination address-word
* DECX.[W] Decrement destination word
* DECX.B Decrement destination byte
Syntax DECX. A dst
DECX dst or DECX. Wdst
DECX. B dst
Operation dst—1 - dst
Emulation SUBX. A#1, dst
SUBX #1, dst
SUBX. B #1, dst
Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Setif an arithmetic overflow occurs, otherwise reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by 1.
DECX. A TONI ; Decrenent TONI
206 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* DECDX.A Double-decrement destination address-word
* DECDX.[W] Double-decrement destination word
* DECDX.B Double-decrement destination byte
Syntax DECDX. A dst
DECDX dst or DECDX. Wdst
DECDX. B dst
Operation dst—2 - dst
Emulation SUBX. A#2, dst
SUBX #2, dst
SUBX. B #2, dst
Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Setif an arithmetic overflow occurs, otherwise reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by 2.
DECDX. A TONI ; Decrenment TONI

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX

207

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* INCX.A Increment destination address-word
* INCX.[W] Increment destination word
* INCX.B Increment destination byte
Syntax | NCX. Adst
| NCX dst or | NCX. Wdst
| NCX. B dst
Operation dst+1 - dst
Emulation ADDX. A#1, dst
ADDX #1, dst
ADDX. B #1, dst
Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
V: Setif dst contained O7FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-wordTONI is incremented by 1.
INCX. A TONI ; Increnent TONI (20-bits)
208 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* INCDX.A Double-increment destination address-word
* INCDX.[W] Double-increment destination word
* INCDX.B Double-increment destination byte
Syntax | NCDX. A dst
| NCDX dst or | NCDX. Wdst
| NCDX. B dst
Operation dst +2 - dst
Emulation ADDX. A#2, dst
ADDX #2, dst
ADDX. B #2, dst
Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFEh, reset otherwise
Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise
C: Setif dst contained OFFFFEh or OFFFFFh, reset otherwise
Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise
V: Setif dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is incremented by two; PC points to upper memory.
INCDX. B LEO ; Increnent LEO by two

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX

209

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* INVX.A Invert destination
* INVX.[W] Invert destination
* INVX.B Invert destination
Syntax I NVX. Adst
I NVXdst or | NVX. Wdst
| NVX. B dst
Operation .NOT.dst - dst
Emulation XORX. A #0FFFFFh, dst
XORX #0FFFFh, dst
XORX. B #0FFh, dst
Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example 20-bit content of R5 is negated (twos complement).
INVX.A R5 ; Invert R5
INCX. A R5 ; R5 is now negated
Example Content of memory byte LEO is negated. PC is pointing to upper memory.
I NVX. B LEO ; Invert LEO
INCX. B LEO ; MEM LEO is negated
210 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
MOVX.A Move source address-word to destination address-word
MOVX.[W] Move source word to destination word
MOVX.B Move source byte to destination byte
Syntax MOVX. A src, dst
MOVX src, dst or MOVX. Wsr ¢, dst
MOVX. B sr c, dst
Operation src — dst

Description The source operand is copied to the destination. The source operand is not affected.
Both operands may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Move a 20-bit constant 18000h to absolute address-word EDE.
MOVX. A #018000h, &EDE ; Move 18000h to EDE
Example The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The

length of the table is 030h words.

MOVA #EDE, R10 ; Prepare pointer (20-bit address)
Loop MOVX. W @R10+, TOM EDE- 2(R10) ; R10 points to both tables.
;. R10+2
CMPA #EDE+60h, R10 : End of table reached?

JLO Loop ; Not yet
- ; Copy conpl et ed

Example The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The
length of the table is 020h bytes.

MOVA #EDE, R10 ; Prepare pointer (20-bit)
MOV #20h, RO ; Prepare counter
Loop MOVX.W @R10+, TOMt EDE- 2(R10) ; RLO points to both tables.
; R10+1
DEC R9 ;. Decrenent counter
INZ Loop ; Not yet done

; Copy conpl eted

Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the
MOVA instruction. This saves two bytes and code cycles. Examples for the addressing
combinations are:

MOVX. A Rsr c, Rdst MOVA Rsr c, Rdst ; Reg/ Reg
MOVX. A #i 20, Rdst MOVA #i 20, Rdst ;| medi at e/ Reg
MOVX. A &abs?20, Rdst MOVA &abs?20, Rdst ; Absol ut e/ Reg
MOVX. A @Rsr ¢, Rdst MOVA @Rsr ¢, Rdst ; Indirect/Reg
MOVX. A @Rsr c+, Rdst MOVA @Rsr c+, Rdst ; I'ndirect, Aut o/ Reg
MWVX. A Rsrc, &bs20 MWVA Rsrc, &bs20 ; Reg/ Absol ute
SLAU208-June 2008 CPUX 211

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

The next four replacements are possible only if 16-bit indexes are sufficient for the

addressing.

z20(Rsrc), Rdst
Rsrc, z20(Rdst)
synmb20, Rdst
Rsrc, synb20

MOVA
MOVA
MOVA
MOVA

z16(Rsrc), Rdst
Rsrc, z16(Rdst)
synb16, Rdst
Rsrc, synb16

)
)
)

I ndexed/ Reg
Reg/ | ndexed
Synbol i ¢/ Reg
Reg/ Synbol i c

212

CPUX

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description

POPM.A Restore n CPU registers (20-bit data) from the stack

POPM.[W] Restore n CPU registers (16-bit data) from the stack

Syntax POPM A #n, Rdst 1<n<16
POPM W#n, Rdst or POPM#n, Rdst 1<n<16

Operation POPM.A: Restore the register values from stack to the specified CPU registers. The
stack pointer SP is incremented by four for each register restored from stack. The 20-bit
values from stack (2 words per register) are restored to the registers.

POPM.W: Restore the 16-bit register values from stack to the specified CPU registers.
The stack pointer SP is incremented by two for each register restored from stack. The
16-bit values from stack (one word per register) are restored to the CPU registers.
Note : This instruction does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended CPU
registers, starting with the CPU register (Rdst — n + 1). The stack pointer is incremented
by (ny 4) after the operation.

POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU
registers, starting with CPU register (Rdst — n + 1). The stack pointer is incremented by
(ny 2) after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are
cleared.

Status Bits Status bits are not affected, except SR is included in the operation.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM A #5, R13 ; Restore R9, R10, R11l, R12, R13
Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.
POPM W #5, R13 ; Restore R9, R10, R11l, R12, R13

SLAU208—-June 2008

CPUX 213

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM.[W] Save n CPU registers (16-bit words) on the stack
Syntax PUSHM A #n, Rdst 1<n<16
PUSHM W#n, Rdst or PUSHM#n, Rdst 1<n<16
Operation PUSHM.A: Save the 20-bit CPU register values on the stack. The stack pointer (SP) is
decremented by four for each register stored on the stack. The MSBs are stored first
(higher address).

PUSHM.W: Save the 16-bit CPU register values on the stack. The stack pointer is
decremented by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack.
The stack pointer is decremented by (n x 4) after the operation. The data (Rn.19:0) of
the pushed CPU registers is not affected.

PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The
stack pointer is decremented by (n x 2) after the operation. The data (Rn.19:0) of the
pushed CPU registers is not affected.

Note : This instruction does not use the extension word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.
PUSHM A #5, R13 ; Save R13, R12, R11, R10, RO
Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.
PUSHM W #5, R13 ; Save R13, R12, R11, R10, RO
214 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* POPX.A Restore single address-word from the stack
* POPX.[W] Restore single word from the stack
* POPX.B Restore single byte from the stack
Syntax POPX. A dst
POPX dst or POPX. Wdst
POPX. B dst
Operation Restore the 8/16/20-bit value from the stack to the destination. 20-bit addresses are

possible. The stack pointer SP is incremented by two (byte and word operands) and by
four (address-word operand).

Emulation MOVX(. B, . A) @P+, dst

Description The item on TOS is written to the destination operand. register mode, indexed mode,
symbolic mode, and absolute mode are possible. The stack pointer is incremented by
two or four.

Note: the stack pointer is incremented by two also for byte operations.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Write the 16-bit value on TOS to the 20-bit address &EDE.
POPX. W &EDE ;. Wite word to address EDE
Example Write the 20-bit value on TOS to R9.
POPX. A RO : Wite address-word to RO
SLAU208-June 2008 CPUX 215

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

PUSHX.A Restore single address-word from the stack

PUSHX.[W] Restore single word from the stack

PUSHX.B Restore single byte from the stack

Syntax PUSHX. Asrc
PUSHX sr ¢ or PUSHX. Wsr ¢
PUSHX. Bsrc

Operation Save the 8/16/20-bit value of the source operand on the TOS. 20-bit addresses are
possible. The stack pointer (SP) is decremented by two (byte and word operands) or by
four (address-word operand) before the write operation.

Description The stack pointer is decremented by two (byte and word operands) or by four
(address-word operand). Then the source operand is written to the TOS. All seven
addressing modes are possible for the source operand.

Note : This instruction does not use the extension word.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the byte at the 20-bit address &EDE on the stack.

PUSHX. B &EDE ; Save byte at address EDE
Example Save the 20-bit value in R9 on the stack.
PUSHX. A R9 ; Save address-word in RO
216 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
RLAM.A Rotate left arithmetically the 20-bit CPU register content
RLAM.[W] Rotate left arithmetically the 16-bit CPU register content
Syntax RLAM A #n, Rdst l<n<4
RLAM W#n, Rdst or RLAM#n, Rdst l<n<4
Operation C - MSB - MSB-1....LSB+1 -« LSB - 0
Description The destination operand is shifted arithmetically left one, two, three, or four positions as
shown in Figure 5-44. RLAM works as a multiplication (signed and unsigned) with 2, 4,
8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.
Status Bits N: Set if result is negative
A: Rdst.19 = 1, reset if Rdst.19 =0
W: Rdst.15 = 1, reset if Rdst.15 =0
Z: Setifresultis zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4)
V: Undefined
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to an

arithmetic multiplication by 8.

RLAM A #3,R5 ; R = R5 x 8
19 16 15 0
0000 MSB »| LSB [« 0
!
19 0
MSB > | LSB ¢« 0

Figure 5-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

CPUX

217

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

* RLAX.A Rotate left arithmetically address-word
* RLAX.[W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte
Syntax RLAX. A dst
RLAX dst or RLAX. Wdst
RLAX. B dst
Operation C - MSB - MSB-1....LSB+1 -« LSB - 0
Emulation ADDX. A dst, dst
ADDX dst , dst
ADDX. B dst , dst
Description The destination operand is shifted left one position as shown in Figure 5-45. The MSB
is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as
a signed multiplication by 2.
Status Bits N: Set if result is negative, reset if positive
Z: Setifresultis zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h < dst < 0C0000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h < dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h < dst < 0COh; reset
otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is multiplied by 2.
RLAX. A R?7 ; Shift left R7 (20-bit)
MSB 0
fffffffffffffffffff PR
Figure 5-45. Destination Operand-Arithmetic Shift Left
218 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* RLCX.A Rotate left through carry address-word
* RLCX.[W] Rotate left through carry word
* RLCX.B Rotate left through carry byte
Syntax RLCX. A dst
RLCX dst or RLCX. Wdst
RLCX. B dst
Operation C - MSB - MSB-1....LSB+1 -« LSB ~ C
Emulation ADDCX. A dst, dst
ADDCX dst , dst
ADDCX. B dst, dst
Description The destination operand is shifted left one position as shown in Eigure 5-4¢. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).
Status Bits N: Set if result is negative, reset if positive
Z: Setifresultis zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h < dst < 0C0000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h < dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h < dst < 0COh; reset
otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is shifted left one position.
RLCX. A R5 i (R x2) +C->R5
Example The RAM byte LEO is shifted left one position. PC is pointing to upper memory.
RLCX.B LEO : RAMLEO x 2 + C -> RAM LEO
MSB 0

*******************]

Figure 5-46. Destination Operand-Carry Left Shift

SLAU208—-June 2008

CPUX

Bubmit Documentafion FeedbacK

219

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
RRAM.A Rotate right arithmetically the 20-bit CPU register content
RRAM.[W] Rotate right arithmetically the 16-bit CPU register content
Syntax RRAM A #n, Rdst l<n<4
RRAM W#n, Rdst or RRAM#n, Rdst l<n<4
Operation MSB - MSB - MSB-1 ... LSB+1 - LSB - C
Description The destination operand is shifted right arithmetically by one, two, three, or four bit
positions as shown in Figure 5-47. The MSB retains its value (sign). RRAM operates
equal to a signed division by 2/4/8/16. The MSB is retained and shifted into MSB-1. The
LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word
instruction RRAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.
Status Bits N: Set if result is negative
A Rdst.19 =1, reset if Rdst.19 = 0
W: Rdst.15 = 1, reset if Rdst.15 =0
Z: Setif result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right two positions.
RRAM A #2,R5 ; R5/4 -> R5
Example The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) x R15.
PUSHM A #1, R15 ;. Save extended R15 on stack
RRAM A #1, R15 7 RI5y 0.5 -> R15
ADDX. A @P+, R15 ; RI5y 0.5 + R15 = 1.5y R15 -> R15
RRAM A #1, R15 : (1.5y RI5) y 0.5 = 0.75 y R15 -> R15
19 16 15 0
0000 LMSB »| LSB |
19 0
LMSB » | LSB [
Figure 5-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A
220 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Set Description

RRAX.A
RRAX.[W]
RRAX.B
Syntax

Operation
Description

Status Bits

Mode Bits
Example

RPT
RRAX. A

Example

Rotate right arithmetically the 20-bit operand
Rotate right arithmetically the 16-bit operand
Rotate right arithmetically the 8-bit operand
RRAX. A Rdst

RRAX. WRdst

RRAX Rdst

RRAX. B Rdst

RRAX. A dst

RRAX dst or RRAX. Wdst

RRAX. B dst

MSB - MSB - MSB-1 ... LSB+1 - LSB - C

Register mode for the destination: the destination operand is shifted right by one bit
position as shown in Figure 5-48. The MSB retains its value (sign). The word instruction
RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits
Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX
here operates equal to a signed division by 2.

All other modes for the destination: the destination operand is shifted right arithmetically
by one bit position as shown in Eigure 5-49. The MSB retains its value (sign), the LSB
is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All
addressing modes - with the exception of the Immediate Mode - are possible in the full
memory.

N: Set if result is negative, reset if positive
A dst.19 =1, reset if dst.19 =0
W: dst.15 = 1, reset if dst.15 =0
B:dst.7=1, resetif dst.7=0
Z: Setifresultis zero, reset otherwise
C: Loaded from the LSB
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The signed 20-bit number in R5 is shifted arithmetically right four positions.

#4
R5 ; R5/16 -> R5

The signed 8-bit value in EDE is multiplied by 0.5.

SLAU208—-June 2008

CPUX 221

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
RRAX. B &EDE ; EDE/ 2 -> EDE
19 8 7 0
0 - -~~~ 0 |—v—MlSB —— | LSB |
19 16 15 0
+ 0000 |—V—MISB — | LSB |-
19 0
|:> MSB > | LSB —‘
Figure 5-48. Rotate Right Arithmetically RRAX(.B,.A) — Register Mode
7 0
|—v—MlSB ——— | LsB |
15 0
+ |:» MSB — | LSB |
31 20
o |———m—————— 0
19 0
F[MSB — | LSB —‘
Figure 5-49. Rotate Right Arithmetically RRAX(.B,.A) — Non-Register Mode
222 CPUX SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
RRCM.A Rotate right through carry the 20-bit CPU register content
RRCM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRCM A #n, Rdst l<n<4
RRCM W#n, Rdst or RRCM#n, Rdst l<n<4
Operation C - MSB - MSB-1...LSB+1 - LSB - C
Description The destination operand is shifted right by one, two, three, or four bit positions as
shown in Figure 5-50. The carry bit C is shifted into the MSB, the LSB is shifted into the
carry bit. The word instruction RRCM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.
Status Bits N: Set if result is negative
A: Rdst.19 = 1, reset if Rdst.19 =0
W: Rdst.15 = 1, reset if Rdst.15 =0
Z: Setifresultis zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The address-word in R5 is shifted right by three positions. The MSB-2 is loaded with 1.
SETC ; Prepare carry for MSB-2
RRCM A #3,R5 ; RS = R5 3 + 20000h
Example The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The
MSB-1 is loaded with the contents of the carry flag.
RRCM W #2, R6 7 R = R6 2. R6.19:16 =0

19 16 15 0

v

0 MSB LSB
: |

o] fe

19 0

—

v

Figure 5-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

SLAU208—-June 2008

CPUX 223

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

RRCX.A
RRCX.[W]
RRCX.B
Syntax

Operation
Description

Status Bits

Mode Bits
Example

SETC
RRCX. A

Example

Rotate right through carry the 20-bit operand
Rotate right through carry the 16-bit operand
Rotate right through carry the 8-bit operand
RRCX. A Rdst

RRCX. WRdst

RRCX Rdst

RRCX. B Rdst

RRCX. A dst

RRCX dst or RRCX. Wdst

RRCX. B dst

C - MSB - MSB-1...LSB+1 - LSB - C

Register mode for the destination: the destination operand is shifted right by one bit
position as shown in Figure 5-57]. The word instruction RRCX.W clears the bits
Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is
shifted into the MSB, the LSB is shifted into the carry bit.

All other modes for the destination: the destination operand is shifted right by one bit
position as shown in Figure 5-52. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. All addressing modes - with the exception of the Immediate
Mode - are possible in the full memory.

N: Set if result is negative
A dst.19 =1, reset if dst.19 =0
W: dst.15 = 1, reset if dst.15 =0
B:dst.7=1, resetif dst.7=0

Z: Setifresultis zero, reset otherwise

C: Loaded from the LSB

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded
with 1.

; Prepare carry for MSB
EDE ; EDE = EDE 1 + 80000h

The word in R6 is shifted right by twelve positions.

224 CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
RPT #12
RRCX. W R6 ; R = R6 12. R6.19:16 = 0
19 8 7 0
Qmmmmmm e (] MSB [——— | LSB |-
T
19 16 15 0
+ 0 0 0 0| MSB — | LSB [
T
19 0

) o “Te],

Figure 5-51. Rotate Right Through Carry RRCX(.B,.A) — Register Mode

7 0
F‘CI MSB | —— | LsB —‘
15 0
F'CI MSB — | LsB —‘
31 20
o |-—m—mMmmMm————— 0
19 0
F MSB — | LSB —‘

Figure 5-52. Rotate Right Through Carry RRCX(.B,.A) — Non-Register Mode

SLAU208-June 2008 CPUX 225
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
RRUM.A Rotate right through carry the 20-bit CPU register content
RRUM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRUM A #n, Rdst l<n<4
RRUM W#n, Rdst or RRUM#n, Rdst l<n<4
Operation 0 - MSB - MSB-1...LSB+1 - LSB - C

Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 5-53. Zero is shifted into the MSB, the LSB is shifted into the carry bit.
RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W
clears the bits Rdst.19:16.

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative

A: Rdst.19 = 1, reset if Rdst.19 =0
W: Rdst.15 = 1, reset if Rdst.15 =0
Z: Setifresultis zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)

V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The unsigned address-word in R5 is divided by 16.
RRUM A #4,R5 ; R = R5 4. R5/16
Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.
RRUM W #1, R6 ; R = R6/2. R6.19:15 =0
19 16 15 0
0000 MSB »| LSB [
T
0
19 0
+o+ MSB » | LSB [

Figure 5-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

226

CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com Instruction Set Description
RRUX.A Rotate right unsigned the 20-bit operand
RRUX.[W] Rotate right unsigned the 16-bit operand
RRUX.B Rotate right unsigned the 8-bit operand
Syntax RRUX. A Rdst
RRUX. WRdst
RRUX Rdst
RRUX. B Rdst
Operation C=0 - MSB - MSB-1 ...LSB+1 - LSB - C
Description RRUX is valid for register mode only: the destination operand is shifted right by one bit
position as shown in Figure 5-54. The word instruction RRUX.W clears the bits
Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into
the MSB, the LSB is shifted into the carry bit.
Status Bits N: Set if result is negative
A dst.19 =1, reset if dst.19 =0
W: dst.15 =1, reset if dst.15=0
B:dst.7 =1, resetifdst.7=0
Z: Setif result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The word in R6 is shifted right by twelve positions.
RPT #12
RRUX. W R6 7 R = R6 12. R6.19:16 =0
19 8 7 0
(R bbbt 0 MSB [————»| LSB |-
T
0
19 16 15 0
OOOOMSB —» | LSB [
i}
0
19 0
MSB » | LSB

{7

Figure 5-54. Rotate Right Unsigned RRUX(.B,.A) — Register Mode

SLAU208—-June 2008

CPUX 227

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* SBCX.A Subtract source and borrow/.NOT. carry from destination address-word
* SBCX.[W] Subtract source and borrow/.NOT. carry from destination word
* SBCX.B Subtract source and borrow/.NOT. carry from destination byte
Syntax SBCX. Adst
SBCX dst or SBCX. Wdst
SBCX. B dst
Operation dst + OFFFFFh + C - dst

dst + OFFFFh + C - dst

dst + OFFh + C - dst
Emulation SBCX. A#0, dst

SBCX #0, dst

SBCX. B #0, dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Setifresultis zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise
Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.

SUBX. B @13, 0(R12) ; Subtract LSDs
SBCX. B 1(R12) ; Subtract carry from MsSD

Note: Borrow Implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit

Yes 0
No 1
228 CPUX SLAU208—June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
SUBX.A Subtract source address-word from destination address-word
SUBX.[W] Subtract source word from destination word
SUBX.B Subtract source byte from destination byte
Syntax SUBX. Asrc, dst
SUBX sr ¢, dst or SUBX. Wsr ¢, dst
SUBX. B src, dst
Operation (.not. src) + 1 +dst - dst or dst—src - dst

Description The source operand is subtracted from the destination operand. This is done by adding
the 1's complement of the source + 1 to the destination. The source operand is not
affected. The result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src < dst)
Z: Setif result is zero (src = dst), reset otherwise (src # dst)

C: Setif there is a carry from the MSB, reset otherwise

Y,

Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no

overflow).
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).
SUBX. A #87654h, EDE ; Subtract 87654h from EDE+2| EDE
Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label
TONI if R7 contains zero after the instruction. R5 is auto-incremented by 2. R7.19:16 =
0.
SUBX. W @5+, R7 ; Subtract table nunber fromR7. RS + 2
JZ TONI ; R7 = @5 (before subtraction)
; R7 <> @5 (before subtraction)
Example Byte CNT is subtracted from the byte R12 points to in the full address space. Address of

CNT is within PC £ 512 K.

SUBX. B CNT, O(R12) ; Subtract CNT from @rl2

Note: Use SUBA for the following two cases for better density and execution.

SUBX. A Rsrc, Rdst
SUBX. A #i 20, Rdst

SLAU208-June 2008 CPUX 229
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
SUBCX.A Subtract source address-word with carry from destination address-word
SUBCX.[W] Subtract source word with carry from destination word
SUBCX.B Subtract source byte with carry from destination byte
Syntax SUBCX. Asrc, dst

SUBCX sr ¢, dst or SUBCX. Wsr c, dst
SUBCX. B src, dst
Operation (.not. src) + C +dst - dst or dst—(src—1)+ C - dst

Description The source operand is subtracted from the destination operand. This is made by adding
the 1's complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z Set if result is zero, reset otherwise
C: Setif there is a carry from the MSB, reset otherwise
Y,

Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no

overflow).
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from R5 with the carry from the previous
instruction.
SUBCX. A #87654h, R5 : Subtract 87654h + C from R5
Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit

counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number.

SUBX. W @5+, O(R7) ; Subtract LSBs. R5 + 2
SUBCX. W @5+, 2(R7) ; Subtract MDs with C RS + 2
SUBCX. W @5+, 4(R7) ; Subtract MsBs with C. RS + 2
Example Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction

is used. 20-bit addresses.

SUBCX. B &CNT, 0(R12) ; Subtract byte CNT from @r12

230

CPUX SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
SWPBX.A Swap bytes of lower word
SWPBX.[W] Swap bytes of word
Syntax SWPBX. A dst
SWPBX dst or SWPBX. Wdst
Operation dst.15:8 <> dst.7:0
Description Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used,
Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared.
Other Modes: When the .A extension is used, bits 31:20 of the destination address are
cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When
the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM address-word EDE.
MOVX. A #23456h, &EDE . 23456h -> EDE
SWPBX. A EDE ; 25634h -> EDE
Example Exchange the bytes of R5.
MOVA #23456h, R5 ;. 23456h -> R5
SWPBX. W R5 ; 05634h -> R5
Before SWPBX.A
19 16 15 8 7 0
X High Byte Low Byte
After SWPBX.A
19 16 15 8 7 0
X Low Byte High Byte
Figure 5-55. Swap Bytes SWPBX.A Register Mode
Before SWPBX.A
31 20 19 16 15 8 7 0
X X High Byte Low Byte
After SWPBX.A
31 20 19 16 15 8 7 0
0 X Low Byte High Byte

Figure 5-56. Swap Bytes SWPBX.A In Memory

SLAU208—-June 2008

CPUX 231

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
Before SWPBX
19 16 15 0
X High Byte Low Byte
After SWPBX
19 16 15 0
0 Low Byte High Byte
Figure 5-57. Swap Bytes SWPBX[.W] Register Mode
Before SWPBX
15 0
High Byte Low Byte
After SWPBX
15 0
Low Byte High Byte

Figure 5-58. Swap Bytes SWPBX[.W] In Memory

232 CPUX

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
SXTX.A Extend sign of lower byte to address-word
SXTX.[W] Extend sign of lower byte to word
Syntax SXTX. Adst
SXTX dst or SXTX. Wdst
Operation dst.7 - dst.15:8, Rdst.7 — Rdst.19:8 (Register Mode)
Description Register Mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits
Rdst.19:8.
Other Modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.
SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8.
Status Bits N: Set if result is negative, reset otherwise
Z: Setif result is zero, reset otherwise
C: Setif result is not zero, reset otherwise (C = .not.2)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20
located in EDE+2 are cleared.
SXTX. A &EDE ; Sign extended EDE -> EDE+2/ EDE
SXTX.A Rdst
19 1615 876 0
< S
SXTX.A dst
31 2019 1615 876 0
o . 0| < S

Figure 5-59. Sign Extend SXTX.A

SXTX[.W] Rdst

19

16 15 8 7 6 0

<
<

SXTX[.W] dst

15 8 7 6 0

A
(72}

Figure 5-60. Sign Extend SXTX[.W]

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

CPUX

233

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

* TSTX.A Test destination address-word
* TSTX.[W] Test destination word
* TSTX.B Test destination byte
Syntax TSTX. Adst
TSTX dst or TSTX. Wdst
TSTX. Bdst
Operation dst + OFFFFFh + 1
dst + OFFFFh + 1
dst + OFFh + 1
Emulation CVPX. A#0, dst
CVPX #0, dst
CVPX. B #0, dst
Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.
Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C. Set
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at
LEONEG,; if it is positive but not zero, continue at LEOPOS.
TSTX. B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO : LEOis zero
LEOPCS ; LEOis positive but not zero
LEONEG ; LEO is negative
LEGZERO ; LEOis zero
234 CPUX SLAU208-June 2008

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
XORX.A Exclusive OR source address-word with destination address-word
XORX.[W] Exclusive OR source word with destination word
XORX.B Exclusive OR source byte with destination byte
Syntax XORX. Asrc, dst
XORX sr ¢, dst or XORX. Wsr c, dst
XORX. Bsrc, dst
Operation src .xor. dst - dst

5.6.4

Description The source and destination operands are exclusively ORed. The result is placed into
the destination. The source operand is not affected. The previous contents of the
destination are lost. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Setif result is zero, reset otherwise

C. Setifresult is not zero, reset otherwise (carry = .not. Zero)

V: Set if both operands are negative (before execution), reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI
(20-bit address).

XORX. A TONI, &CNTR ; Toggle bits in CNTR
Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX. W @R5, R6 ; Toggle bits in R6. R6.19:16 =0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE
(20-bit address).

XORX. B EDE, R7 ; Set different bits to 1 in R7
I NV. B R7 ; Invert low byte of R7. R7.19:8 = 0.

Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction. Restricting the addressing modes removes the need for the additional
extension-word op-code improving code density and execution time. The MSP430X address instructions
are listed and described in the following pages.

SLAU208-June 2008 CPUX 235
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

ADDA Add 20-bit source to a 20-bit destination register
Syntax ADDA Rsr ¢, Rdst
ADDA #i R0, Rdst
Operation src + Rdst - Rdst
Description The 20-bit source operand is added to the 20-bit destination CPU register. The previous
contents of the destination are lost. The source operand is not affected.
Status Bits N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)
Z: Setifresultis zero, reset otherwise
C: Setif there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.
ADDA #0A4320h, R5 ; Add A4320h to 20-bit RS
JC TONI ; Junp on carry
; No carry occurred
236 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* BRA Branch to destination
Syntax BRA dst
Operation dst - PC
Emulation MOVA dst , PC
Description An unconditional branch is taken to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The branch instruction is an
address-word instruction. If the destination address is contained in a memory location
X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs).
Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.
Immediate Mode: Branch to label EDE located anywhere in the 20-bit address space or
branch directly to address.
BRA #EDE ; MOVA #i R0, PC
BRA #01AA04h
Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and
EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within +32 K.
Indirect addressing.
BRA EXEC ; MOVA z16(PC), PC
Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the following
instruction.
MOVX. A EXEC, PC ; IMbyte range with 20-bit index
Absolute Mode: Branch to the 20-bit address contained in absolute addresses EXEC
(LSBs) and EXEC+2 (MSBs). Indirect addressing.
BRA &EXEC ; MOVA &abs20, PC
Register Mode: Branch to the 20-bit address contained in register R5. Indirect R5.
BRA R5 ; MOVA R5, PC
Indirect Mode: Branch to the 20-bit address contained in the word pointed to by register
R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.
BRA @5 ;7 MOVA @R5, PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the words
pointed to by register R5 and increment the address in R5 afterwards by 4. The next
time the S/W flow uses R5 as a pointer, it can alter the program execution due to
access to the next address in the table pointed to by R5. Indirect, indirect R5.

SLAU208—-June 2008

CPUX 237

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Instruction Set Description www.ti.com

BRA @5+ ; MOVA @5+, PC RS + 4

Indexed Mode: Branch to the 20-bit address contained in the address pointed to by
register (R5 + X) (e.g., a table with addresses starting at X). (R5 + X) points to the
LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 + 32 K. Indirect,
indirect (R5 + X).

BRA X(R5) : MOVA z16(R5), PC
Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the following
instruction:
MWVX. A X(R5), PC ; 1M byte range with 20-bit index
238 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Set Description

CALLA
Syntax
Operation

Description

Status Bits

Mode Bits
Examples

CALLA
CALLA

CALLA

CALLA

CALLA

CALLA

Call a subroutine

CALLA dst

dst - tmp 20-bit dst is evaluated and stored

SP-2 . SP

PC.19:16 — @SP updated PC with return address to TOS (MSBs)
SP-2 . SP

PC.15:0 - @SP updated PC to TOS (LSBSs)

tmp - PC saved 20-bit dst to PC

A subroutine call is made to a 20-bit address anywhere in the full address space. All
seven source addressing modes can be used. The call instruction is an address-word
instruction. If the destination address is contained in a memory location X, it is
contained in two ascending words: X (LSBs) and (X + 2) (MSBs). Two words on the
stack are needed for the return address. The return is made with the instruction RETA.

N: Not affected

Z: Not affected

C: Not affected

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

#EXEC ;
#01AA04h ;

Start address EXEC
Start address 01AA04h

Symbolic Mode: Call a subroutine at the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is
within +32 K. Indirect addressing.

EXEC ; Start address at

@EXEC.

Absolute Mode: Call a subroutine at the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBSs). Indirect addressing.

216(PC)

&EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 20-bit address contained in register R5. Indirect
R5.

R5 ; Start address at @R5

Indirect Mode: Call a subroutine at the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

@ars ;

Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address contained in the
words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4.
The next time the S/W flow uses R5 as a pointer, it can alter the program execution due
to access to the next word address in the table pointed to by R5. Indirect, indirect R5.

Start address at @5

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX 239

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

CALLA

CALLA

@r5+ ; Start address at @5. RS + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the address pointed
to by register (R5 + X); e.g., a table with addresses starting at X. (R5 + X) points to the
LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5 +32 K.
Indirect, indirect (R5 + X).

X(R5) ; Start address at @R5+X). z16(R5)

240

CPUX

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* CLRA Clear 20-bit destination register
Syntax CLRA Rdst
Operation 0 - Rdst
Emulation MOVA #0, Rdst
Description The destination register is cleared.
Status Bits Status bits are not affected.
Example The 20-bit value in R10 is cleared.
CLRA R10 ;0 -> R10
SLAU208—-June 2008 CPUX 241

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

CMPA Compare the 20-bit source with a 20-bit destination register
Syntax CMPA Rsr ¢, Rdst
CMPA #i 20, Rdst
Operation (.not. src) + 1 + Rdst or Rdst —src
Description The 20-bit source operand is subtracted from the 20-bit destination CPU register. This
is made by adding the 1's complement of the source + 1 to the destination register. The
result affects only the status bits.
Status Bits N: Set if result is negative (src > dst), reset if positive (src < dst)
Z: Setifresult is zero (src = dst), reset otherwise (src # dst)
C: Setif there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit immediate operand and R6 are compared. If they are equal the program
continues at label EQUAL.
CMPA #12345h, R6 ; Conpare R6 with 12345h
JEQ EQUAL ; RS = 12345h
; Not equal
Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to
R6, the program continues at label GRE.
CVWPA R6,R5 ; Conpare R6 with R5 (R5 - R6)
JGE GRE ; RB >= R6
;. RS < R6
242 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* DECDA Double-decrement 20-bit destination register
Syntax DECDA Rdst
Operation Rdst — 2 - Rdst
Emulation SUBA #2, Rdst

Description The destination register is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Setif Rdst contained 2, reset otherwise

C: Reset if Rdst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is decremented by 2.
DECDA R5 ; Decrenent R5 by two
SLAU208-June 2008 CPUX 243

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Instruction Set Description www.ti.com
* INCDA Double-increment 20-bit destination register
Syntax | NCDA Rdst
Operation Rdst + 2 - Rdst
Emulation ADDA #2, Rdst

Description The destination register is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif Rdst contained OFFFFEh, reset otherwise
Set if Rdst contained OFFFEh, reset otherwise
Set if Rdst contained OFEh, reset otherwise
C: Setif Rdst contained OFFFFEh or OFFFFFh, reset otherwise
Set if Rdst contained OFFFEh or OFFFFh, reset otherwise
Set if Rdst contained OFEh or OFFh, reset otherwise
V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is incremented by 2.
INCDA R5 ; Increnent R5 by two
244 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
MOVA Move the 20-bit source to the 20-bit destination
Syntax MOVA Rsr ¢, Rdst
MOVA #i rmR0, Rdst
MOVA z16(Rsrc) , Rdst
MOVA EDE, Rdst
MOVA &abs20, Rdst
MOVA @Rrsr c, Rdst
MOVA @Rsr c+, Rdst
MOVA Rsrc, z16(Rdst)
MOVA Rsr ¢, &abs20
Operation src —» Rdst
Rsrc - dst
Description The 20-bit source operand is moved to the 20-bit destination. The source operand is not
affected. The previous content of the destination is lost.
Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Copy 20-bit value in R9 to R8.
MOVA R9, R8 : RO -> R8
Write 20-bit immediate value 12345h to R12.
MOVA #12345h, R12 ; 12345h -> R12
Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 +
100h) LSBs and (R9 + 102h) MSBs.
MOVA 100h(R9), R8 ; Index: + 32 K 2 words transferred
Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBSs) to R12.
MOVA &EDE, R12 ; &EDE -> R12. 2 words transferred
Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC
index + 32 K.
MOVA EDE, R12 ;. EDE -> R12. 2 words transferred
Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses
@R9 LSBs and @(R9 + 2) MSBs.
MOVA @9, R8 ; @9 -> R8. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four
afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs.

SLAU208—-June 2008

CPUX 245

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Instruction Set Description www.ti.com

MOVA @9+, R8 7 @9 -> R8. RO + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand
in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8, 100h(R9) ; Index: +- 32 K. 2 words transferred
Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBS).

MOVA R13, &EDE ; R13 -> EDE. 2 words transferred
Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC
index + 32 K.
MOVA R13, EDE : R13 -> EDE. 2 words transferred
246 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
* RETA Return from subroutine
Syntax RETA
Operation @SP - PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP+2 - SP
@SP - PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP+2 - SP
Emulation MOVA @P+, PC

Description The 20-bit return address information, pushed onto the stack by a CALLA instruction, is

restored to the program counter PC. The program continues at the address following
the subroutine call. The status register bits SR.11:0 are not affected. This allows the

transfer of information with these bits.
Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR from anywhere in the 20-bit address space and return to the
address after the CALLA.

CALLA
SUBR PUSHM A

POPM A
RETA

#SUBR
#2, R14

#2, R14

Cal | subroutine

starting at SUBR

Return by RETA to here
Save R14 and R13 (20 bit data)

Subr outi ne code
Restore R13 and
Return (to full

R14 (20 bit data)
addr ess space)

SLAU208-June 2008
Eubmit Documentation Feedbacl

CPUX

247

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description

13 TEXAS
INSTRUMENTS

www.ti.com

* TSTA Test 20-bit destination register
Syntax TSTA Rdst
Operation dst + OFFFFFh + 1
dst + OFFFFh + 1
dst + OFFh + 1
Emulation CWVPA #0, Rdst
Description The destination register is compared with zero. The status bits are set according to the
result. The destination register is not affected.
Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C. Set
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7TNEG; if it is positive but
not zero, continue at R7POS.
TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO . R7 is zero
R7POS ; R7 is positive but not zero
R7TNEG ; R7 is negative
R7ZERO ; R7 is zero
248 CPUX SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Set Description
SUBA Subtract 20-bit source from 20-bit destination register
Syntax SUBA Rsr ¢, Rdst
SUBA #i 20, Rdst
Operation (.not.src) + 1 + Rdst —» Rdst or Rdst-—src » Rdst

Description The 20-bit source operand is subtracted from the 20-bit destination register. This is
made by adding the 1's complement of the source + 1 to the destination. The result is
written to the destination register, the source is not affected.

Status Bits N: Set if result is negative (src > dst), reset if positive (src < dst)
Z: Setifresult is zero (src = dst), reset otherwise (src # dst)

C: Setif there is a carry from the MSB (Rdst.19), reset otherwise

\Y

Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at
label TONI.
SUBA R5, R6 ; R6 - RB -> R6
JC TONI ; Carry occurred
- ; No carry
SLAU208—-June 2008 CPUX 249

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

250 CPUX SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS

Chapter 6

SLAU208—-June 2008

Flash Memory Controller

This chapter describes the operation of the MSP430x5xx flash memory controller.

Topic Page
6.1 Flash Memory INtroducCtion] oo e e ieeeeeiieieeeeeeiieraeeeeeiniaensn 252
6.2 Flash Memory Segmentation . ioieeeeeeieieeeeiiieieeaeaeiiesaeaeeeininenen 253
6.3 Flash Memory Operation]o e ieieeeeeeieieeaeeeieieraeaeeeieieraeeeeeierene. 254
6.4 Flash Memory Registers|.....c.oooeeieeeeieeie e iieeeeeeieieieiieeeaeene. 269

SLAU208-June 2008
Eubmit Documentation Feedbacl

Flash Memory Controller 251

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Flash Memory Introduction www.ti.com

6.1 Flash Memory Introduction
The MSP430 flash memory is byte-, word- and long-word addressable and programmable. The flash
memory module has an integrated controller that controls programming and erase operations. The module
contains three registers, a timing generator, and a voltage generator to supply program and erase
voltages. The cumulative high-voltage time must not be exceeded and each word can be written not more
than twice before another erase cycle. See device specific datasheet for details.
The flash memory features include:
» Internal programming voltage generation
» Byte, Word (2 bytes), and Long (4 bytes) programmable
» Ultralow-power operation
* Segment erase, bank erase and mass erase
e Marginal 0 and marginal 1 read modes
» Each bank can be erased individually while program execution can proceed in a different flash bank.
The bank sizes are in the device-specific data sheet.
The block diagram of the flash memory and controller is shown in Figure 6-1].
Note: Minimum Vcore During Flash Write or Erase
The minimum Ve Voltage during a flash write or erase operation is 1.6 V. If Vogre falls
below 1.6 V during a write or erase, the result of the write or erase will be unpredictable.
MAB MDB
Control Registers Address/Data Latch
A
Timing
Generator Flash
Memory
Array
Programming
Voltage
Generator
Figure 6-1. Flash Memory Module Block Diagram
252 Flash Memory Controller SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I,

www.ti.com

TEXAS
INSTRUMENTS

Flash Memory Segmentation

6.2

Flash Memory Segmentation

The MSP430 flash main memory is partitioned into segments. Each bank contains 512-byte segments.
Single bits, bytes or words can be written to flash memory, but a segment is the smallest size of the flash
memory that can be erased.

The flash memory is partitioned into main and information memory sections. There is no difference in the
operation of the main and information memory sections. Code and data can be located in either section.
The difference between the sections is the segment size.

There are four information memory segments, A through D. Each information memory segment contains
128 bytes and can be erased individually.

The bootstrap loader memory consists of four segments, A through D. Each bootstrap loader memory
segment contains 512 bytes and can be erased individually.

The main memory segment size is 512 byte. See the device-specific data sheet for the start and end
addresses of each bank and for the complete memory map of a device.

shows the flash segmentation using an example of 256-KB flash that has four banks of 64 KB,
the segments A through D, and the information memory.

128-byte Information 128-byte Information 'l Segment 0 |
Memory Segment A Memory Segment C
128-byte Information 128-byte Information
Memory Segment B Memory Segment D
512-byte 512-byte i
Bootloader Memory A | | Bootloader Memory B Sl
512-byte 512-byte
Bootloader Memory C | | Bootloader Memory D
Segment 0
64-kbyte 64-kbyte . Segment 1
Flash Memory Flash Memory :
Bank A Bank B .
. Segment 2
$ Segment X
64-kbyte 64-kbyte =
Flash Memory Flash Memory Segment 125
Bank C Bank D
Segment 126
Segment 127

Figure 6-2. Flash Memory Segments, 256-KB Example

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Flash Memory Controller

253

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Flash Memory Segmentation

13 TEXAS
INSTRUMENTS

www.ti.com

6.2.1 Segment A

Segment A of the information memory is locked separately from all other segments with the LOCKA bit. If
LOCKA =1, segment A cannot be written or erased, and all information memory is protected from being
segment erased. If LOCKA = 0, segment A can be erased and written like any other flash memory

segment.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to LOCKA has no effect. This
allows existing flash programming routines to be used unchanged.

; Unlock Info Menory

Bl C #FWKEY+LOCKI NFO, &FCTL4
; Unl ock Segment A

BIT #LOCKA, &FCTL3

JzZ SEGA_UNLOCKED

MoV #FWKEY+LOCKA, &FCTL3

SEGA_UNLOCKED
Segnent A i s unl ocked

; Lock Segnent A

BI T #LOCKA, &FCTL3

INZ SEGALOCKED

MOV #FWKEY+LOCKA, &FCTL3
SEGA_LOCKED

; Segment A is | ocked
; Lock Info Menory
Bl S #FWKEY+LOCKI NFQ, &FCTL4

Cl ear LOCKI NFO

Test LOCKA

Al ready unl ocked?
No, unl ock Segnent A
Yes, continue

Test LOCKA

Al ready | ocked?
No, | ock Segnent A
Yes, continue

Set LOCKI NFO

254

Flash Memory Controller

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com Flash Memory Operation

6.3

6.3.1

Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash memory is not being erased
or written, the flash timing generator and voltage generator are off, and the memory operates identically to
ROM.

Read and Fetch While Erase — The flash memory allows to execute a program from flash while a
different flash bank is erased. Data reads are also possible from any flash bank not being erased.

Note: Read and Fetch While Erase

The read and fetch while erase feature is available in flash memory configurations where
more than one flash bank is available. If there is one flash bank available, holding the
complete flash program memory, the read from the program memory and information
memory and bootstrap-loader memory during the erase is not provided.

MSP430 flash memory is in-system programmable (ISP) without the need for additional external voltage.
The CPU can program the flash memory. The flash memory write/erase modes are selected by the
BLKWRT, WRT, MERAS, and ERASE bits and are:

» Byte/word/long-word (32-bit) write

» Block write

e Segment erase

* Bank erase (only main memory)

» Mass erase (all main memory banks)

* Read during bank erase (except for the one currently read from)

Reading or writing to flash memory while it is busy programming or erasing (page, mass or bank) from the

same bank is prohibited. Any flash erase or programming can be initiated from within flash memory or
RAM.

Erasing Flash Memory

The logical value of an erased flash memory bit is 1. Each bit can be programmed from 1 to O individually
but to reprogram from 0 to 1 requires an erase cycle. The smallest amount of flash that can be erased is
one segment. There are three erase modes selected by the ERASE and MERAS bits listed in [[able 6-1].

Table 6-1. Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase

1 0 Bank erase (of one bank) selected by the dummy write address

1 1 Mass erase (all memory banks, information memory A to D and bootstrap loader segments A to D are
not erased)

SLAU208-June 2008 Flash Memory Controller 255
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Erase Cycle www.ti.com

Erase Cycle

An erase cycle is initiated by a dummy write to the address range of the segment to be erased. The
dummy write starts the erase operation. shows the erase cycle timing. The BUSY bit is set
immediately after the dummy write and remains set throughout the erase cycle. BUSY, MERAS, and
ERASE are automatically cleared when the cycle completes. The mass erase cycle timing is not

dependent on the amount of flash memory present on a device. Erase cycle times are equivalent for all
MSP430F5xx devices.

\ \ \ \

< b - - < >

‘Generate Erase Operation Active Remove
Programming Voltage Programming Voltage

\ Erase Time, Current Consumption is Increased \
|

PP
[«

\
| |
BUSY_| foors smo s ome = 2332 MS N

Figure 6-3. Erase Cycle Timing

Erasing Main Memory

The main memory consists of one or more banks. Each bank can be erased individually (bank erase). All
main memory banks can be erased in the mass erase mode.

Erasing Information Memory or Flash Segments

The information memory A to D and the bootstrap loader segments A to D can be erased in segment
erase mode. They are not erased during a bank erase or a mass erase.

256 Flash Memory Controller SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Initiating Erase From Flash

Initiating Erase From Flash

An erase cycle can be initiated from within flash memory. Code can be executed from flash or RAM during

a bank erase. The executed code cannot be located in a bank to be erased.

During a segment erase, the CPU is held until the erase cycle completes. After the erase cycle ends, the

CPU resumes code execution with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase the code needed for

execution after the erase operation. If this occurs, CPU execution will be unpredictable after the erase

cycle.

The flow to initiate an erase from flash is shown in Figure 6-4.

Disable watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK =1, (Set LOCKINFO = 1)
reenable watchdog

Figure 6-4. Erase Cycle From Flash

; Segnent Erase from fl ash.

; Assunes Program Menory. |nformation nenory or BSL

; requires LOCKINFO to be cleared as

; Assunmes ACCVIE = NMIE = CFIE = 0.
MV AWDTPWHWDTHOLD, &ADTCTL ;

L1 BIT #BUSY, &CTL3
JNZ2 L1
MOV #FVKEY, &FCTL3

MOV #FWKEY+ERASE, &FCTL1 ;

CLR &OFC10h
L2 BIT #BUSY, &CTL3
JINZ L2
MOV #FWKEY+LOCK, &FCTL3

wel | .

Di sabl e WOT

Test BUSY

Loop whil e busy

Cl ear LOCK

Enabl e segnment erase
Dummy wite

Test BUSY

Loop whil e busy
Done, set LOCK

Re- enabl e WDT?

SLAU208-June 2008
Eubmit Documentation Feedbacl

Flash Memory Controller

257

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Initiating Erase From RAM www.ti.com

Initiating Erase From RAM

An erase cycle can be initiated from RAM. In this case, the CPU is not held and continues to execute
code from RAM. The mass erase (all main memory banks) operation is initiated while executing from
RAM. The BUSY bit is used to determine the end of the erase cycle. If the flash is busy completing a bank
erase, flash addresses of a different bank can be used to read data or to fetch instructions. While the flash
is BUSY, starting an erase cycle or a programming cycle causes an access violation, ACCIFG is set to 1,
and the result of the erase operation is unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 6-5.

Disable watchdog

BUSY =1

Setup flash controller and
erase mode

Dummy write

BUSY =1

Set LOCK =1, (Set LOCKINFO = 1)
Reenable watchdog

Figure 6-5. Erase Cycle From RAM

; segment Erase from RAM

; Assunmes Program Menmory. |nformation menmory or BSL
; requires LOCKINFO to be cleared as well.

; Assunmes ACCVIE = NMIE = OFIE = 0.

MoV #VWDTPWWDTHOLD, &WDTCTL ; Di sabl e WDT

L1 BIT #BUSY, &CTL3 ; Test BUSY
JINz L1 ; Loop whil e busy
MOV #FVWKEY, &FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE, &FCTL1 ; Enabl e page erase
CLR &OFC10h ; Dunmy write

L2 BIT #BUSY, &CTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MoV #FWKEY+LOCK, &FCTL3 ; Done, set LOCK

;. Re-enabl e WDOT?

258

Flash Memory Controller SLAU208-June 2008
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Byte/Word Write
6.3.2 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bhits, are listed in [(able 6-2.

Table 6-2. Write Modes

BLKWRT WRT Write Mode
0 1 Byte/word write
1 0 Long-word write
1 1 Long-word block write

The write modes use a sequence of individual write instructions. Using the long-word write mode is
approximately twice as fast as the byte/word mode. Using the long-word block write mode is
approximately four times faster than byte/word mode, because the voltage generator remains on for the
complete block write, and long-words are written in parallel. Any instruction that modifies a destination can
be used to modify a flash location in either byte/word write mode, long-word write mode, or block
long-word write mode.

The BUSY bit is set while the write operation is active and cleared when the operation completes. If the
write operation is initiated from RAM, the CPU must not access flash while BUSY is set to 1. Otherwise,
an access violation occurs, ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from RAM. When initiating from
within flash memory the CPU is held while the write completes. After the write completes, the CPU
resumes code execution with the instruction following the write access. The byte/word write timing is
shown in Figure 6-6.

% %

[| | [
Programming Operation Active

'Generate Remove’
Programming Voltage Programming Voltage
\ \
} Programming Time, V.. Current Consumption is Increased J
\ \
| \
BUSY
| tyu e = TDB (36) s |

Figure 6-6. Byte/Word/Long-Word Write Timing

When a byte/word write is executed from RAM, the CPU continues to execute code from RAM. The BUSY
bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is
set, and the write result is unpredictable.

In byte/word write mode, the internally-generated programming voltage is applied to the complete
128-byte block. The cumulative programming time, tcpt, must not be exceeded for any block. Each byte or
word write adds to the cumulative program time of a segment. If the maximum cumulative program time is
reached or exceeded the segment must be erased. Further programming or using the data returns
unpredictable results. See the device-specific data sheet for specifications.

SLAU208-June 2008 Flash Memory Controller 259
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Initiating Byte/Word Write From Flash

13 TEXAS
INSTRUMENTS

www.ti.com

Initiating Byte/Word Write From Flash
The flow to initiate a byte/word write from flash is shown in Figure 6-7.

Disable watchdog

y

Setup flash controller
and set WRT =1

v

Write byte or word

v

SetWRT =0,LOCK =1,
reenable watchdog

Figure 6-7. Initiating a Byte/Word Write From Flash

; Byte/word wite fromflash.

; Assunes OxOFF1lE is already erased
; Assunmes ACCVIE = NMIE = OFIE = 0.

MOV #WDTPWWDTHOLD, &ADTCTL

MOV #FWKEY, &FCTL3

MOV #FWKEY+WRT, &FCTL1
MOV #0123h, &FF1Eh

MOV #FWKEY, &FCTL1

MOV #FWKEY+LOCK, &FCTL3

)

Di sabl e WDOT

Cl ear LOCK
Enable wite
0123h -> OxXOFF1E
Done. Cdear WRT
Set LOCK

Re- enabl e WDT?

260

Flash Memory Controller

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Initiating Byte/Word Write From RAM

Initiating Byte/Word Write From RAM

The flow to initiate a byte/word write from RAM is shown in Eigure 6-8.

Disable watchdog

»
>

Setup flash controller
and setWRT =1

Write byte or word

»

) 4

BUSY =1

Set WRT =0,LOCK =1,
Reenable watchdog

Figure 6-8. Initiating a Byte/Word Write From RAM

; Byte/word wite from RAM
; Assunes OxOFF1E is al ready erased
; Assumes ACCVIE = NMIE = OFIE = 0.

MoV
L1 BIT
INZ
MoV
MoV
MoV
L2 BIT
JINZ
MoV
MoV

#WDTPWHWDTHOLD, &WDTCTL ; Disable WDOT
#BUSY, &FCTL3 ; Test BUSY
L1 ; Loop whil e busy

#FVWKEY, &FCTL3
#FVWKEY+WRT, &FCTL1
#0123h, &FF1Eh
#BUSY, &FCTL3

L2

#FVWKEY, &FCTL1
#FWKEY+LOCK, &FCTL3

; Clear LOCK

; Enable wite

: 0123h -> OxOFF1E
; Test BUSY

; Loop whil e busy
; Clear WRT

;. Set LOCK

;. Re-enabl e WDT?

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

Flash Memory Controller

261

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Long-Word Write www.ti.com

Long-Word Write

A long-word write operation can be initiated from within flash memory or from RAM. The BUSY bit is set to
1 after 32 bits are written to the flash controller and the programming cycle starts. When initiating from
within flash memory, the CPU is held while the write completes. After the write completes, the CPU
resumes code execution with the instruction following the write access. The long-word write timing is
shown in Figure 6-6.

A long-word consists of four consecutive bytes aligned to at 32-bit address (only the lower two address
bits are different). The bytes can be written in any order or any combination of bytes and words. If a byte
or word is written more than once, the last data written to the four bytes are stored into the flash memory.

If a write to a flash address outside of the 32-bit address happens before all four bytes are available, the
data written so far is discarded, and the latest byte/word written defines the new 32-bit aligned address.

When 32 bits are available, the write cycle is executed. When executing from RAM, the CPU continues to
execute code. The BUSY bit must be zero before the CPU accesses flash again, otherwise an access
violation occurs, ACCVIFG is set, and the write result is unpredictable.

In long-word write mode, the internally-generated programming voltage is applied to a complete 128-byte
block. The cumulative programming time, tcpt, must not be exceeded for any block. Each byte or word
write adds to the cumulative program time of a segment. If the maximum cumulative program time is
reached or exceeded the segment must be erased. Further programming or using the data returns
unpredictable results.

With each byte or word write, the amount of time the block is subjected to the programming voltage
accumulates. If the cumulative programming time is reached or exceeded, the block must be erased
before further programming or use. See the device-specific data sheet for specifications.

Initiating Long-Word Write From Flash

The flow to initiate a long-word write from flash is shown in Figure 6-9.

Disable watchdog

Setup flash controller
and set BLKWRT =1

Write 4 bytes or 2 words

Set BLKWRT =0, LOCK =1,
Reenable watchdog

Figure 6-9. Initiating Long-Word Write From Flash

Long-word wite fromflash.
; Assunes OxOFF1C and OxOFF1lE is al ready erased
; Assunes ACCVIE = NMIE = OFIE = 0.

MoV #VDTPWHWDTHOLD, &ADTCTL ; Disabl e WOT

MOV #FVWKEY, &-CTL3 ; Clear LOCK

MOV #FWKEY+BLKWRT, &FCTL1 ; Enable 2-word wite
MOV #0123h, &FF1Ch ; 0123h -> OxOFF1C
MOV #45676h, &0FF1Eh ;. 04567h -> OXOFF1E
MOV #FVWKEY, &FCTL1 ; Done. Clear BLKWRT

MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK
; Re-enabl e WDT?

262

Flash Memory Controller SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Initiating Long-Word Write From RAM

Initiating Long-Word Write From RAM

The flow to initiate a long-word write from RAM is shown in Eigure 6-10.

Disable watchdog

Setup flash controller
and set BLKWRT =1

Write 4 bytes or 2 words

Yes

) 4

BUSY =1

Set BLKWRT=0, LOCK =1,

Reenable

watchdog

Figure 6-10. Initiating Long-Word Write from RAM

; Two 16-bit word wites from RAl

M

; Assunmes OxOFF1C and OxOFF1E is already erased
; Assumes ACCVIE = NMIE = OFIE = 0.

MV #WDTPWHWDTHOLD, &ADTCTL
L1 BIT #BUSY, &CTL3

INZ L1

MOV #FWKEY, &FCTL3

MOV #FWKEY+BLKWRT, &FCTL1

MOV #0123h, &FF1Ch

MOV #4567h, &OFF1Eh
L2 BIT #BUSY, &CTL3

INZ L2

MOV #FWKEY, &FCTL1

MOV #FWKEY+LOCK, &FCTL3

; Di sabl e WDT
; Test BUSY

; Loop whil e busy

; Clear LOCK

; Enable wite
: 0123h -> OxOFF1C
; 4567h -> OxOFF1E

; Test BUSY

; Loop whil e busy

;. Clear WRT
. Set LOCK

: Re-enabl e WDT?

SLAU208-June 2008
Bubmit Documentation FeedbacH

Flash Memory Controller

263

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Block Write www.ti.com

Block Write

The block write can be used to accelerate the flash write process when many sequential bytes or words
need to be programmed. The flash programming voltage remains on for the duration of writing the
128-byte row. The cumulative programming time tcpr must not be exceeded for any row during a block
write.

A block write cannot be initiated from within flash memory. The block write must be initiated from RAM.
The BUSY bit remains set throughout the duration of the block write. The WAIT bit must be checked
between writing four bytes, or two words to the block. When WAIT is set, then four bytes, or two 16-bit
words of the block can be written. When writing successive blocks, the BLKWRT bit must be cleared after
the current block is completed. BLKWRT can be set initiating the next block write after the required flash
recovery time given by tgyp. BUSY is cleared following each block write completion, indicating the next
block can be written. shows the block write timing.

BLKWRT bit |
Write to Flash; e.g., MOV #0123h, &Flash
‘ MOV #4567h, &Flashl
v

/L 1L
‘ - 1

L ‘

Generate Programming Operation Active Remove

Programming Voltage i i i Programming Voltage

\
\ || || ||
\ I I
Cumulative Programming Time t.,; < 10 ms, V.. Current Consumption is Increased
1 1 1 1

RS
3

‘A 1 1
- —- - i
BUSY_' || || [—
\ I I || |
\ | || | |
taioeko = TBD Yaiock 1127 = TBD taiook -1z = TBD tena =-IrBD
WAIT A
Figure 6-11. Block-Write Cycle Timing
264 Flash Memory Controller SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Block Write Flow and Example

Block Write Flow and Example
A block write flow is shown in and the following code example.

Disable watchdog

y

Yes
BUSY =1

Setup flash controller

Set BLKWRT = WRT =1

Write 4 bytes or 2 words

Block Border?

Set BLKWRT=0

Set WRT =0,LOCK =1,
Reenable WDT

Figure 6-12. Block Write Flow

SLAU208-June 2008 Flash Memory Controller 265
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Block Write Flow and Example

13 TEXAS
INSTRUMENTS

www.ti.com

; Wite one block starting at OFO00Oh.

; Must be executed from RAM Assunes Flash is al ready erased.

; Assunes ACCVIE =

MoV #32, R5

MoV #0F000h, R6

MoV #WDTPWWDTHOLD, &WDTCTL
L1 BIT #BUSY, &FCTL3

JNZ L1

MoV #FWKEY, &FCTL3

MoV #FWKEY+BLKWRT+WRT, &FCTL1
L2 MV Wite_Val uel, O(R6)

MoV Wite_Val ue2, 2(R6)
L3 BIT #WAI T, &FCTL3

JZ L3

INCD R6

INCD R6

DEC R5

JNZ L2

MoV #FWKEY, &FCTL1
L4 BIT #BUSY, &FCTL3

JINZ L4

MoV #FWKEY+LOCK, &FCTL3

NMIE = CFIE = 0.

Use as wite counter
Wite pointer

Di sabl e WDOT

Test BUSY

Loop whil e busy

G ear LOCK

Enabl e block wite
Wite 1st |ocation
Wite 2nd word

Test WAIT

Loop while WAI T=0

Poi nt to next words

Poi nt to next words
Decrenent wite counter
End of bl ock?

C ear WRT, BLKWRT

Test BUSY

Loop whil e busy

Set LOCK

Re-enabl e WDT i f needed

6.3.3 Flash Memory Access During Write or Erase

When a write or an erase operation is initiated from RAM while BUSY = 1, the CPU may not write to any
flash location. Otherwise, an access violation occurs, ACCVIFG is set, and the result is unpredictable.

When a write operation is initiated from within flash memory, the CPU continues code execution with the
next instruction fetch after the write cycle completed (BUSY = 0).

The op-code 3FFFh is the JMP PC instruction. This causes the CPU to loop until the flash operation is
finished. When the operation is finished and BUSY = 0, the flash controller allows the CPU to fetch the

op-code and program execution resumes.

The flash access conditions while BUSY = 1 are listed in [Table 6-3.

Table 6-3. Flash Access While the Flash is busy (BUSY = 1)

Flash Operation Flash Access WAIT Result
Read 0 From the erased bank: ACCVIFG = 0. 03FFFh is the value read.
From any other flash location: ACCVIFG = 0. Valid read.
Bank erase Write 0 ACCVIFG = 1. Write is ignored.
Instruction fetch 0 From the erased bank: ACCVIFG = 0. CPU fetches 03FFFh. This is the
JMP PC instruction.
From any other flash location: ACCVIFG = 0. Valid instruction fetch.
Read 0 ACCVIFG = 0. 03FFFh is the value read.
Segment erase Write 0 ACCVIFG = 1. Write is ignored.
Instruction fetch 0 ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction.
Read 0 ACCVIFG = 0. 03FFFh is the value read.
Word/byte write or . _ N
long-word write Write 0 ACCVIFG = 1. Write is ignored.
Instruction fetch 0 ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction.
Any 0 ACCVIFG =1, LOCK =1, block write is exited.
. Read 1 ACCVIFG = 0: 03FFFh is the value read.
Block write . . .
Write 1 ACCVIFG = 0, Valid write.
Instruction fetch 1 ACCVIFG =1, LOCK =1, block write is exited.

266

Flash Memory Controller

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Block Write Flow and Example

Interrupts are automatically disabled during any flash operation.

The watchdog timer (in watchdog mode) should be disabled before a flash erase cycle. A reset will abort
the erase and the result will be unpredictable. After the erase cycle has completed, the watchdog may be
reenabled.

6.3.4 Stopping Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by setting the emergency exit
bit EMEX. Setting the EMEX bit stops the active operation immediately and stops the flash controller. All
flash operations cease, the flash returns to read mode, and all bits in the FCTL1 register are reset. The

LOCK bit of FCTL3 is set. The result of the intended operation is unpredictable.

6.3.5 Checking Flash memory

The result of a programming cycle of the flash memory can be checked by calculating and storing a
checksum (CRC) of parts and/or the complete flash memory content. The CRC module can be used for
this purpose (see the device-specific data sheet). During the runtime of the system, the known checksums
can be recalculated and compared with the expected values stored in the flash memory. The program
checking the flash memory content is executed in RAM. To get an early indication of weak memory cells,
reading the flash can be done in combination with the device-specific marginal read modes. The marginal
read modes are controlled by the FCTL4.MRGO and FCTL4.MRG1 register bits if available (device
specific).

6.3.6 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit password-protected read/write registers. Any read or write access must
use word instructions, and write accesses must include the write password 0A5h in the upper byte. Any
write to any FCTLx register with a value other than 0A5h in the upper byte is a security key violation, sets
the KEYV flag, and triggers a PUC system reset. Any read of any FCTLXx registers reads 096h in the
upper byte.

Any write to FCTL1 during an erase or byte/word/double-word write operation is an access violation and
sets ACCVIFG. Writing to FCTL1 is allowed in block write mode when WAIT = 1, but writing to FCTL1 in
block write mode when WAIT = 0 is an access violation and sets ACCVIFG.

Any write to FCTL2 (this register is currently not implemented) when BUSY = 1 is an access violation.
Any FCTLx register may be read when BUSY = 1. A read does not cause an access violation.

6.3.7 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV and ACCVIFG. ACCVIFG is set when an access
violation occurs. When the ACCVIE bit is reenabled after a flash write or erase, a set ACCVIFG flag
generates an interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not necessary for GIE
to be set for ACCVIFG to request an interrupt. ACCVIFG may also be checked by software to determine if
an access violation occurred. ACCVIFG must be reset by software.

The key violation flag, KEYV, is set when any of the flash control registers are written with an incorrect
password. When this occurs, a PUC is generated immediately, resetting the device.

6.3.8 Programming Flash Memory Devices
There are three options for programming an MSP430 flash device. All options support in-system
programming:
* Program via JTAG
» Program via the bootstrap loader
* Program via a custom solution

SLAU208-June 2008 Flash Memory Controller 267
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Programming Flash Memory via JTAG www.ti.com

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface requires four signals (5
signals on 20- and 28-pin devices), ground and optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables the JTAG port and is not
reversible. Further access to the device via JTAG is not possible For more details see the application
report Programming a Flash-Based MSP430 Using the JTAG Interface at jyww.ti.com/msp430.

Programming Flash Memory via Bootstrap Loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables users to read or program the
flash memory or RAM using a UART serial interface. Access to the MSP430 flash memory via the BSL is
protected by a 256-bit user-defined password. For more details, see the application report Features of the
MSP430 Bootstrap Loader at yww.ti.com/msp430.

Programming Flash Memory via Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for in-system and external custom
programming solutions as shown in Figure 6-13. The user can choose to provide data to the MSP430
through any means available (UART, SPI, etc.). User-developed software can receive the data and
program the flash memory. Since this type of solution is developed by the user, it can be completely
customized to fit the application needs for programming, erasing, or updating the flash memory.

Flash memory
Commands, data, etc.

UART, l

- Px.x, CPU executes
«—| SPI, user software
etc.

Host MSP430

Read/write flash memory

Figure 6-13. User-Developed Programming Solution

268 Flash Memory Controller SLAU208-June 2008
ubmit Documentation Feedbac

http://www.ti.com/msp430
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Flash Memory Registers

6.4 Flash Memory Registers

The flash memory registers are listed in [[able 6-4. The base address can be found in the device-specific
data sheet. The address offset is given in [Table 6-4.

Table 6-4. Flash Controller Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTL1 Read/write 0000h 9600h

Flash memory control register 3 FCTL3 Read/write 0004h 9658h

Flash memory control register 4 FCTL4 Read/write 0006h 9600h

Interrupt Enable 1 IE1 Read/write 000Ah 0000h

Interrupt Flag 1 IFG1 Read/write 000Ch 0000h
SLAU208-June 2008 Flash Memory Controller 269

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Flash Memory Registers

13 TEXAS
INSTRUMENTS

www.ti.com

FCTL1, Flash Memory Control Register 1

15 14 13 12 11 10 9 8
FRKEY, Read as 096h
FWKEY, Must be written as 0A5h
7 6 5 4 3 2 1 0
BLKWRT WRT SWRT Reserved Reserved MERAS ERASE Reserved
rw-0 rw-0 rw-0 r-0 r-0 rw-0 rw-0 r-0
FRKEY/FWKEY Bits 15-8 FCTL password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.
BLKWRT Bit 7 See following table.
WRT Bit 6 See following table.
BLKWRT WRT Write Mode
0 1 Byte/word write
1 0 Long-word write
1 1 Long-word block write
SWRT Bit 5 Smart write. If this bit is set the program time is shortened. The programming quality has to be
checked by marginal read modes.
Reserved Bits 4-3 Reserved. Must be written to 0. Always read 0.
MERAS Bit 2 Mass erase and erase. These bits are used together to select the erase mode. MERAS and
ERASE Bit 1 ERASE are automatically reset when EMEX is set.
MERAS ERASE Erase Cycle
0 0 No erase
0 1 Segment erase
1 0 Bank erase (of one bank)
1 1 Mass erase (Erase all flash memory banks)
Reserved Bit 0 Reserved. Always read 0.

270 Flash Memory Controller

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Flash Memory Registers

FCTL3, Flash Memory Control Register 3

15 14 13 12 11 10 9 8
FWKEYXx, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
Reserved LOCKA EMEX LOCK WAIT ACCVIFG | KEYV | BUSY
r-0 rw-1 rw-0 rw-1 r-1 rw-0 rw-(0) rw-0
FWKEYx Bits 15-8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.
Reserved Bit 7 Reserved. Always read 0.
LOCKA Bit 6 Segment A lock. Write a 1 to this bit to change its state. Writing 0 has no effect.
0 Segment A, B, C, D are unlocked. and are erased during a mass erase.
1 Segment A of the information memory is write protected. Segment B, C, and D are
protected from all erase.
EMEX Bit 5 Emergency exit. Setting this bit stops any erase or write operation. The LOCK bit is set.
0 No emergency exit
1 Emergency exit
LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit can be set anytime
during a byte/word write or erase operation and the operation will complete normally. In the block
write mode if the LOCK bit is set while BLKWRT = WAIT = 1, then BLKWRT and WAIT are reset and
the mode ends normally.
0 Unlocked
1 Locked
WAIT Bit 3 Wait. Indicates the flash memory is being written to.
0 The flash memory is not ready for the next byte/word write.
1 The flash memory is ready for the next byte/word write.
ACCVIFG Bit 2 Access violation interrupt flag
0 No interrupt pending
1 Interrupt pending
KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password was written to any flash
control register and generates a PUC when set. KEYV must be reset with software.
0 FCTLx password was written correctly
1 FCTLx password was written incorrectly
BUSY Bit 0 Busy. This bit indicates if the flash is currently busy erasing or programming.
0 Not busy
1 Busy

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Flash Memory Controller 271

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Flash Memory Registers www.ti.com

FCTL4, Flash Memory Control Register 4

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0
LOCKINFO Reserved MRG1 MRGO Reserved VPE
rw-0 r-0 rw-0 rw-0 r-0 r-0 r-0 rw-0
FWKEYx Bits 15-8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.
LOCKINFO Bit 7 Lock information memory. If set the information memory cannot be erased in segment erase mode
and cannot be written to.

Reserved Bit 6 Reserved. Always read as 0.
MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The marginal read 1 bit is valid for

reads from the flash memory only. During a fetch cycle the marginal mode is turned off automatically.
If both MRG1 and MRGO are set MRGL1 is active and MRGO is ignored.

0 Marginal 1 read mode is disabled.
1 Marginal 1 read mode is enabled.
MRGO Bit 4 Marginal read 0 mode. This bit enables the marginal 0 read mode. The marginal read 1 bit is valid for

reads from the flash memory only. During a fetch cycle the marginal mode is turned off automatically.
If both MRG1 and MRGO are set MRGL1 is active and MRGO is ignored.

0 Marginal 0 read mode is disabled.
1 Marginal 0 read mode is enabled.
Reserved Bit 3-1 Reserved. Always read as 0.
VPE Bit 0 Voltage changed during program error. This bit is set by hardware and can only be cleared by

software. If DVCC changed significantly during programming, this bit is set to indicate an invalid
result. The ACCVIFG bit is set if VPE is set.

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
| | AccVEE
rw-0

Bits 7-6, 4-0 These bits may be used by other modules. See the device-specific data sheet.

ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the ACCVIFG interrupt. Because other
bits in IE1 may be used for other modules, it is recommended to set or clear this bit using Bl S. B or
Bl C. B instructions, rather than MOV. B or CLR. B instructions.

0 Interrupt not enabled
1 Interrupt enabled

272 Flash Memory Controller SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 'TEXAS Chapter 7
INSTRUMENTS

SLAU208—-June 2008

Digital I/O

This chapter describes the operation of the digital 1/O ports. The digital 1/O ports are implemented in all
MSP430x5xx devices.

Topic Page
7.1 Digital /O IntrodUcCtioNee e ie e eeeieieeeeeeeeiieeaeaeieieraeaeaeieinenen 274
7.2 Digital I/O Operation[oeeee e eeaeeeeieieieiieieaeenen. 279
7.3 Digital I/O ReQiSters e eeaeeeeieie i ieaearaeaeaeeieieieiees 279

SLAU208-June 2008 Digital I/0 273
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Digital 1/0 Introduction www.ti.com

7.1

Digital 1/0 Introduction

MSP430x5xx devices may have up to 12 digital I/O ports implemented, P1 to P11 and PJ. Most ports
have eight I/O pins, however some ports may contain less. See the device-specific data sheet for ports
available. Each I/O pin is individually configurable for input or output direction, and each I/O line can be
individually read or written to. All ports have individually configurable pullup or pulldown resistors, as well
as, configurable drive strength.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be
individually enabled and configured to provide an interrupt on a rising edge or falling edge of an input
signal. All P1 1/O lines source a single interrupt vector P11V, and all P2 I/O lines source a different, single
interrupt vector P2IV. On some MSP430x5xx devices, additional ports with interrupt capability may be
available. Please refer to the device specific datasheet for details.

Individual ports can be accessed as byte wide ports or can be combined into word wide ports and
accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc. are associated with the names
PA, PB, PC, PD, etc., respectively. When writing to port PA with word operations, all 16 bits are written to
the port. Writing to the lower byte of the PA port using byte operations, the upper byte remains
unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the lower byte
unchanged. Similarly for other ports. Writing to a port that contains less than the maximum number of bits
possible, the unused bits are a "do not care". All port registers are handled in this manner with this naming
convention except for the interrupt vector registers, P11V and P2IV. These are word accessible only, and
PAIV does not exist.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination.
Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte operations
causes only the lower or upper byte to be transferred to the destination, respectively. Reading of the PA
port and storing to a general purpose register using byte operations causes the byte transferred to be
written to the least significant byte of the register. The upper significant byte of the destination register will
be cleared automatically. Ports PB, PC, PD, and PE behave similarly. When reading from ports that
contain less than the maximum bits possible, unused bits are read as zeros. Similarly, for Port PJ.

The digital I/O features include:

* Independently programmable individual I/Os

e Any combination of input or output

» Individually configurable P1 and P2 interrupts

» Independent input and output data registers

* Individually configurable pullup or pulldown resistors

274

Digital I/0 SLAU208—-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Digital /0O Operation
7.2 Digital I/O Operation
The digital 1/0 is configured with user software. The setup and operation of the digital I/O is discussed in
the following sections.
7.2.1 Input Register PxIN
Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function. These registers are read only.
e Bit=0: The input is low
* Bit=1: The input is high
Note: Writing to Read-Only Registers PxIN
Writing to these read-only registers results in increased current consumption while the write
attempt is active.
7.2.2 Output Registers PxOUT
Each bit in each PxOUT register is the value to be output on the corresponding 1/0O pin when the pin is
configured as 1/O function, output direction.
» Bit = 0: The output is low
* Bit = 1: The output is high
If the pin is configured as 1/O function, input direction and the pullup/pulldown resistor is enabled, the
corresponding bit in the PxOUT register selects pullup or pulldown.
e Bit = 0: The pin is pulled down
e Bit=1: The pin is pulled up
7.2.3 Direction Registers PxDIR
Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the
selected function for the pin. PxDIR bits for 1/O pins that are selected for other functions must be set as
required by the other function.
e Bit = 0: Port pin is switched to input direction
» Bit = 1: Port pin is switched to output direction
7.2.4 Pullup/Pulldown Resistor Enable Registers PXREN
Each bit in each PXREN register enables or disables the pullup/pulldown resistor of the corresponding 1/O
pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.
e Bit = 0: Pullup/pulldown resistor disabled
» Bit = 1: Pullup/pulldown resistor enabled
summarizes the usage of PxDIRx, PXRENX, and PxOUTX for proper 1/O configuration.
Table 7-1. I/O Configuration
PxDIRx PXRENXx PxOUTX 1/0 Configuration
0 0 X Input
0 1 0 Input with pulldown resistor
0 1 1 Input with pullup resistor
1 X X Output
SLAU208-June 2008 Digital /O~ 275

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Digital /0O Operation www.ti.com

7.2.5

7.2.6

7.2.7

Output Drive Strength Registers PxDS

Each bit in each PxDS register selects either full drive or reduced drive strength. Default is reduced drive
strength.

» Bit = 0: Reduced drive strength

e Bit = 1: Full drive strength

Note: Drive Strength and EMI

All outputs default to reduced drive strength to reduce EMI. Using full drive strength can
result in increased EMI.

Function Select Registers PxSEL

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet
to determine pin functions. Each PxSELX bit is used to select the pin function - I/O port or peripheral
module function.

» Bit = 0: /O Function is selected for the pin

» Bit = 1: Peripheral module function is selected for the pin

Setting PXSELx = 1 does not automatically set the pin direction. Other peripheral module functions may

require the PxDIRX bits to be configured according to the direction needed for the module function. See
the pin schematics in the device-specific datasheet.

Note: P1 and P2 Interrupts Are Disabled When PxSEL =1

When any PxSEL bit is set, the corresponding pin’s interrupt function is disabled. Therefore,
signals on these pins will not generate P1 or P2 interrupts, regardless of the state of the
corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the peripheral is a latched
representation of the signal at the device pin. While PXSELx=1, the internal input signal follows the signal
at the pin. However, if the PXSELXx=0, the input to the peripheral maintains the value of the input signal at
the device pin before the PXSELx bit was reset.

P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES
registers. All P1 interrupt flags are prioritized, with P1IFG.0 being the highest, and combined to source a
single interrupt vector. The highest priority enabled interrupt generates a number in the P11V register. This
number can be evaluated or added to the program counter to automatically enter the appropriate software
routine. Disabled P1 interrupts do not affect the P11V value. The same functionality exists for P2. The PxIV
registers are word access only.

Each PxIFGx bit is the interrupt flag for its corresponding 1/O pin and is set when the selected input signal
edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit
and the GIE bit are set. Software can also set each PxIFG flag, providing a way to generate a software
initiated interrupt.

* Bit = 0: No interrupt is pending
* Bit=1: An interrupt is pending
Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt

service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set
PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

276

Digital I/0 SLAU208—-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

i3 TEXAS
INSTRUMENTS

www.ti.com P1IV, P2IV Software Example

Note: PxIFG Flags When Changing PxOUT, PxDIR, or PXREN

Writing to P1OUT, P1DIR, P1REN, P20UT, P2DIR, or P2REN can result in setting the
corresponding P1IFG or P2IFG flags.

Any access, read or write, of the P11V register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that P1IFG.0 has the highest priority. If the P1IFG.0 and P1IFG.2 flags are set when
the interrupt service routine accesses the P1IV register, P1IFG.0 is reset automatically. After the RETI
instruction of the interrupt service routine is executed, the P1IFG.2 will generate another interrupt.

Port P2 interrupts behave similarly, and source a separate single interrupt vector and utilizes the P2IV
register.
P11V, P2IV Software Example

The following software example shows the recommended use of P11V and the handling overhead. The
P11V value is added to the PC to automatically jump to the appropriate routine. The P2IV is similar.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

;lnterrupt handl er for P1lFGx Cycl es
P1_ HND ... ; Interrupt |atency 6

ADD &P11V, PC ; Add offset to Junp table 3

RETI ; Vector 0: No interrupt 5

JWP P1_0_HND ; Vector 2: Port 1 bit O 2

JwP P1_1_HND ; Vector 4: Port 1 bit 1 2

JWP P1_2_ HND ; Vector 6: Port 1 bit 2 2

JwP P1_3_HND ; Vector 8: Port 1 bit 3 2

JWP P1_4 HND ; Vector 10: Port 1 bit 4 2

JwP P1_5_HND ; Vector 12: Port 1 bit 5 2

JWP P1_6_HND ; Vector 14: Port 1 bit 6 2

JwP P1_7_HND ; Vector 16: Port 1 bit 7 2
P1_7_HND ; Vector 16: Port 1 bit 7

; Task starts here

RETI ; Back to main program 5
P1_6_HND ; Vector 14: Port 1 bit 6

; Task starts here

RETI ; Back to main program 5
P1_5_HND ; Vector 12: Port 1 bit 5

; Task starts here

RETI ; Back to main program 5
P1_4 HND ; Vector 10: Port 1 bit 4

; Task starts here

RETI ; Back to main program 5
P1_3_HND ; Vector 8: Port 1 bit 3

; Task starts here

RETI ; Back to main program 5
P1_2_HND ; Vector 6: Port 1 bit 2

; Task starts here

RETI ; Back to main program 5
P1_1_HND ; Vector 4: Port 1 bit 1

; Task starts here

RETI ; Back to main program 5
P1_0_HND ; Vector 2: Port 1 bit O

; Task starts here

RETI ; Back to main program 5

SLAU208-June 2008 Digital I/0 277

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Interrupt Edge Select Registers P1IES, P2IES

13 TEXAS
INSTRUMENTS

www.ti.com

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding 1/O pin.
e Bit = 0: The PxIFGx flag is set with a low-to-high transition
» Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PXIESx
Writing to P1IES or P2IES can result in setting the corresponding interrupt flags.

PXIESxX PXxINX PxIFGXx

0-1 0 May be set
0-1 1 Unchanged
1-0 0 Unchanged
1-0 1 May be set

Interrupt Enable P1IE, P2IE

7.2.8

Each PxIE bit enables the associated PxIFG interrupt flag.
» Bit = 0: The interrupt is disabled
e Bit = 1: The interrupt is enabled

Configuring Unused Port Pins

Unused I/0O pins should be configured as I/O function, output direction, and left unconnected on the PC
board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is don't
care, since the pin is unconnected. Alternatively, the integrated pullup/pulldown resistor can be enabled by
setting the PXREN bit of the unused pin to prevent the floating input. See chapter System Resets,

Interrupts, and Operating Modes for termination of unused pins.

Note: Configuring Port J and Shared JTAG pins:

It is important to remember in the application to take special precautions to ensure that the
Port J is configured properly to prevent any floating input. Since Port PJ is shared with the
JTAG function, floating inputs may not be noticed when in an emulation environment . Port J

is initialized to high impedance inputs by default.

278

Digital I/0

SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Digital 1/0 Registers

7.3 Digital I1/0 Registers

The digital I/O registers are listed in [Table 7-2. The base addresses can be found in the device specific
datasheet Each port grouping begins at its base address. The address offsets are given in [able 7-2.

Table 7-2. Digital 1/0O Registers

Port Register Short Form g?fi:iss Register Type Initial State

P1 P1 Interrupt Vector P1IV OEh Read only 0000h

P2 P2 Interrupt Vector P21V 1Eh Read only 0000h

P1 Input P1IN 00h Read only
Output P1OUT 02h Read/write Unchanged
Direction P1DIR 04h Read/write 00h
Resistor Enable P1REN 06h Read/write 00h
Output drive strength P1DS 08h Read/write 00h
Port Select P1SEL O0Ah Read/write 00h
Interrupt Edge Select P1IES 18h Read/write Unchanged
Interrupt Enable P1IE 1Ah Read/write 00h
Interrupt Flag P1IFG 1Ch Read/write 00h

P2 Input P2IN 01lh Read only
Output P20UT 03h Read/write Unchanged
Direction P2DIR 05h Read/write 00h
Resistor Enable P2REN 07h Read/write 00h
Output drive strength P2DS 09h Read/write 00h
Port Select P2SEL 0Bh Read/write 00h
Interrupt Edge Select P2IES 19h Read/write Unchanged
Interrupt Enable P2IE 1Bh Read/write 00h
Interrupt Flag P2IFG 1Dh Read/write 00h

P3 Input P3IN 00h Read only
Output P30UT 02h Read/write Unchanged
Direction P3DIR 04h Read/write 00h
Resistor Enable P3REN 06h Read/write 00h
Output drive strength P3DS 08h Read/write 00h
Port Select P3SEL O0Ah Read/write 00h

P4 Input P4IN 01lh Read only
Output P4OUT 03h Read/write Unchanged
Direction P4DIR 05h Read/write 00h
Resistor Enable P4REN 07h Read/write 00h
Output drive strength P4DS 09h Read/write 00h
Port Select P4SEL 0Bh Read/write 00h

P5 Input P5IN 00h Read only
Output P50UT 02h Read/write Unchanged
Direction P5DIR 04h Read/write 00h
Resistor Enable P5REN 06h Read/write 00h
Output drive strength P5DS 08h Read/write 00h
Port Select P5SEL O0Ah Read/write 00h

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Digital /O 279

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Digital /0 Registers www.ti.com
Table 7-2. Digital 1/0 Registers (continued)
Port Register Short Form g?fci;etss Register Type Initial State
P6 Input P6IN 01h Read only
Output P6OUT 03h Read/write Unchanged
Direction P6DIR 05h Read/write 00h
Resistor Enable P6REN 07h Read/write 00h
Output drive strength P6DS 09h Read/write 00h
Port Select P6SEL 0Bh Read/write 00h
P7 Input P7IN 00h Read only
Output P70OUT 02h Read/write Unchanged
Direction P7DIR 04h Read/write 00h
Resistor Enable P7REN 06h Read/write 00h
Output drive strength P7DS 08h Read/write 00h
Port Select P7SEL 0Ah Read/write 00h
P8 Input P8IN 01h Read only
Output P8OUT 03h Read/write Unchanged
Direction P8DIR 05h Read/write 00h
Resistor Enable P8REN 07h Read/write 00h
Output drive strength P8DS 09h Read/write 00h
Port Select P8SEL 0Bh Read/write 00h
P9 Input PIIN 00h Read only
Output POOUT 02h Read/write Unchanged
Direction PODIR 04h Read/write 00h
Resistor Enable POREN 06h Read/write 00h
Output drive strength PIODS 08h Read/write 00h
Port Select PIOSEL 0Ah Read/write 00h
P10 Input P10IN 01h Read only
Output P100OUT 03h Read/write Unchanged
Direction P10DIR 05h Read/write 00h
Resistor Enable P10REN 07h Read/write 00h
Output drive strength P10DS 09h Read/write 00h
Port Select P10SEL 0Bh Read/write 00h
P11 Input P11IN 00h Read only
Output P110UT 02h Read/write Unchanged
Direction P11DIR 04h Read/write 00h
Resistor Enable P11REN 06h Read/write 00h
Output drive strength P11DS 08h Read/write 00h
Port Select P11SEL 0Ah Read/write 00h
PJ Input PJIN 00h Read only
Output PJOUT 02h Read/write Unchanged
Direction PJDIR 04h Read/write 00h
Resistor Enable PJREN 06h Read/write 00h
Output drive strength PJDS 08h Read/write 00h

280 Digital I/O

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Digital I/0 Registers

P11V, Port 1 Interrupt Vector Register

15 14 13 12 11 10 9 8
0 | 0 \ 0 0 0 0 0 | |
r0 ro r0 ro r0 ro r0 ro
5 4 3 2 1
P1IVxX
r0 ro r0 r-0 r-0 r-0 r-0 ro
P1IVx Bits 15-0 Port 1 interrupt vector value
Ccl):nltlgr):ts Interrupt Source Interrupt Flag ::nrtiirrri?;t
00h No interrupt pending
02h Port 1.0 interrupt P1IFG.0 Highest
04h Port 1.1 interrupt P1IFG.1
06h Port 1.2 interrupt P1IFG.2
08h Port 1.3 interrupt P1IFG.3
0Ah Port 1.4 interrupt P1IFG.4
0Ch Port 1.5 interrupt P1IFG.5
OEh Port 1.6 interrupt P1IFG.6
10h Port 1.7 interrupt P1IFG.7 Lowest
P2IV, Port 2 Interrupt Vector Register
15 14 13 12 11 10
0 | 0 \ 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
5 4 3 2 1
P2IVx
r0 ro r0 r-0 r-0 r-0 r-0 ro
P2IVx Bits 15-0 Port 2 interrupt vector value
Copr?tl\e/r)l(ts Interrupt Source Interrupt Flag ::r:rtiirrr#;t
00h No interrupt pending
02h Port 2.0 interrupt P2IFG.0 Highest
04h Port 2.1 interrupt P2IFG.1
06h Port 2.2 interrupt P2IFG.2
08h Port 2.3 interrupt P2IFG.3
OAh Port 2.4 interrupt P2IFG.4
0Ch Port 2.5 interrupt P2IFG.5
OEh Port 2.6 interrupt P2IFG.6
10h Port 2.7 interrupt P2IFG.7 Lowest

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Digital /O 281

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Digital /0 Registers www.ti.com
P1IES Port 1 Interrupt Edge Select Register
7 6 5 4 3 2 1 0
P1IES
w rw w rw w rw w rw
P1lIES Bits 7-0 Port 1 interrupt edge select
0 P1IFGx flag is set with a low-to-high transition
1 PI1IFGx flag is set with a high-to-low transition
P1IE, Port 1 Interrupt Enable Register
7 6 5 4 3 2 1 0
P1IE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
P1lIE Bits 7-0 Port 1 interrupt enable
0 Corresponding port interrupt disabled
1 Corresponding port interrupt enabled
P1IFG, Port 1 Interrupt Flag Register
7 6 5 4 3 2 1 0
P1IFG
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
PlIFG Bits 7-0 Port 1 interrupt flag
0 No interrupt is pending
1 Interruptis pending
P2IES Port 2 Interrupt Edge Select Register
7 6 5 4 3 2 1 0
P2IES
w rw w rw w rw w rw
P2IES Bits 7-0 Port 2 interrupt edge select
0 P2IFGx flag is set with a low-to-high transition
1 P2IFGx flag is set with a high-to-low transition
P2IE, Port 2 Interrupt Enable Register
7 6 5 4 3 2 1 0
P2IE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
P2IE Bits 7-0 Port 2 interrupt enable
0 Corresponding port interrupt disabled
1 Corresponding port interrupt enabled
282 Digital /0 SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Digital I/0 Registers

P2IFG, Port 2 Interrupt Flag Register

7 6 5 4 3 2 1 0
P2IFG
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
P2IFG Bits 7-0 Port 2 interrupt flag
0 No interrupt is pending
1 Interruptis pending
PxIN, Port x Input Register
7 6 5 4 3 2 1 0
PxIN
r r r r r r r r
PxIN Bits 7-0 Port x input. Read only.
PxOUT, Port x Output Register
7 6 5 4 3 2 1 0
PxOUT
rw rw rw rw rw rw rw rw
PxOUT Bits 7-0 Port x output
When I/O configured to output mode:
0 The output is low
1 The output is high
When I/0 configured to input mode and pullups/pulldowns enabled:
0 Pull-down selected
1 Pullup selected
PxDIR, Port x Direction Register
7 6 5 4 3 2 1 0
PxDIR
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
PxDIR Bits 7-0 Port x direction
0 Port configured as input
1 Port configured as output
PXREN, Port x Resistor Enable Register
7 6 5 4 3 2 1 0
PxREN
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
PxXREN Bits 7-0 Port x pullup/pulldown resistor enable
0 Pullup/pulldown disabled
1 Pullup/pulldown enabled
SLAU208-June 2008 Digital I/0 283

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Digital /0 Registers www.ti.com
PxDS, Port x Drive Strength Register
7 6 5 4 3 2 1 0
PxDS
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxDS Bits 7-0 Port x drive strength

0 Reduced output drive strength

1 Full output drive strength
284 Digital I/0 SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS Chapter 8
INSTRUMENTS

SLAU208—-June 2008

RAM Controller

The RAM Controller (RAMCTL) allows control of the operation of the RAM.

Topic Page
8.1 RAMCTL INtrodUCtioN e ieeeeeeeeieiaeaeeeieieraeaeeeieieraeeeeeioiaensn 2384
82 RAMCTL Operation e ceeeeeeeeeieieieieieaeaeaearererereieieaeaeararaeerrererens 289
8.3 RAMCTL Module RegiSters|ia e iieeeeeeieieraeeeieieraraeeeiierareeeeieraensn 281
SLAU208-June 2008 RAM Controller 285
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

RAMCTL Introduction www.ti.com

8.1

8.2

RAMCTL Introduction

The RAMCTL provides access to the different power modes of the RAM. The RAMCTL allows the ability
to reduce the leakage current while the CPU is off. The RAM can also be switched off. In retention mode
the RAM content is saved while the RAM content is lost in off mode. The RAM is partitioned in sectors,
typically of 4k-byte (sector) size. Please refer to the device specific datasheet for actual block allocation
and size. Each sector is controlled by the RAM Controller RAM Sector Off control bit (RCRSyOFF) of the
RAMCTL control register 0 (RCCTLO). The RCCTLO register is password protected. Only if the correct
password is written during a word write, the RCCTLO register content can be modified. Byte write
accesses or write accesses with a wrong password are ignored.

RAMCTL Operation

Active Mode
In active mode the RAM can be read and written at any time. If a RAM address of a sector needs to
hold data the whole sector cannot be switched off.

Low-Power Modes
In all low-power modes, the CPU is switched off. As soon as the CPU is switched off, the RAM enters
retention mode to reduce the leakage current.

RAM Off Mode

Each sector can be turned off independently of each other by setting the respective RCRSyOFF bit to
1. Reading from a switched off RAM sector returns 0 as data. All data previously stored into a switched
off RAM sector is lost and cannot be read, even if the sector is turned on again.

Stack pointer

The program stack is located in RAM. Sectors holding the stack must not be turned off if an interrupt
has to be executed or a low-power mode is entered.

286

RAM Controller SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

RAMCTL Module Registers

8.3 RAMCTL Module Registers

The RAMCTL module register is listed in [Table 8-1. The base address can be found in the device specific
datasheet. The address offset is given in [[able 8-1].

Table 8-1. RAMCTL Module Register

Register Short Form Register Type Address Initial State
RAMCTL control register 0 RCCTLO Read/write 0000h 0000h
RCCTLO, RAM Controller Control Register 0
15 14 13 12 11 10 9 8
RCKEYx
Always reads as 69h
Must be written as 5Ah
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
Reserved RCRS30FF RCRS20FF RCRS10FF RCRSOOFF
r-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0
RCKEY Bits 15-8 = RAM Controller Key. Always read as 69h. Must be written as 5Ah, otherwise the RAM controller write is
ignored.
Reserved Bits 7-4 Reserved. Always read as 0.
RCRSyOFF Bits 3-0 RAM Controller RAM Sector y Off. Setting the bit to 1 turns off the RAM sector y. All data of the RAM

sector y is lost. See the device specific datasheet to find the address range and size of each RAM
sector.

SLAU208-June 2008
Eubmit Documentation Feedbacl

RAM Controller 287

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

288 RAM Controller SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 9
INSTRUMENTS SLAU208— June 2008

DMA Controller

The DMA controller module transfers data from one address to another without CPU intervention. This
chapter describes the operation of the DMA controller that is available on all MSP430x5xx devices.

Topic Page
L 1% R 0 1\Y/ V2N [} { oo [V Lo { To] o | O 290
9.2 DMA OperatioN] e ieieeeeieieiaeaeieieieraeeeieieraeaeieieieraeeeeeieraraee. 297
93 DMA RegiStersou et ieieaeaeaieieieiieieaeenen. 303
SLAU208-June 2008 DMA Controller 289

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

DMA Introduction

13 TEXAS
INSTRUMENTS

www.ti.com

9.1

DMA Introduction

The direct memory access (DMA) controller transfers data from one address to another, without CPU
intervention, across the entire address range. For example, the DMA controller can move data from the
ADC12_A conversion memory to RAM.

Devices that contain a DMA controller may have up to eight DMA channels available. Therefore,
depending on the number of DMA channels available, some features described in this chapter are not
applicable to all devices.

Using the DMA controller can increase the throughput of peripheral modules. It can also reduce system
power consumption by allowing the CPU to remain in a low-power mode without having to awaken to
move data to or from a peripheral.

The DMA controller features include:

The DMA controller block diagram is shown in Figure 9-1).

Up to eight independent transfer channels
Configurable DMA channel priorities

Requires only two MCLK clock cycles per transfer
Byte or word and mixed byte/word transfer capability
Block sizes up to 65535 bytes or words
Configurable transfer trigger selections

Selectable edge or level-triggered transfer

Four addressing modes

Single, block, or burst-block transfer modes

290

DMA Controller

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com DMA Introduction

JTAG Active
NMI Interrupt Request
DMAOTSELX Halt ENNMI
@ ROUNDROBIN
DMADTX
DMADSTINCRXx
DMAOTRIGO — 2| [WDMADSTBYTE 13
DMAOTRIGT —
DMA Channel 0
N DMAOSA
° — DMAODA —
[
DMAOSZ
DMAOTRIG31
2t lw DMASRSBYTE g
DMASRCINCRx
to USB DMAEN
if available
DMA1TSELx o DMADTX
5 ‘g r. DMADSTINCRx
o DMADSTBYTE
. 2{ [® "
DMA1TRIGO —]00000 £ WA Chanmel
DMA1TRIG1 —|00001 2z Ly
S DMA1SA
° —e—> o [DMA1DA | Address |
° <Et Space
o 2 DMA1SZ
_’
2! lmpmasrsBYTE 4 <
DMA1TRIG31 [11111 DMASRCINCRX
/ DMAEN
to USB
if available ¢ DMADSTINCR)?MADTX
DMANRTSELx 2| [WDMADSTBYTE 13
DMA Channel n
DMANTRIGO —| DMAnSA
DMANTRIGT —|] DMANDA [|
DMANSZ
[]
. 2T lm DMASRSBYTE m DMAEN
° DMASRCINCRx
DMANTRIG31 —8 DMARMWDIS
T> Halt CPU
to USB
if available

Figure 9-1. DMA Controller Block Diagram

SLAU208—-June 2008

DMA Controller 291
Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
DMA Operation www.ti.com
9.2 DMA Operation
The DMA controller is configured with user software. The setup and operation of the DMA is discussed in
the following sections.
9.2.1 DMA Addressing Modes
The DMA controller has four addressing modes. The addressing mode for each DMA channel is
independently configurable. For example, channel 0 may transfer between two fixed addresses, while
channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 9-2.
The addressing modes are:
* Fixed address to fixed address
» Fixed address to block of addresses
» Block of addresses to fixed address
» Block of addresses to block of addresses
The addressing modes are configured with the DMASRCINCRx and DMADSTINCRXx control bits. The
DMASRCINCRX bits select if the source address is incremented, decremented, or unchanged after each
transfer. The DMADSTINCRX bits select if the destination address is incremented, decremented, or
unchanged after each transfer.
Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte. When transferring
word-to-byte, only the lower byte of the source-word transfers. When transferring byte-to-word, the upper
byte of the destination-word is cleared when the transfer occurs.
D —
DMA Address Space Address Space
Controller|
L —»
Fixed Address To Fixed Address Fixed Address To Block Of Addresses
—
DMA Address Space Address Space
Controller
Block Of Addresses To Fixed Address Block Of Addresses To Block Of Addresses
Figure 9-2. DMA Addressing Modes
9.2.2 DMA Transfer Modes
The DMA controller has six transfer modes selected by the DMADTX bits as listed in [[able 9-7. Each
channel is individually configurable for its transfer mode. For example, channel 0 may be configured in
single transfer mode, while channel 1 is configured for burst-block transfer mode, and channel 2 operates
in repeated block mode. The transfer mode is configured independently from the addressing mode. Any
addressing mode can be used with any transfer mode.
Two types of data can be transferred selectable by the DMAXCTL DSTBYTE and SRCBYTE fields. The
source and/or destination location can be either byte or word data. It is also possible to transfer byte to
byte, word to word or any combination.
292 DMA Controller SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Single Transfer
Table 9-1. DMA Transfer Modes
DMADTXx Transfer Mode Description
000 Single transfer Each transfer requires a trigger. DMAEN is automatically cleared when DMAXSZ
transfers have been made.
001 Block transfer A complete block is transferred with one trigger. DMAEN is automatically cleared at
the end of the block transfer.
010, 011 Burst-block transfer CPU activity is interleaved with a block transfer. DMAEN is automatically cleared at
the end of the burst-block transfer.
100 Repeated single transfer Each transfer requires a trigger. DMAEN remains enabled.
101 Repeated block transfer A complete block is transferred with one trigger. DMAEN remains enabled.
110, 112 Repeated burst-block

CPU activity is interleaved with a block transfer. DMAEN remains enabled.
transfer

Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger. The single transfer state
diagram is shown in Eigure 9-3.

The DMAXSZ register is used to define the number of transfers to be made. The DMADSTINCRXx and
DMASRCINCRX bits select if the destination address and the source address are incremented or
decremented after each transfer. If DMAxSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary registers. The temporary
values of DMAXSA and DMAXDA are incremented or decremented after each transfer. The DMAxSZ
register is decremented after each transfer. When the DMAXSZ register decrements to zero it is reloaded
from its temporary register and the corresponding DMAIFG flag is set. When DMADTx = 0, the DMAEN bit
is cleared automatically when DMAXSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with DMAEN = 1, and a transfer
occurs every time a trigger occurs.

SLAU208-June 2008 DMA Controller 293
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Block Transfers www.ti.com

DMAEN =0

Reset

- DMAEN =0
DMAEN =0 DMAEN = 1

DMAREQ =0
T_Size - DMAxSZ

DMAXSZ - T_Size
DMAXSA - T_SourceAdd

[DMADTx =0 |
AND DMAXSZ = 0] DMAXDA - T_DestAdd
OR DMAEN =0
DMAABORT = 1

DMAABORT=0 DMAREQ =0 <ﬁ—w

]] DMAXSZ > 0
Wait forTrigger AND DMAEN =1

[+Trigger AND DMALEVEL =0]
OR

[Trigger =1 AND DMALEVEL = 1]

2 x MCLK

T_Size - DMAXSZ
DMAXSA - T_SourceAdd
DMAXDA - T_DestAdd

Hold CPU,
Transfer one word/byte

[ENNMI =1
AND NMI event]
OR

DMADTx = 4
AND DMAXSZ =0

AND DMAEN = 1
Decrement DMAxSZ J
Modify T_SourceAdd J

Modify T_DestAdd

[DMALEVEL =1
AND Trigger = 0]

Figure 9-3. DMA Single Transfer State Diagram

Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one trigger. When DMADTX =1,
the DMAEN bit is cleared after the completion of the block transfer and must be set again before another
block transfer can be triggered. After a block transfer has been triggered, further trigger signals occurring
during the block transfer are ignored. The block transfer state diagram is shown in Eigure 9-4.

The DMAXSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRXx
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAxSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary registers. The temporary
values of DMAXSA and DMAXDA are incremented or decremented after each transfer in the block. The
DMAXSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAXSZ register decrements to zero it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

294 DMA Controller SLAU208-June 2008
Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Block Transfers

During a block transfer, the CPU is halted until the complete block has been transferred. The block
transfer takes 2 x MCLK x DMAXSZ clock cycles to complete. CPU execution resumes with its previous
state after the block transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion of the block transfer. The
next trigger after the completion of a repeated block transfer triggers another block transfer.

DMAEN =0
Reset
DMAEN =0
DMAREQ =0 DMAEN =0
T_Size - DMAXSZ DMAEN =1
f .
[DMADTX = 1 DMAXSZ - T_Size
AND DMAXSZ = 0] DMAXSA - T_SourceAdd
OR DMAXDA - T_DestAdd
DMAEN =0
DMAABORT = Ty
DMAREQ =0
T_Size - DMAXSZ
DMAABORT =0 - ——
I DMAXSA - T_SourceAdd
DMAXxDA - T_DestAdd
Wait forTrigger
DMADTx =5
AND DMAXSZ =0
[+TriggerAND DMALEVEL=0] AND DMAEN =1
OR
[Trigger=1AND DMALEVEL=1]
2 x MCLK
Hold CPU,
Transfer one word/byte
[ENNMI =1
AND NMI event] DMAXSZ > 0
OR
[DMALEVEL =1
AND Trigger = 0]
Decrement DMAxSZ
Modify T_SourceAdd z J

Modify T_DestAdd

Figure 9-4. DMA Block Transfer State Diagram

9.2.2.1 Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity interleaved. The CPU executes

2 MCLK cycles after every four byte/word transfers of the block resulting in 20% CPU execution capacity.
After the burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared. DMAEN
must be set again before another burst-block transfer can be triggered. After a burst-block transfer has
been triggered, further trigger signals occurring during the burst-block transfer are ignored. The
burst-block transfer state diagram is shown in Figure 9-5.

The DMAXSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRXx
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAXSZ = 0, no transfers occur.

SLAU208-June 2008 DMA Controller 295
Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Block Transfers www.ti.com

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary registers. The temporary
values of DMAXSA and DMAXDA are incremented or decremented after each transfer in the block. The
DMAXSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAXSZ register decrements to zero it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of the burst-block transfer and
no further trigger signals are required to initiate another burst-block transfer. Another burst-block transfer
begins immediately after completion of a burst-block transfer. In this case, the transfers must be stopped
by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set. In repeated burst-block mode the
CPU executes at 20% capacity continuously until the repeated burst-block transfer is stopped.

296 DMA Controller SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

i3 TEXAS

INSTRUMENTS
www.ti.com Block Transfers
DMAEN =0
Reset
DMAEN = 0
DMAREQ = 0 DMAEN =0
T_Size - DMAXSZ DMAEN =1 Y
DMAXSZ - T_Size
Aﬁ“g%[;;:xz{zz’_"g] DMAXSA - T_SourceAdd
OR - DMAXDA - T_DestAdd
DMAEN = 0
DMAABORT = 1
DMAABORT=0
Wait forD
[+Trigger AND DMALEVEL =0]
2 x MCLK [Trigger=1 AND DMALEVEL 1]
Hold h
Tansfer one word/byte
[ENNMI = 1
AND N(';"ée"e"t] T_Size — DMAXSZ
[DMALEVEL = 1 DMAXSA - T_SourceAdd
AND DMAXDA - T_DestAdd
. ~ 7y
Trigger = 0] DMAXSZ > 0
Decrement DMAxSZ

9.2.3

Modify T_SourceAdd
Modify T_DestAdd

multiple of 4 words/byte:
were transferred

Burst:h /

DMAXSZ > 0 AND 4

F

2 x MCLK

DMAXSZ > 0

[DMADTx = {6, 7}
AND DMAXSZ = 0]

(release CPU for 2 x MCLK)

Figure 9-5. DMA Burst-Block Transfer State Diagram

Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the DMAXTSELx.The
DMAXTSELX bits should be modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur. describes the trigger operation for each type of module. Please refer
to the specific device datasheet for the list of triggers available, along with their respective DMAXTSELX

values.

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

DMA Controller 297

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Edge-Sensitive Triggers www.ti.com

When selecting the trigger, the trigger must not have already occurred, or the transfer will not take place.

Note: DMA Trigger Selection and USB

On devices that contain a USB module, the triggers selection from DMA channels 0, 1, or 2
can be used for the USB time stamp event selection. Please refer to the USB module
description for further details.

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge of the trigger signal initiates
the transfer. In single-transfer mode, each transfer requires its own trigger. When using block or
burst-block modes, only one trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation, level-sensitive triggers can
only be used when external trigger DMAEQO is selected as the trigger. DMA transfers are triggered as long
as the trigger signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to complete. If the trigger signal
goes low during a block or burst-block transfer, the DMA controller is held in its current state until the
trigger goes back high or until the DMA registers are modified by software. If the DMA registers are not
modified by software, when the trigger signal goes high again, the transfer resumes from where it was
when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3} are recommended because
the DMAEN bit is automatically reset after the configured transfer.

Halting Executing Instructions for DMA Transfers

The DMARMWDIS bit controls when the CPU is halted for DMA transfers. When DMARMWDIS = 0, the
CPU is halted immediately and the transfer begins when a trigger is received. In this case, it is possible

that CPU read-modify-write operations can be interrupted by a DMA transfer. When DMARMWDIS =1,

the CPU finishes the currently executing read-modify-write operation before the DMA controller halts the
CPU and the transfer begins.See

298

DMA Controller SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Halting Executing Instructions for DMA Transfers
Table 9-2. DMA Trigger Operation
Module Operation
DMA A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset when the transfer
starts.

9.24

9.25

A transfer is triggered when the DMAXIFG flag is set. DMAOIFG triggers channel 1, DMA1IFG triggers channel 2,
and DMA2IFG triggers channel 0. None of the DMAXIFG flags are automatically reset when the transfer starts.
A transfer is triggered by the external trigger DMAEO.

Timer_A A transfer is triggered when the TACCRO CCIFG flag is set. The TACCRO CCIFG flag is automatically reset
when the transfer starts. If the TACCRO CCIE bit is set, the TACCRO CCIFG flag will not trigger a transfer.
A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is automatically reset
when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2 CCIFG flag will not trigger a transfer.

Timer_B A transfer is triggered when the TBCCRO CCIFG flag is set. The TBCCRO CCIFG flag is automatically reset
when the transfer starts. If the TBCCRO CCIE bit is set, the TBCCRO CCIFG flag will not trigger a transfer.
A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is automatically reset
when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2 CCIFG flag will not trigger a transfer.

USCI_Ax A transfer is triggered when USCI_Ax receives new data. UCAXRXIFG is automatically reset when the transfer
starts. If UCAXRXIE is set, the UCAXRXIFG will not trigger a transfer.
A transfer is triggered when USCI_Ax is ready to transmit new data. UCAXTXIFG is automatically reset when the
transfer starts. If UCAXTXIE is set, the UCAXTXIFG will not trigger a transfer.

USCI_Bx A transfer is triggered when USCI_Bx receives new data. UCBXRXIFG is automatically reset when the transfer
starts. If UCBXRXIE is set, the UCBxRXIFG will not trigger a transfer.
A transfer is triggered when USCI_BX is ready to transmit new data. UCBXTXIFG is automatically reset when the
transfer starts. If UCBXTXIE is set, the UCBXTXIFG will not trigger a transfer.

DAC12_A A transfer is triggered when the DAC12_xCTLO DAC12IFG flag is set. The DAC12_xCTLO DAC12IFG flag is
automatically cleared when the transfer starts. If the DAC12_xCTLO DAC12IE bit is set, the DAC12_xCTLO
DAC12IFG flag will not trigger a transfer.

ADC12_A A transfer is triggered by an ADC12IFGx flag. When single-channel conversions are performed, the
corresponding ADC12IFGx is the trigger. When sequences are used, the ADC12IFGx for the last conversion in
the sequence is the trigger. A transfer is triggered when the conversion is completed and the ADC12IFGx is set.
Setting the ADC12IFGx with software will not trigger a transfer. All ADC12IFGx flags are automatically reset
when the associated ADC12MEMX register is accessed by the DMA controller.

MPY A transfer is triggered when the hardware multiplier is ready for a new operand.
Reserved No transfer is triggered.

Stopping DMA Transfers

There are two ways to stop DMA transfers in progress:

» A single, block, or burst-block transfer may be stopped with an NMI interrupt, if the ENNMI bit is set in
register DMACTL1.

» A burst-block transfer may be stopped by clearing the DMAEN bit.

DMA Channel Priorities

The default DMA channel priorities are DMAO through DMAY. If two or three triggers happen
simultaneously or are pending, the channel with the highest priority completes its transfer (single, block or
burst-block transfer) first, then the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher priority channel is triggered. The higher priority channel waits until the
transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit. When the ROUNDROBIN bit is
set, the channel that completes a transfer becomes the lowest priority. The order of the priority of the
channels always stays the same, DMAO-DMA1-DMAZ2, for example for three channels:

DMA Priority Transfer Occurs New DMA Priority
DMAO - DMA1 - DMA2 DMA1 DMA2 - DMAO - DMA1
DMA2 - DMAO - DMA1 DMA2 DMAO - DMA1 - DMA2
DMAO - DMA1 - DMA2 DMAO DMA1 - DMA2 - DMAO
SLAU208-June 2008 DMA Controller 299

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Halting Executing Instructions for DMA Transfers www.ti.com

9.2.6

9.2.7

9.2.8

When the ROUNDROBIN bit is cleared the channel priority returns to the default priority.

DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize before each single transfer or
complete block or burst-block transfer. Each byte/word transfer requires two MCLK cycles after
synchronization, and one cycle of wait time after the transfer. Because the DMA controller uses MCLK, the
DMA cycle time is dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DMA controller will use the MCLK source for each
transfer, without re-enabling the CPU. If the MCLK source is off, the DMA controller will temporarily restart
MCLK, sourced with DCOCLK, for the single transfer or complete block or burst-block transfer. The CPU
remains off, and after the transfer completes, MCLK is turned off. The maximum DMA cycle time for all
operating modes is shown in [Table 9-3.

Table 9-3. Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time
Active mode MCLK=DCOCLK 4 MCLK cycles

Active mode MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPMO0/1 MCLK=DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 5 MCLK cycles + 5 ps®
Low-power mode LPMO0/1 MCLK=LFXT1CLK 5 MCLK cycles

Low-power mode LPM3 MCLK=LFXT1CLK 5 MCLK cycles

Low-power mode LPM4 MCLK=LFXT1CLK 5 MCLK cycles + 5 ps®

@) The additional 5 s are needed to start the DCOCLK. It is the tpmx) Parameter in the data sheet.

Using DMA With System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts remain pending until the
completion of the transfer. NMI interrupts can interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an interrupt service routine or other
routine must execute with no interruptions, the DMA controller should be disabled prior to executing the
routine.

DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any mode, when the
corresponding DMAXSZ register counts to zero. If the corresponding DMAIE and GIE bits are set, an
interrupt request is generated.

All DMAIFG flags are prioritized, with DMAOIFG being the highest, and combined to source a single
interrupt vector. The highest priority enabled interrupt generates a number in the DMAIV register. This
number can be evaluated or added to the program counter to automatically enter the appropriate software
routine. Disabled DMA interrupts do not affect the DMAIV value.

Any access, read or write, of the DMAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that DMAOQ has the highest priority. If the DMAOIFG and DMAZ2IFG flags are set
when the interrupt service routine accesses the DMAIV register, DMAOIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the DMA2IFG will generate another interrupt.

300

DMA Controller SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

DMAIV Software Example

DMALIV Software Example

The following software example shows the recommended use of DMAIV and the handling overhead for a
three channel DMA controller. The DMAIV value is added to the PC to automatically jump to the

appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

;Interrupt handler for

DVA_HND

DVA7_HND

DVA6_HND

DVA5_HND

DVA4_HND

DVA3_HND

DVA2_HND

DVAL_HND

DMAO_HND

9.29

ADD
RETI
JWP
JwP
JwP
JMWP
JMWP
JWP
JWP
JwP

RETI

RETI

RETI

RETI

RETI

RETI

RETI

RETI

&DVAI YV, PC

DMAO_HND
DVAL_HND
DVA2_HND
DVA3_HND
DVA4_HND
DVAS_HND
DVA6_HND
DVA7_HND

DVAXI FG

1

1

Cycl es

Interrupt |atency

Add offset to Junp table

Vector O:
Vector 2: DMA channel
Vector 4: DMA channel
Vector 6: DMA channel
Vector 8: DMA channel
Vector 10: DMA channel
Vector 12: DMA channel
Vector 14: DMA channel
Vector 16: DMA channel

Vector 16: DMA channel
Task starts here
Back to mmin program

Vector 14: DMA channel
Task starts here
Back to main program

Vector 12: DMA channel
Task starts here
Back to main program

Vector 10: DMA channel
Task starts here
Back to mmin program

Vector 8: DMA channel
Task starts here
Back to main program

Vector 6: DMA channel
Task starts here
Back to main program

Vector 4: DMA channel
Task starts here
Back to mmin program

Vector 2: DMA channel
Task starts here
Back to main program

Using the USCI_B I’C Module with the DMA Controller

No interrupt

~No b WNPEFO

~

NNNNMNNNNDDNOTWwOO

The USCI_B I°C module provides two trigger sources for the DMA controller. The USCI_B 1°C module can
trigger a transfer when new I12C data is received and the when the transmit data is needed.

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

DMA Controller 301

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

DMAIV Software Example www.ti.com

9.2.10 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data from any ADC12MEMX
register to another location. DMA transfers are done without CPU intervention and independently of any
low-power modes. The DMA controller increases throughput of the ADC12 module, and enhances
low-power applications allowing the CPU to remain off while data transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx = {0,2} the ADC12IFGx flag
for the ADC12MEMx used for the conversion can trigger a DMA transfer. When CONSEQx = {1,3}, the
ADCI12IFGx flag for the last ADC12MEMX in the sequence can trigger a DMA transfer. Any ADC12IFGx
flag is automatically cleared when the DMA controller accesses the corresponding ADC12MEMX.

9.2.11 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data to the DAC12_xDAT
register. DMA transfers are done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput to the DAC12 module, and enhances low-power applications
allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using the DMA controller with the
DAC12. For example, an application that produces a sinusoidal waveform may store the sinusoid values
in a table. The DMA controller can continuously and automatically transfer the values to the DAC12 at
specific intervals creating the sinusoid with zero CPU execution. The DAC12_xCTL DAC12IFG flag is
automatically cleared when the DMA controller accesses the DAC12_xDAT register.

302

DMA Controller SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com DMA Registers

9.3 DMA Registers

The DMA module registers are listed in [able 9-4. The base addresses can be found in the device specific
datasheet. Each channel starts at its respective base address. The address offsets are listed in [able 9-4.

Table 9-4. DMA Registers

Register Short Form Register Type g?fg;?ss Initial State
DMA control 0 DMACTLO Read/write 00h 0000h
DMA control 1 DMACTL1 Read/write 02h 0000h
DMA control 2 DMACTL2 Read/write 04h 0000h
DMA control 3 DMACTL3 Read/write 06h 0000h
DMA control 4 DMACTL4 Read/write 08h 0000h
DMA interrupt vector DMAIV Read only OEh 0000h
DMA channel 0 control DMAOCTL Read/write 00h 0000h
DMA channel 0 source address DMAOSA Read/write 02h Unchanged
DMA channel 0 destination address DMAODA Read/write 06h Unchanged
DMA channel O transfer size DMAOSZ Read/write 0Ah Unchanged
DMA channel 1 control DMA1CTL Read/write 00h 0000h
DMA channel 1 source address DMALSA Read/write 02h Unchanged
DMA channel 1 destination address DMA1DA Read/write 06h Unchanged
DMA channel 1 transfer size DMA1SZ Read/write 0Ah Unchanged
DMA channel 2 control DMA2CTL Read/write 00h 0000h
DMA channel 2 source address DMA2SA Read/write 02h Unchanged
DMA channel 2 destination address DMA2DA Read/write 06h Unchanged
DMA-channel 2 transfer size DMA2SZ Read/write 0Ah Unchanged
DMA channel 3 control DMA3CTL Read/write 00h 0000h
DMA channel 3 source address DMASSA Read/write 02h Unchanged
DMA channel 3 destination address DMAS3DA Read/write 06h Unchanged
DMA-channel 3 transfer size DMA3SzZ Read/write 0Ah Unchanged
DMA channel 4 control DMAA4CTL Read/write 00h 0000h
DMA channel 4 source address DMA4SA Read/write 02h Unchanged
DMA channel 4 destination address DMA4DA Read/write 06h Unchanged
DMA-channel 4 transfer size DMA4SZ Read/write 0Ah Unchanged
DMA channel 5 control DMAS5CTL Read/write 00h 0000h
DMA channel 5 source address DMAS5SA Read/write 02h Unchanged
DMA channel 5 destination address DMASDA Read/write 06h Unchanged
DMA-channel 5 transfer size DMA5SZ Read/write 0Ah Unchanged
DMA channel 6 control DMAG6CTL Read/write 00h 0000h
DMA channel 6 source address DMABSA Read/write 02h Unchanged
DMA channel 6 destination address DMAG6DA Read/write 06h Unchanged
DMA-channel 6 transfer size DMA6SZ Read/write 0Ah Unchanged
DMA channel 7 control DMA7CTL Read/write 00h 0000h
DMA channel 7 source address DMA7SA Read/write 02h Unchanged
DMA channel 7 destination address DMA7DA Read/write 06h Unchanged
DMA-channel 7 transfer size DMA7SZ Read/write 0Ah Unchanged
SLAU208-June 2008 DMA Controller 303

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
DMACTLO, DMA Control Register 0 www.ti.com
DMACTLO, DMA Control Register O
15 14 13 12 11 10 9 8
] Reserved | DMAITSELX \
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
Reserved | DMAOTSELX ‘
r0 ro r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMALTSELX Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for
number of channels and trigger assignment.
00000 DMA1TRIGO
00001 DMA1TRIG1
00010 DMA1TRIG2
11110 DMA1TRIG30
11111 DMA1TRIG31
Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMAOTSELX Bits 4-0 Same as DMA1TSELX
DMACTL1, DMA Control Register 1
15 14 13 12 11 10 9 8
] Reserved | DMASTSELX \
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
Reserved | DMA2TSELX ‘
r0 ro r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMA3TSELX Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for
number of channels and trigger assignment.
00000 DMA3TRIGO
00001 DMA3TRIG1
00010 DMA3TRIG2
11110 DMA3TRIG30
11111 DMA3TRIG31
Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMA2TSELX Bits 4-0 Same as DMA3TSELX

304 DMA Controller

SLAU208—-June 2008

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

DMACTL2, DMA Control Register 2

DMACTLZ2, DMA Control Register 2

15 14 13 12 11 10 9 8
] Reserved | DMASTSELX \
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
Reserved | DMA4TSELx |
r0 ro r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMASTSELX Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for
number of channels and trigger assignment.
00000 DMAS5TRIGO
00001 DMAS5TRIG1
00010 DMAS5TRIG2
11110 DMAS5TRIG30
11111 DMAS5TRIG31
Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMAA4TSELX Bits 4-0 Same as DMASTSELX
DMACTL3, DMA Control Register 3
15 14 13 12 11 10 9 8
] Reserved | DMA7TSELX \
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
Reserved | DMABTSELX ‘
r0 ro r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMA7TSELX Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for
number of channels and trigger assignment.
00000 DMA7TRIGO
00001 DMA7TRIG1
00010 DMA7TRIG2
11110 DMA7TRIG30
11111 DMA7TRIG31
Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMAGTSELX Bits 4-0 Same as DMA7TSELX

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

DMA Controller 305

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
DMACTL4, DMA Control Register 4 www.ti.com
DMACTL4, DMA Control Register 4
15 14 13 12 11 10 9 8
] 0 0 0 | 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
2 1 0
DMARMWDIS ROUND ENNMI
ROBIN
r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)
Reserved Bits 15-3 Reserved. Read only. Always read as 0.
DMARMWDIS Bit 2 Read-Modify-Write Disable. This bit when set, inhibits any DMA transfers from occurring during CPU
read-modify-write operations.
0 DMA transfers can occur during read-modify-write CPU operations
1 DMA transfers inhibited during read-modify-write CPU operations
ROUNDROBIN Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.
0 DMA channel priority is DMAO - DMAL - DMA2 - - DMA7
1 DMA channel priority changes with each transfer
ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI interrupt. When an NMI

interrupts a DMA transfer, the current transfer is completed normally, further transfers are stopped, and
DMAABORT is set.

0 NMI interrupt does not interrupt DMA transfer
1 NMI interrupt interrupts a DMA transfer

306 DMA Controller

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

DMAXCTL, DMA Channel x Control Register

DMAXCTL, DMA Channel x Control Register

15 14 13 12 11 10 9 8
| Reserved | DMADTx \ DMADSTINCRX DMASRCINCRxX \
r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
DMA DMA DMALEVEL DMAEN DMAIFG DMAIE DMAABORT DMAREQ
DSTBYTE SRCBYTE
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Reserved Bit 15 Reserved. Read only. Always read as 0.
DMADTX Bits 14-12 DMA transfer mode

DMADSTINCRx Bits 11-10
DMASRCINCRXx Bits 9-8
DMADSTBYTE Bit 7
DMASRCBYTE Bit 6
DMALEVEL Bit 5
DMAEN Bit 4

000 Single transfer

001 Block transfer

010 Burst-block transfer

011 Burst-block transfer

100 Repeated single transfer

101 Repeated block transfer

110 Repeated burst-block transfer
111 Repeated burst-block transfer

DMA destination increment. This bit selects automatic incrementing or decrementing of the destination
address after each byte or word transfer. When DMADSTBYTE=1, the destination address
increments/decrements by one. When DMADSTBYTE=0, the destination address
increments/decrements by two. The DMAXDA is copied into a temporary register and the temporary
register is incremented or decremented. DMAXDA is not incremented or decremented.

00 Destination address is unchanged
01 Destination address is unchanged
10 Destination address is decremented
11 Destination address is incremented

DMA source increment. This bit selects automatic incrementing or decrementing of the source address
for each byte or word transfer. When DMASRCBYTE=1, the source address increments/decrements by
one. When DMASRCBYTE=0, the source address increments/decrements by two. The DMAXSA is

copied into a temporary register and the temporary register is incremented or decremented. DMAXSA is

not incremented or decremented.

00 Source address is unchanged
01 Source address is unchanged
10 Source address is decremented
11 Source address is incremented

DMA destination byte. This bit selects the destination as a byte or word.

0 Word
1 Byte
DMA source byte. This bit selects the source as a byte or word.
0 Word

1 Byte

DMA level. This bit selects between edge-sensitive and level-sensitive triggers.
0 Edge sensitive (rising edge)

1 Level sensitive (high level)

DMA enable

0 Disabled

1 Enabled

SLAU208-June 2008
Eubmit Documentation Feedbacl

DMA Controller

307

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
DMAXCTL, DMA Channel x Control Register www.ti.com
DMAIFG Bit 3 DMA interrupt flag
0 No interrupt pending
1 Interrupt pending
DMAIE Bit 2 DMA interrupt enable
0 Disabled
1 Enabled
DMAABORT Bit 1 DMA abort. This bit indicates if a DMA transfer was interrupt by an NMI.
0 DMA transfer not interrupted
1 DMA transfer was interrupted by NMI
DMAREQ Bit 0 DMA request. Software-controlled DMA start. DMAREQ is reset automatically.
0 No DMA start
1 Start DMA
308 DMA Controller SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com DMAXSA, DMA Source Address Register
DMAXSA, DMA Source Address Register
31 30 29 28 27 26 25 24
’ Reserved ‘
r0 ro r0 ro r0 ro r0 ro
23 22 21 20 19 18 17 16
Reserved DMAXSAX
r0 r0 r0 r0 rw w rw w
15 14 13 12 11 10 9 8
DMAXSAX
rw rw rw rw rw rw rw rw
7 6 5 4 3 2 1 0
DMAXSAX
rw rw rw rw rw rw rw rw
Reserved Bits 31-20 Reserved. Read only. Always read as 0.
DMAXSA Bits 15-0 DMA source address. The source address register points to the DMA source address for single

transfers or the first source address for block transfers. The source address register remains unchanged
during block and burst-block transfers. There are two words for the DMAXSA register. Bits 31-20 are
reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended
instructions. When writing to DMAXSA with word instructions, bits 19-16 are cleared.

DMAxDA, DMA Destination Address Register

31 30 29 28 27 26 25 24
‘ Reserved

r0 ro r0 ro r0 ro r0 ro

23 22 21 20 19 18 17 16

Reserved DMAXDAX

r0 ro r0 ro rw rw rw rw

15 14 13 12 11 10 9 8
DMAXDAX

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0
DMAXDAX

rw rw rw rw rw rw rw rw
Reserved Bits 31-20 Reserved. Read only. Always read as 0.

DMAXxDAX Bits 15-0 DMA destination address. The destination address register points to the DMA destination address for

single transfers or the first destination address for block transfers. The destination address register
remains unchanged during block and burst-block transfers. There are two words for the DMAXDA
register. Bits 31-20 are reserved and always read as zero. Reading or writing bits 19-16 requires the
use of extended instructions. When writing to DMAXDA with word instructions, bits 19-16 are cleared.

SLAU208-June 2008 DMA Controller 309
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
DMAXSZ, DMA Size Address Register www.ti.com
DMAxSZ, DMA Size Address Register
15 14 13 12 11 10 9 8
] DMAXSZx
w rw w rw w rw w rw
7 6 5 4 3 2 1 0
DMAXSZx
rw rw rw rw rw rw rw rw

DMAXSZx Bits 15-0 DMA size. The DMA size register defines the number of byte/word data per block transfer. DMAXSZ
register decrements with each word or byte transfer. When DMAXSZ decrements to 0, it is immediately

and automatically reloaded with its previously initialized value.

00000h Transfer is disabled

00001h One byte or word is transferred
00002h Two bytes or words are transferred
OFFFFh 65535 bytes or words are transferred

DMALIV, DMA Interrupt Vector Register

15 14 13 12 11 10
\ 0 0 \ 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
5 4 3 2 1
[DMAIVxX 0
r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0
DMAIVX Bits 15-0 DMA interrupt vector value
C%lr\{ltgln\{s Interrupt Source Interrupt Flag grtiirrril:ft
00h No interrupt pending
02h DMA channel 0 DMAOIFG Highest
04h DMA channel 1 DMA1IFG
06h DMA channel 2 DMA2IFG
08h DMA channel 3 DMABIFG
0Ah DMA channel 4 DMA4IFG
0Ch DMA channel 5 DMASIFG
OEh DMA channel 6 DMAGIFG
10h DMA channel 7 DMATYIFG Lowest

310 DMA Controller

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 10
INSTRUMENTS SLAU208June 2008

32-Bit Hardware Multiplier (MPY32)

This chapter describes the 32-bit hardware multiplier (MPY32). The 32-bit hardware multiplier is
implemented in all MSP430x5xx devices.

Topic Page
10.1 32-Bit Hardware Multiplier Introduction[o..ovvoieeeiieeeeiieiaeaenens 319
10.2 32-Bit Hardware Multiplier Operation]o oo eeieieeeieieieeaeeeieieraeaeeees 314
10.3 32-Bit Hardware Multiplier Registersf....cooveeeeeeeeeeeeeieee e 329

SLAU208-June 2008 32-Bit Hardware Multiplier (MPY32) 311

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

32-Bit Hardware Multiplier Introduction www.ti.com

10.1

32-Bit Hardware Multiplier Introduction

The 32-bit hardware multiplier is a peripheral and is not part of the MSP430 CPU. This means its activities
do not interfere with the CPU activities. The multiplier registers are peripheral registers that are loaded
and read with CPU instructions.

The hardware multiplier supports:

e Unsigned multiply

» Signed multiply

» Unsigned multiply accumulate

» Signed multiply accumulate

» 8-bit, 16-bit, 24-bit, and 32-bit operands

e Saturation

* Fractional numbers

» 8-bit and 16-bit operation compatible with 16-bit hardware multiplier

» 8-bit and 24-bit multiplications without requiring a "sign extend" instruction

The 32-bit hardware multiplier block diagram is shown in Figure 10-1].

312

32-Bit Hardware Multiplier (MPY32) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com 32-Bit Hardware Multiplier Introduction
Acce§sible
Register
MAC
MACS
| mpya2n | | wmpysaL |
| mpyss2H | | mpysszaL |
[macszn | [macszL |
| mAcss2H | | mAcss2L | | opah | | op2L |
31 {} 16 15 {} (] 31 {} 16 15 {} 0
OP1 high word OP1 (ow word OP2 (high word) | OP2 (low word)
4\ 16-bit Multiplexer / \ 16-bit Multiplexer /
16x16 Multiplier

OP1_32 m—

OP2_32 m— i

MPYMx l724 Control }

MPYSAT m— Logic \ 32-bit Adder /

MPYFRAC B—
MPYC m— {}

—/

32-bit Demultiplexer

~

<

N\

~

AN
~

SUMEXT

RES3

RES2

RES1/RESHI

RESO/RESLO

Q\

N

<

N\

N

32-bit Multiplexer

~
/

Figure 10-1. 32-Bit Hardware Multiplier Block Diagram

SLAU208-June 2008
Bubmit Documentation FeedbacH

32-Bit Hardware Multiplier (MPY32)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

32-Bit Hardware Multiplier Operation www.ti.com
10.2 32-Bit Hardware Multiplier Operation

The hardware multiplier supports 8-bit, 16-bit, 24-bit, and 32-bit operands with unsigned multiply, signed
multiply, unsigned multiply-accumulate, and signed multiply-accumulate operations. The size of the
operands are defined by the address the operand is written to and if it is written as word or byte. The type
of operation is selected by the address the first operand is written to.

The hardware multiplier has two 32-bit operand registers, operand one OP1 and operand two OP2, and a
64-bit result register accessible via registers RESO to RES3. For compatibility with the 16x16 hardware
multiplier the result of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT, as well.
RESLO stores the low word of the 16x16-bit result, RESHI stores the high word of the result, and
SUMEXT stores information about the result.

The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can be read with the next
instruction after writing to OP2, except when using an indirect addressing mode to access the result.
When using indirect addressing for the result, a NOP is required before the result is ready.

The result of a 24-bit or 32-bit operation can be read with successive instructions after writing OP2 or
OP2H starting with RESO, except when using an indirect addressing mode to access the result. When
using indirect addressing for the result, a NOP is required before the result is ready.

summarizes when each word of the 64-bit result is available for the various combinations of
operand sizes. With a 32-bit wide second operand, OP2L and OP2H need to be written. Depending on
when the two 16-bit parts are written, the result availability may vary; thus, the table shows two entries,
one for OP2L written and one for OP2H written. The worst case defines the actual result availability.

Table 10-1. Result Availability (MPYFRAC = 0, MPYSAT = 0)
Result ready in MCLK cycles

Operation

(OP1 x OP2) RESO RESI RES2 RES3 MEIC After
8/16 x 8/16 3 3 4 4 3 OP2 written
24/32 x 8/16 3 5 6 7 7 OP2 written
8/16 x 24/32 3 5 6 7 7 OP2L written
N/A 3 4 4 4 OP2H written
24/32 x 24/32 3 8 10 11 11 OP2L written
N/A 3 5 6 6 OP2H written

10.2.1 Operand Registers

Operand one OP1 has twelve registers, shown in [Table 10-7, used to load data into the multiplier and also
select the multiply mode. Writing the low-word of the first operand to a given address selects the type of
multiply operation to be performed but does not start any operation. When writing a second word to a
high-word register with suffix 32H the multiplier assumes a 32-bit wide OP1, otherwise 16-bits are
assumed. The last address written prior to writing OP2 defines the width of the first operand. For example,
if MPY32L is written first followed by MPY32H, all 32 bits are used and the data width of OP1 is set to 32
bits. If MPY32H is written first followed by MPY32L, the multiplication will ignore MPY32H and assume a
16-bit wide OP1 using the data written into MPY32L.

314 32-Bit Hardware Multiplier (MPY32) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TEXAS
INSTRUMENTS

www.ti.com 32-Bit Hardware Multiplier Operation

Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for
successive operations. It is not necessary to re-write the OP1 value to perform the operations.

Table 10-2. OP1 Registers

OP1 Register Name Operation

MPY Unsigned multiply — operand bits O up to 15

MPYS Signed multiply — operand bits O up to 15

MAC Unsigned multiply accumulate —operand bits 0 up to 15
MACS Signed multiply accumulate — operand bits 0 up to 15
MPY32L Unsigned multiply — operand bits O up to 15

MPY32H Unsigned multiply — operand bits 16 up to 31

MPYS32L Signed multiply — operand bits O up to 15

MPYS32H Signed multiply — operand bits 16 up to 31

MAC32L Unsigned multiply accumulate — operand bits 0 up to 15
MAC32H Unsigned multiply accumulate — operand bits 16 up to 31
MACS32L Signed multiply accumulate — operand bits 0 up to 15
MACS32H Signed multiply accumulate — operand bits 16 up to 31

Writing the second operand to the operand two register OP2 initiates the multiply operation. Writing OP2
starts the selected operation with a 16-bit wide second operand together with the values stored in OP1.
Writing OP2L starts the selected operation with a 32-bit wide second operand and the multiplier expects a
the high-word to be written to OP2H. Writing to OP2H without a preceding write to OP2L is ignored.

Table 10-3. OP2 Registers
OP2 Register Name Operation

Start multiplication with 16-bit wide operand two (OP2)

opP2 (operand bits 0 up to 15)

Start multiplication with 32-bit wide operand two (OP2)
(operand bits 0 up to 15)

Continue multiplication with 32-bit wide operand two (OP2)
(operand bits 16 up to 31)

OP2L

OP2H

For 8-bit or 24-bit operands the operand registers can be accessed with byte instructions. Accessing the

multiplier with a byte instruction during a signed operation will automatically cause a sign extension of the
byte within the multiplier module. For 24-bit operands only the high-word should be written as byte. If the

24-bit operands are sign-extended is defined by the register that is used to write the low-word to because
this register defines if the operation is unsigned or signed.

The high-word of a 32-bit operand remains unchanged when changing the size of the operand to 16 bit
either by modifying the operand size bits or by writing to the respective operand register. During the
execution of the 16-bit operation the content of the high-word is ignored.

Note: Changing of First or Second Operand During Multiplication

By default changing OP1 or OP2 while the selected multiply operation is being calculated will
render any results invalid that are not ready at the time the new operand(s) are changed.
Writing OP2 or OP2L will abort any ongoing calculation and start a new operation. Results
that are not ready at that time are invalid also for following MAC or MACS operations.

To avoid this behavior the MPYDLYWRTEN bit can be set to 1. Then all writes to any
MPY32 registers are delayed with MPYDLY32=0 until the 64-bit result is ready or with
MPYDLY32=1 until the 32-bit result is ready. For MAC and MACS operations always the
complete 64-bit result should be ready.

See for how many CPU cycles are needed until a certain result register is ready
and valid for each of the different modes.

SLAU208-June 2008 32-Bit Hardware Multiplier (MPY32) 315
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

MACS Underflow and Overflow www.ti.com

10.2.2 Result Registers

The multiplication result is always 64-bits wide. It is accessible via registers RESO to RES3. Used with a
signed operation MPYS or MACS the results are appropriately sign extended. If the result registers are
loaded with initial values before a MACS operation the user software must take care that the written value
is properly sign extended to 64 bits.

Note: Changing of Result Registers During Multiplication

The result registers must not be modified by the user software after writing the second
operand into OP2 or OP2L until the initiated operation is completed.

In addition to RESO to RES3, for compatibility with the 16x16 hardware multiplier the 32-bit result of a 8-bit
or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT. In this case the result low register
RESLO holds the lower 16-bits of the calculation result and the result high register RESHI holds the upper
16-bits. RESO and RES1 are identical to RESLO and RESHI, respectively, in usage and access of
calculated results.

The sum extension registers SUMEXT contents depend on the multiply operation and are listed in
[[able 10-4. If all operands are 16 bits wide or less the 32-bit result is used to determine sign and carry. If
one of the operands is larger than 16 bits the 64-bit result is used.

The MPYC bit reflects the multiplier's carry as listed in and, thus, can be used as 33rd or 65th
bit of the result, if fractional or saturation mode is not selected. With MAC or MACS operations, the MPYC
bit reflects the carry of the 32-bit or 64-bit accumulation and is not taken into account for successive MAC
and MACS operations as the 33rd or 65th bit.

Table 10-4. SUMEXT Contents and MPYC Contents

Mode SUMEXT MPYC

MPY SUMEXT is always 0000h. MPYC is always 0.

MPYS SUMEXT contains the extended sign of the result. MPYC contains the sign of the result.
00000h Result was positive or zero 0 Result was positive or zero
OFFFFh Result was negative 1 Result was negative

MAC SUMEXT contains the carry of the result. MPYC contains the carry of the result.
0000h No carry for result 0 No carry for result
0001h Result has a carry 1 Result has a carry

MACS SUMEXT contains the extended sign of the result. MPYC contains the carry of the result.
00000h Result was positive or zero 0 No carry for result
OFFFFh Result was negative 1 Result has a carry

MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in MACS mode. For example working
with 16-bit input data and 32-bit results, i.e. using just RESLO and RESHI, the available range for positive
numbers is 0 to O7FFF FFFFh and for negative numbers is OFFFF FFFFh to 08000 0000h. An underflow
occurs when the sum of two negative numbers yields a result that is in the range for a positive number. An
overflow occurs when the sum of two positive numbers yields a result that is in the range for a negative
number.

The SUMEXT register contains the sign of the result in both cases described above, OFFFFh for a 32-bit
overflow and 0000h for a 32-bit underflow. The MPYC bit in MPY32CTLO can be used to detect the
overflow condition. If the carry is different than the sign reflected by the SUMEXT register an overflow or
underflow occurred. User software must handle these conditions appropriately.

316

32-Bit Hardware Multiplier (MPY32) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

MACS Underflow and Overflow

10.2.3

Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute address for the registers
because the assembler will not allow .B access to word registers when using the labels from the standard
definitions file.

There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a
signed operation will automatically cause a sign extension of the byte within the multiplier module.

32x32 Unsigned Mul tiply

MoV #01234h, &VPY32L ; Load low word of 1st operand
MoV #01234h, &PY32H ; Load high word of 1st operand
MoV #05678h, &OP2L ; Load low word of 2nd operand
MoV #05678h, &0OP2H ; Load high word of 2nd operand

; ; Process results

; 16x16 Unsigned Miltiply
MoV #01234h, &VWPY Load 1st operand
MoV #05678h, &0OP2 ; Load 2nd operand

; ; Process results

; 8x8 Unsigned Multiply. Absol ute addressing.
MOV. B #012h, &VWPY_B ; Load 1st operand
MOV. B #034h, &0P2_B Load 2nd operand

; ; Process results

; 32x32 Signed Multiply
0. #01234h, &PYS32L ; Load |ow word of 1st operand
MoV #01234h, &WPYS32H ; Load high word of 1st operand
MoV #05678h, &OP2L ; Load low word of 2nd operand
MoV #05678h, &0OP2H ; Load high word of 2nd operand

10.2.4

16x16 Signed Miultiply
MoV #01234h, &WPYS
MoV #05678h, &OP2

1

Process results

Load 1st operand
Load 2nd operand
Process results

8x8 Signed Multiply. Absol ute addressing.

MOV. B
MOV. B

#012h, &VPYS_B
#034h, &0P2_B

Fractional Numbers

)

Load 1st operand
Load 2nd operand
Process results

The 32-bit multiplier provides support for fixed-point signal processing. In fixed-point signal processing,
fractional number are represented by using a fixed decimal point. To classify different ranges of decimal
numbers, a Q-format is used. Different Q-formats represent different locations of the decimal point.

shows the format of a signed Q15 number using 16 bits. Every bit after the decimal point has
a resolution of 1/2, the most significant bit is used as the sign bit. The most negative humber is 08000h
and the maximum positive number is 07FFFh. This gives a range from —1.0 to 0.999969482 = 1.0 for the
signed Q15 format with 16 bits.

SLAU208—-June 2008

32-Bit Hardware Multiplier (MPY32) 317

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Fractional Number Mode www.ti.com

y_

15 bits

Y

(7]
L o—|—

| ol
B
(]
>~

Y

Decimal number equivalent

Decimal point
Sign bit

Figure 10-2. Q15 Format Representation

The range can be increased by shifting the decimal point to the right as shown in Figure 10-3. The signed
Q14 format with 16 bits gives a range from —2.0 to 1.999938965 = 2.0.

y_

|
e 14 bits

1 1 1 1
SX"?T?E

Figure 10-3. Q14 Format Representation

The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with multiplication is that the product
of two number in the range from -1.0 to 1.0 is always in that same range.

Fractional Number Mode

Multiplying two fractional numbers using the default multiplication mode with MPYFRAC = 0 and
MPYSAT = 0 gives a result with 2 sign bits. For example if two 16-bit Q15 numbers are multiplied a 32-bit
result in Q30 format is obtained. To convert the result into Q15 format manually, the first 15 trailing bits
and the extended sign bit must be removed. However, when the fractional mode of the multiplier is used,
the redundant sign bit is automatically removed yielding a result in Q31 format for the multiplication of two
16-bit Q15 numbers. Reading the result register RES1 gives the result as 16-bit Q15 number. The 32-hbit
Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by reading registers RES2 and
RES3.

The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTLO. The actual content of the
result register(s) is not modified when MPYFRAC = 1. When the result is accessed using software, the
value is left-shifted 1 bit resulting in the final Q formatted result. This allows user software to switch
between reading both the shifted (fractional) and the un-shifted result. The fractional mode should only be
enabled when required and disabled after use.

In fractional mode the SUMEXT register contains the sign extended bits 32 and 33 of the shifted result for
16%16-bit operations and bits 64 and 65 for 32x32-bit operations — not only bits 32 or 64, respectively.
The MPYC bit is not affected by the fractional mode. It always reads the carry of the non-fractional result.

; Exanpl e using
; Fractional 16x16 multiplication

Bl S #MPYFRAC, &WPY32CTLO ; Turn on fractional node
MoV &FRACT1, &WPYS ; Load 1st operand as Q15
MoV &FRACT2, &OP2 ; Load 2nd operand as QL5
MOV &RES1, &PROD ; Save result as QL5
BI C #MPYFRAC, &VPY32CTLO ; Back to nornmml npde
318 32-Bit Hardware Multiplier (MPY32) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I,

TEXAS

INSTRUMENTS

www.ti.com Saturation Mode

Table 10-5. Result Availability in Fractional Mode (MPYFRAC =1, MPYSAT = 0)
Result ready in MCLK cycles

Operation
(OP1 x OP2) RESO REst Resz Res3 MPYC After
8/16 x 8/16 3 4 4 3 OP2 written
24/32 x 8/16 5 6 7 7 OP2 written
8/16 x 24/32 5 6 7 7 OP2L written
N/A 3 4 4 4 OP2H written
24/32 x 24/32 3 8 10 11 11 OP2L written
N/A 3 5 6 6 OP2H written

Saturation Mode

The multiplier prevents overflow and underflow of signed operations in saturation mode. The saturation
mode is enabled with MPYSAT = 1 in register MPY32CTLO. If an overflow occurs the result is set to the
most positive value available. If an underflow occurs the result is set to the most negative value available.
This is useful to reduce mathematical artifacts in control systems on overflow and underflow conditions.
The saturation mode should only be enabled when required and disabled after use.

The actual content of the result register(s) is not modified when MPYSAT = 1. When the result is
accessed using software, the value is automatically adjusted providing the most positive or most negative
result when an overflow or underflow has occurred. The adjusted result is also used for successive
multiply-and-accumulate operations. This allows user software to switch between reading the saturated
and the non-saturated result.

With 16x16 operations the saturation mode only applies to the least significant 32 bits, i.e. the result
registers RESO and RES1. Using the saturation mode in MAC or MACS operations that mix 16x16
operations with 32x32, 16x32 or 32x16 operations will lead to unpredictable results.

With 32x32, 16x32, and 32x16 operations the saturated result can only be calculated when RES3 is
ready. In non-5xx devices, reading RESO to RES2 prior to the complete result being ready will deliver the
non-saturated results independent of the MPYSAT bit setting.

Enabling the saturation mode does not affect the content of the SUMEXT register nor the content of the
MPYC bit.

; Exanpl e using
; Fractional 16x16 multiply accunulate with Saturation
: Turn on fractional and saturation node:

Bl S #MPYSAT+MPYFRAC, &VPY32CTLO

MOV &A1, &VPYS ; Load Al for 1st term

MoV &K1, &OP2 ; Load K1 to get Al1*Kl

MOV &A2, &VIACS : Load A2 for 2nd term

MOV &K2, &0OP2 ; Load K2 to get A2*K2

MOV &RES1, &PRCD ;. Save Al*K1+A2*K2 as result
Bl C #MPYSAT+MPYFRAC, &VPY32CTLO ; turn back to nornmal

Table 10-6. Result Availability in Saturation Mode (MPYSAT = 1)
Result ready in MCLK cycles

Operation

After

(OP1 x OP2) RESO RES1 RES2 RES3 Mgi\:c

8/16 x 8/16 3 3 N/A N/A 3 OP2 written

24/32 x 8/16 7 7 7 OP2 written

8/16 x 24/32 7 7 7 OP2L written

4 4 4 4 4 OP2H written

24/32 x 24/32 11 11 11 11 11 OP2L written

6 6 6 6 6 OP2H written

SLAU208-June 2008 32-Bit Hardware Multiplier (MPY32) 319

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Saturation Mode www.ti.com

shows the flow for 32-bit saturation used for 16x16 bit multiplications and the flow for 64-bit
saturation used in all other cases. Primarily, the saturated results depends on the carry bit MPYC and the
most significant bit of the result. Secondly, if the fractional mode is enabled it depends also on the two
most significant bits of the unshift result; i.e., the result that is read with fractional mode disabled.

32-bit Saturation

MPYC=0 and
unshifted RES1,
bit15=1

Overflow:
RES3 unchanged
RES2 unchanged

RES1 = 07FFFh
RESO = OFFFFh

A 4

MPYC=1 and

Underflow:
RES3 unchanged
RES2 unchanged

RES1 = 08000h
RESO = 00000h

4

MPYFRAC=1

4

nshifted RES
bit 15=0 and
bit 14=1

Overflow:
RES3 unchanged
RES2 unchanged

RES1 = 07FFFh
RESO0 = OFFFFh

4

nshifted RES
bit 15=1 and
bit 14=0

Underflow:
RES3 unchanged
RES2 unchanged

RES1 = 08000h
RESO = 00000h

4

64-bit Saturation

MPYC=0 and
unshifted RES3,
bit15=1

Overflow:
RES3 = 07FFFh
RES2 = OFFFFh
RES1 = OFFFFh
RESO = OFFFFh

MPYC=1 and
unshifted RES3,
bit15=0

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RESO = 00000h

No

MPYFRAC=1

nshifted RES
bit 15=0 and
bit 14=1

Overflow:
RES3 = 07FFFh
RES2 = OFFFFh
RES1 = OFFFFh
RESO = OFFFFh

nshifted RES
bit 15=1 and
bit 14=0

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RESO0 = 00000h

No No

A

A

64-bit Saturation
completed

32-bit Saturation
completed

Figure 10-4. Saturation Flow Chart

Note: Saturation in Fractional Mode

In case of multiplying —1.0 x —1.0 in fractional mode, the result of +1.0 is out of range, thus,
the saturated result gives the most positive result.

When using multiply-and-accumulate operations the accumulated values are saturated as if
MPYFRAC=0 - only during read accesses to the result registers the values are saturated
taking the fractional mode into account. This provides additional dynamic range during the
calculation and only the end-result is then saturated if needed.

SLAU208-June 2008
Bubmit Documentation FeedbacH

320 32-Bit Hardware Multiplier (MPY32)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Saturation Mode

The following example illustrates a special case showing the saturation function in fractional mode. It also
uses the 8-bit functionality of the MPY32 module.

Turn on fractional and saturation node,
: clear all other bits in MPY32CTLO:

MOV #MPYSAT+MPYFRAC, &VPY32CTLO

;Pre-l1oad result registers to denonstrate overfl ow

MOV #0, &RES3 ;

MOV #0, &RES2 ;

MOV #07FFFh, &RES1 ;

MOV #0FA60h, &RESO ;

MOV. B #050h, &VACS_B ; 8-bit signed MAC operation
MOV. B #012h, &OP2_B ; Start 16x16 bit operation
MOV &RESO, R6 ; R6 = OFFFFh

MOV &RES1, R7 ;. R7 = 07FFFh

The result is saturated because already the result not converted into a fractional number shows an
overflow. The multiplication of the two positive numbers 00050h and 00012h gives 005A0h. 005A0h added
to 07FFF FAGB0h results in 8000 059Fh without MPYC being set. Since the MSB of the unmodified result
RES1 is 1 and MPYC = 0, the result is saturated according to the saturation flow chart in [Eigure 10-4.

Note: Validity of Saturated Result

The saturated result is only valid if the registers RESO to RES3, the size of operands 1 and 2
and MPYC are not modified.

If the saturation mode is used with a preloaded result, user software must ensure that MPYC
in the MPY32CTLO register is loaded with the sign bit of the written result otherwise the
saturation mode will erroneously saturate the result.

SLAU208-June 2008 32-Bit Hardware Multiplier (MPY32) 321
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Saturation Mode

13 TEXAS
INSTRUMENTS

www.ti.com

10.2.5 Putting It All Together
shows the complete multiplication flow, depending on the various selectable modes for the

MPY32 module.

Clear Result:
RES1 = 00000h
RESO0 = 00000h

Perform 16x16
MPY or MPYS
Operation

MPYSAT=1
?

New Multiplication

Started

MPYSAT=1
?

non-fractional No No non-fractional
32-bit Saturation 64-bit Saturation
Perform 16x16 Perform
MAC or MACS MAC or MACS
Operation Operation

Yes

y
MPYFRAC=1
?/

No

Clear Result
RES3 = 00000h
RES2 = 00000h
RES1 =00000h
RESO = 00000h

Perform
MPY or MPYS
Operation

Yes

Shift 64 bit result
Calculate SUMEXTbased on
MPYC and bit15 of
unshifted RES1.

Shift 64 bit result
Calculate SUMEXTbased on
MPYC and bit15 of
unshifted RES3.

Yes

?

MPYS>

32-bit Saturation

\ 4

y
wRACﬂ
?

No

Yes

Y
MPYSAT=1

64-bit Saturation

\?

No

Multiplication
completed

Figure 10-5. Multiplication Flow Chart

322

32-Bit Hardware Multiplier (MPY32)

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Saturation Mode

Given the separation in processing of 16-bit operations (32-bit results) and 32-bit operations (64-bit
results) by the module, it is important to understand the implications when using MAC/MACS operations
and mixing 16-bit operands/results with 32-bit operands/results. User software must address these points
during usage when mixing these operations. The following code snippet illustrates the issue.

; Mxing 32x24 nultiplication with 16x16 MACS operation

MOV #MPYSAT, &WPY32CTLO ; Saturation npde
MOV #052C5h, &WPY32L ; Load | ow word of 1st operand
MOV #06153h, &VWPY32H ; Load high word of 1st operand
MOV #001ABh, &OP2L ; Load | ow word of 2nd operand
MOV. B #023h, &OP2H_B ; Load high word of 2nd operand
;... 5 NOPs required
MOV &RESO, R6 ;. R6 = 00E97h
MOV &RES1, R7 ;. R7 = 0AG6EAh
MOV &RES?2, R8 ;. R8 = 04F06h
MOV &RES3, R9 ; R9 = 0000Dh
; Note that MPYC = 0!
MoV #0CCC3h, &VACS ; Signed MAC operation
MOV #0FFB6h, &0OP2 ; 16x16 bit operation
MOV &RESLO, R6 ;. R6 = OFFFFh
MOV &RESHI , R7 ;. R7 = 07FFFh

The second operation gives a saturated result because the 32-bit value used for the 16x16 bit MACS
operation was already saturated when the operation was started: the carry bit MPYC was 0 from the
previous operation but the most significant bit in result register RES1 is set. As one can see in the flow
chart the content of the result registers are saturated for multiply-and-accumulate operations after starting
a new operation based on the previous results but depending on the size of the result (32-bit or 64-bit) of
the newly initiated operation.

The saturation before the multiplication can cause issues if the MPYC bit is not properly set as the
following code example illustrates.

;Pre-l1oad result registers to denonstrate overfl ow

MOV #0, &RES3 ;

MOV #0, &RES2 ;

MOV #0, &RES1 ;

MOV #0, &RESO ;

; Saturation node and set MPYC:

MOV #MPYSAT+MPYC, &WPY32CTLO

MOV. B #082h, &VACS_B ; 8-bit signed MAC operation
MOV. B #04Fh, &OP2 B ; Start 16x16 bit operation
MOV &RESO, R6 ; R6 = 00000h

MOV &RES1, R7 ; R7 = 08000h

Even though the result registers were loaded with all zeros the final result is saturated. This is because
the MPYC bit was set causing the result used for the multiply-and-accumulate to be saturated to 08000
0000h. Adding a negative humber to it would again cause an underflow thus the final result is also
saturated to 08000 0000h.

SLAU208-June 2008 32-Bit Hardware Multiplier (MPY32) 323
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Saturation Mode www.ti.com

10.2.6 Indirect Addressing of Result Registers

When using indirect or indirect autoincrement addressing mode to access the result registers and the
multiplier requires 3 cycles until result availability according to Table 1-1, at least one instruction is needed
between loading the second operand and accessing the result registers:

; Access multiplier 16x16 results with indirect addressing

MOV #RESO, R5 ; RESO address in R5 for indirect
MOV &OPER1, &VPY ; Load 1st operand

MOV &OPER2, &0OP2 ; Load 2nd operand

NOP ; Need one cycle

MOV @R5+, &XXX ;. Move RESO

MoV @R5, &xxxX ;. Move RES1

In case of a 32x16 multiplication there is also one instruction required between reading the first result
register RESO and the second result register RES1:

; Access multiplier 32x16 results with indirect addressing

MOV #RESO, R5 ; RESO address in R5 for indirect
MOV &OPERIL, &WPY32L ; Load | ow word of 1st operand
MOV &OPER1H, &WPY32H ; Load high word of 1st operand
MOV &OPER2, &0OP2 ; Load 2nd operand (16 bits)
NOP ; Need one cycle
MOV @R5+, &XXX ;. Move RESO
NOP ; Need one additional cycle
MoV @Rr5, &xxx ;. Move RES1

; No additional cycles required!
MOV @R5, &XXX ; Move RES2

10.2.7 Using Interrupts

If an interrupt occurs after writing OP1, but before writing OP2, and the multiplier is used in servicing that
interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this,
disable interrupts before using the hardware multiplier, do not use the multiplier in interrupt service
routines, or use the save and restore functionality of the 32-bit multiplier.

; Disable interrupts before using the hardware nultiplier

DI NT ; Disable interrupts

NOP ; Required for DINT

MOV #xxh, &VWPY ; Load 1st operand

MoV #xxh, &0OP2 ; Load 2nd operand

El NT ; Interrupts may be enabl ed before

; processing results if result
; registers are stored and restored in
; interrupt service routines

324

32-Bit Hardware Multiplier (MPY32) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Save and Restore

Save and Restore

If the multiplier is used in interrupt service routines its state can be saved and restored using the
MPY32CTLO register. The following code example shows how the complete multiplier status can be saved
and restored to allow interruptible multiplications together with the usage of the multiplier in interrupt
service routines. Since the state of the MPYSAT and MPYFRAC bits are unknown they should be cleared
before the registers are saved as shown in the code example.

; Interrupt service routine using multiplier

MPY_USI NG | SR

PUSH &WPY32CTLO

PUSH &RES3
PUSH &RES2
PUSH &RES1
PUSH &RESO

PUSH &WPY32H
PUSH &WPY32L

PUSH &OP2H
PUSH &OP2L
POP &OP2L
POP &OP2H
POP &MPY32L
POP &MVPY32H
POP &RESO
POP &RES1
POP &RES2
POP &RES3

POP &MPY32CTLO

reti

10.2.8 Using DMA

)

Save nultiplier node, etc.
BI C #MPYSAT+MPYFRAC, &WPY32CTLO

d ear

Save
Save
Save
Save
Save
Save
Save
Save

Mai n

MPYSAT+MPYFRAC
result 3

result 2

result 1

result O

operand 1, high word
operand 1, |ow word
operand 2, high word
operand 2, |ow word
part of ISR

Usi ng standard MPY routines

Rest ore operand 2, |ow word

Rest ore

operand 2, high word

Starts dunmy nul tiplication but

result i

s overwritten hy

followi ng restore operations:

Restore
Restore
Rest ore
Rest ore
Restore
Rest ore

operand 1, |ow word
operand 1, high word
result O
result 1
result 2
result 3

Restore
End of

mul tiplier node, etc.
nterrupt service routine

In devices with a DMA controller the multiplier can trigger a transfer when the complete result is available.
The DMA controller needs to start reading the result with MPY32RESO successively up to MPY32RES3.
Not all registers need to be read. The trigger timing is such that the DMA controller starts reading
MPY32RESO when its ready and that the MPY32RES3 can be read exactly in the clock cycle when it is
available to allow fastest access via DMA. The signal into the DMA controller is 'Multiplier ready'. Please
refer to the DMA user's guide chapter for detalils.

SLAU208-June 2008
Eubmit Documentation Feedbacl

32-Bit Hardware Multiplier (MPY32) 325

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

32-Bit Hardware Multiplier Registers

I

TEXAS
INSTRUMENTS

www.ti.com

10.3 32-Bit Hardware Multiplier Registers

The 32-bit hardware multiplier registers are listed in [Table 10-7.

Table 10-7. 32-Bit Hardware Multiplier Registers

Register Short Form Register Type Address Initial State
16-bit operand one — multiply MPY Read/write 0130h Unchanged
8-bit operand one — multiply MPY_B Read/write 0130h Unchanged
16-bit operand one — signed multiply MPYS Read/write 0132h Unchanged
8-bit operand one — signed multiply MPYS_B Read/write 0132h Unchanged
16-bit operand one — multiply accumulate MAC Read/write 0134h Unchanged
8-bit operand one — multiply accumulate MAC_B Read/write 0134h Unchanged
16-bit operand one — signed multiply accumulate MACS Read/write 0136h Unchanged
8-bit operand one — signed multiply accumulate MACS_B Read/write 0136h Unchanged
16-bit operand two OoP2 Read/write 0138h Unchanged
8-bit operand two OP2_B Read/write 0138h Unchanged
16x16-bit result low word RESLO Read/write 013Ah Undefined

16x16-bit result high word RESHI Read/write 013Ch Undefined

16x16-bit sum extension register SUMEXT Read 013Eh Undefined

32-bit operand 1 — multiply — low word MPY32L Read/write 0140h Unchanged
32-bit operand 1 — multiply — high word MPY32H Read/write 0142h Unchanged
24-bit operand 1 — multiply — high byte MPY32H_B Read/write 0142h Unchanged
32-bit operand 1 — signed multiply — low word MPYS32L Read/write 0144h Unchanged
32-bit operand 1 — signed multiply — high word MPYS32H Read/write 0146h Unchanged
24-bit operand 1 — signed multiply — high byte MPYS32H_B Read/write 0146h Unchanged
32-bit operand 1 — multiply accumulate — low word MAC32L Read/write 0148h Unchanged
32-bit operand 1 — multiply accumulate — high word MAC32H Read/write 014Ah Unchanged
24-bit operand 1 — multiply accumulate — high byte MAC32H_B Read/write 014Ah Unchanged
32-bit operand 1 — signed multiply accumulate — low word MACS32L Read/write 014Ch Unchanged
32-bit operand 1 — signed multiply accumulate — high word MACS32H Read/write 014Eh Unchanged
24-bit operand 1 — signed multiply accumulate — high byte MACS32H_B Read/write 014Eh Unchanged
32-bit operand 2 — low word OP2L Read/write 0150h Unchanged
32-bit operand 2 — high word OP2H Read/write 0152h Unchanged
24-bit operand 2 — high byte OP2H_B Read/write 0152h Unchanged
32x32-bit result 0 — least significant word RESO Read/write 0154h Undefined

32x32-bit result 1 RES1 Read/write 0156h Undefined

32x32-bit result 2 RES2 Read/write 0158h Undefined

32x32-bit result 3 — most significant word RES3 Read/write 015Ah Undefined

MPY32 control register 0 MPY32CTLO Read/write 015Ch Undefined

326

32-Bit Hardware Multiplier (MPY32)

u

SLAU208—-June 2008

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com 32-Bit Hardware Multiplier Registers

The registers listed in are treated equally.

Table 10-8. Alternative Registers

Register Alternative 1 Alternative 2
16-bit operand one — multiply MPY MPY32L
8-bit operand one — multiply MPY_B MPY32L_B
16-bit operand one — signed multiply MPYS MPYS32L
8-bit operand one — signed multiply MPYS_B MPYS32L_B
16-bit operand one — multiply accumulate MAC MAC32L
8-bit operand one — multiply accumulate MAC_B MAC32L_B
16-bit operand one — signed multiply accumulate MACS MACS32L
8-bit operand one — signed multiply accumulate MACS_B MACS32L_B
16x16-bit result low word RESLO RESO
16x16-bit result high word RESHI RES1
SLAU208-June 2008 32-Bit Hardware Multiplier (MPY32) 327

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
32-Bit Hardware Multiplier Registers www.ti.com
MPY32CTLO, 32-Bit Multiplier Control Register 0
15 14 13 12 11 10 9 8
Reserved MPYDLY32 I\C\/PFIPELI\T
r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0
7 6 5 4 3 2 1 0
MPYOP2_32 MPYOP1_32 MPYMx MPYSAT MPYFRAC Reserved MPYC
rw rw rw rw rw-0 rw-0 rw-0 rw
Reserved Bits 15-10 Reserved
MPYDLY32 Bit 9 Delayed write mode
0 Writes are delayed until 64-bit result (RESO to RES3) is available.
1 Writes are delayed until 32-bit result (RESO to RES1) is available.
MPYDLYWRTEN Bit8 Delayed write enable
All writes to any MPY32 register are delayed until the 64-bit (MPYDLY32 = 0) or 32-bit (MPYDLY32 = 1)
result is ready.
0 Writes are not delayed.
1 Writes are delayed.
MPYOP2_32 Bit 7 Multiplier bit width of operand 2
0 16 bits
1 32 bits
MPYOP1_32 Bit 6 Multiplier bit width of operand 1
0 16 bits
1 32 bits
MPYMx Bits 5-4 Multiplier mode
00 MPY — Multiply
01 MPYS — Signed multiply
10 MAC — Multiply accumulate
11 MACS - Signed multiply accumulate
MPYSAT Bit 3 Saturation mode
0 Saturation mode disabled
1 Saturation mode enabled
MPYFRAC Bit 2 Fractional mode
0 Fractional mode disabled
1 Fractional mode enabled
Reserved Bit 1 Reserved
MPYC Bit O Carry of the multiplier. It can be considered as 33rd or 65th bit of the result if fractional or saturation

mode is not selected because the MPYC bit does not change when switching to saturation or fractional

mode.

It is used to restore the SUMEXT content in MAC mode.
0 No carry for result

1 Result has a carry

328 32-Bit Hardware Multiplier (MPY32)

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 11
INSTRUMENTS SLAU208June 2008

CRC Module

The Cyclic Redundancy Check module provides a signature for a given data sequence.

Topic Page
¢ 0 R 4 = (O \Y/ (o Yo [V (=N [} A e Yo LV Le3 { (o] o | PP T 330
11.2 CRC CheCKkSUM GENEratiON] .. .eeeeeeeeeeseisesaseeseeaeeenerassesseassasseoees 337
11.3 CRC Module ReQiSters| e iieieeeeeeieieraeaeeeieraeaeaeeeieraeaeaeirnzacaees 333
SLAU208-June 2008 CRC Module 329

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

CRC Module Introduction www.ti.com

11.1 CRC Module Introduction
The CRC module produces a signature for a given sequence of memory data bus values. The signature is
generated through a feedback path from data bus bits 0, 4, 11, and 15. See also Figure 11-1. The CRC
signature is based on the polynomial given in the CRC-CCITT-BR polynomial (see .

f(X) - X16 + X12 + X5 +1 (11'1)
Data In
~ ~
—1QDfF—1QD QD QDfF—1QD
Bit Bit Bit Bit Bit
15 12 11 10 6
Shift Clock

Figure 11-1. LFSR Implementation of the CRC-CCITT Standard, Bit 0 is the MSB of the result

Identical bus sequences result into identical signatures when the CRC is initialized with a fixed seed value,
whereas different sequences of input data in general result in different signatures.

SLAU208—-June 2008

330 CRC Module
Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com CRC Checksum Generation
11.2 CRC Checksum Generation

The CRC generator is at first initialized by writing a 16-bit word (seed) to the CRC initialization and result
register (CRCINIRES). Any data that should be included into the CRC calculation has to be written to the
CRC data input register (CRCDI) in the same order as the CRC signature was calculated originally. The
actual signature can be read from the initialization and result register (CRCINIRES) to compare the
checksum with the expected checksum.

The signature generation (Check Sum) describes a method how the result of a signature operation can be
calculated. The calculated signature is called Check Sum in the following text. This calculation is done by
an external tool. The Check Sum is stored in the product's memory and is used to check the correctness
of the result of the CRC operation.

11.2.1 CRC Implementation

To allow parallel processing of the CRC the linear-feedback-shift-register (LFSR) functionality is
implemented with an XOR Tree. This implementation shows the identical behavior as the LFSR approach
after 8-bits of data are shifted in when the LSB is 'shifted' in first. The generation of a signature calculation
has to be started by writing a seed to the initialization and result register CRCINIRES to initialize the
register. Software or hardware (e.g. DMA) can transfer data to the data in register (CRCDI) (e.g. from
memory). The value in the data in register is then included into the signature and the result is available in
the signature result register at the next read access (CRCINIRES). The signature can be generated using
word or byte data. If a word is processed the lower byte at the even address is used at the first clock
(MCLK) cycle. During the second clock cycle the higher byte is processed. Thus it takes two clock cycles
to process word data while it takes only one clock (MCLK) cycle to process byte data. If the Check Sum
itself (with reversed bit order) is included into the CRC operation (as data written to CRCDI) the result in
CRCINIRES register must be zero.

Data In

%S-bit or 16-bit

CRC Data In Register CRCDI

\ Byte MUX /

. CRC Initialization and Result Register
Write to CRCINIRES f;» CRCINIRES

Figure 11-2. Implementation of the CRC-CCITT

SLAU208—-June 2008 CRC Module 331
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

General Assembler Example

13 TEXAS
INSTRUMENTS

www.ti.com

11.2.2 Assembler Examples

General Assembler Example

An example demonstrates the operation of the on-chip CRC check:

PUSH
PUSH

L1 MOV

POP
POP

R4

R5

#St art Addr ess, R4
#EndAddr ess, R5

& NI T, &CRCI NI RES
@r4+, &CRCDI

R5, R4

L1

&Check_Sum &CRCD
&CRCI NI RES
CRC_ERROR

R5
R4

Reference Data Sequence

)

Save registers
St art Addr ess < EndAddr ess

INIT to CRCI Nl RES
Itemto Data I n register
End address reached?

No

Yes, |nclude checksum
Result = 0?

No, CRCRES <> 0: error
Yes, CRCRES=0:

i nformation ok.

Restore registers

The details of the implemented CRC checking algorithm is shown by the data sequence below:

nmov #0FFFFh, &CRC16RES cinitialize CRC16

nov. b #00031h, &CRC16DI .

nov. b #00032h, &CRC16DI ;o2

nov. b #00033h, &CRC16DI ;"3

nov. b #00034h, &CRC16DI ;4"

nov. b #00035h, &CRC16DI ; "h"

nmov. b #00036h, &CRC16DI ;o "e"

nov. b #00037h, &CRC16DI ;T

nov. b #00038h, CRC16DI ;o "8"

nov. b #00039h, &CRC16DI ;"o

cnp #089F6h, &CRC16RES ; compare result

jeq &Success ; no error

br &Error ; to error handler
332 CRC Module SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

CRC Module Registers

11.3 CRC Module Registers

The CRC module registers are listed in [Table T1-1. The base address can be found in the device specific
datasheet. The address offset is given in [[able T1-1.

Table 11-1. CRC Module Registers

Register Short Form Register Type Address Initial State
CRC data in register CRCDI Read/write 0000h 0000h
CRC initialization and result register CRCINIRES Read/Write 0004h FFFFh
CRCDI, Data In Register
15 14 13 12 11 10 9 8
CRCDI
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
CRCDI
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
CRCDI Bits 15-0 CRC data in. Data written to the CRCDI register will be included to the present signature in the

CRCINIRES register according to the CRC-CCITT standard.

CRCINIRES, Initialization and Result Register

15 14 13 12 11 10 9 8
CRCINIRES
rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1
7 6 5 4 3 2 1 0
CRCINIRES
rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1
CRCINIRES Bits 15-0 CRC initialization and result. This register holds the current CRC result (according to the CRC-CCITT

standard). Writing to this register initializes the CRC calculation with the value written to it. The value

just written can be read from CRCINIRES register.

SLAU208-June 2008
Eubmit Documentation Feedbacl

CRC Module

333

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

334 CRC Module SLAU208—-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 12
INSTRUMENTS SLAU208June 2008

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes Timer_A
is used on MSP430x5xx devices.

Topic Page
12.1 Timer_A Introduction]o . oot ieiaeeeieieiaraeeeieiiaeaeiens 334
12.2 Timer_A Operation] oo eeeeeeeieieseeaeieiereraeaeieieraeaeeeieresneaeiens 331
12.3 Timer_A ReQiSterS| oo ieeeaaeaeeieieieieieeeaearaeaeeierereieieaeaeaenen. 349
SLAU208—-June 2008 Timer_ A 335

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Timer_A Introduction www.ti.com

12.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with up to seven capture/compare registers. Timer_A can support
multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

Asynchronous 16-bit timer/counter with four operating modes
Selectable and configurable clock source

Up to seven configurable capture/compare registers

Configurable outputs with PWM capability

Asynchronous input and output latching

Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figqure 12-1].

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter,
then an associated action will not take place.

336

Timer_A SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com Timer_A Operation
| T T T T imer Block |
X
| TASSELx IDx IDEXx Tlm?rs Clock i MC
| 1 ik |
L L -bit Timer
| TACLK—8———00] |Divider| |Divider 16 Ak —»{ Count |¢ couo
| S'\,;EII:E :)(1) /1/2|/4/8 /1..18 Cloar RC 4—] Mode |
| _DO_ 11 t |—> SetTAIFGl
| TACLR Jl
T T T T T T T T T — [7 ccro
________________ 1 7 " ccmt
- e _coRe
CCR3
S =
CCR5
T 1 T ccne!
| CCliSx CMix I
| It |
| CCleA Capture |
| ccies Mode j 15 0 |
I GND Timer Clock — TACCR6 |
VCC {}
I :> Compararator 6 I
| EQUE| cap |
| scom]v A |
EN 0 Set TACCR6 |
I CCIFG |
| o B |
| Output ._T oo ' I
| EQUO —p» Unit4 e ook] D Q |-&—» OUTS6 Signal |
| Reset |
I /" POR |
OUTMODx |
.- J

12.2

Figure 12-1. Timer_A Block Diagram

Timer_A Operation

The Timer_A module is configured with user software. The setup and operation of Timer_A is discussed in
the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TAR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

Timer_A 337

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Clock Source Select and Divider www.ti.com

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider and count
direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TACLR) to avoid errant operating conditions.

When the TACLK is asynchronous to the CPU clock, any read from TAR should occur while
the timer is not operating or the results may be unpredictable. Alternatively, the timer may be
read multiple times while operating, and a majority vote taken in software to determine the
correct reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider

The timer clock TACLK can be sourced from ACLK, SMCLK, or externally via TACLK. The clock source is
selected with the TASSELX bits. The selected clock source may be passed directly to the timer or divided
by 2, 4, or 8, using the IDx bits The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8
using the IDEXXx bits.The TACLK dividers are reset when TACLR is set.

Note: Timer_A Dividers

Setting the TACLR bit will clear the contents of TAR, as well as, the dividers. When the
TACLR bit is cleared, the Timer Clock will immediately begin clocking at the first rising edge
of the Timer_A clock source selected with the TASSELX bits, and will continue clocking at
the divider settings set by the IDx and IDEXXx bits.

12.2.2 Starting the Timer

The timer may be started, or restarted in the following ways:
* The timer counts when MCx > 0 and the clock source is active.

* When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TACCRO. The
timer may then be restarted by writing a nonzero value to TACCRO. In this scenario, the timer starts
incrementing in the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation as described in [Table 12-7]: stop, up, continuous, and up/down.
The operating mode is selected with the MCx bits.

Table 12-1. Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of TACCRO
10 Continuous The timer repeatedly counts from zero to OFFFFh.
11 Up/down The timer repeatedly counts from zero up to the value of TACCRO and backdown to zero.
Up Mode

The up mode is used if the timer period must be different from OFFFFh counts. The timer repeatedly
counts up to the value of compare register TACCRO, which defines the period, as shown in Eigure 12-2.
The number of timer counts in the period is TACCRO+1. When the timer value equals TACCRO the timer
restarts counting from zero. If up mode is selected when the timer value is greater than TACCRO, the
timer immediately restarts counting from zero.

338 Timer_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Changing the Period Register TACCRO
OFFFFh
TACCROlb-— — ————— o — — —_—
Oh

Figure 12-2. Up Mode

The TACCRO CCIFG interrupt flag is set when the timer counts to the TACCRO value. The TAIFG
interrupt flag is set when the timer counts from TACCRO to zero. shows the flag set cycle.

mmercos [\ T\ T\
| | (| |
Ti ccRo-1 Y CCRo oh 1h J CCRO-1X CCRO X oh
mer X X X Y Xj‘, Y
I « ! I
| |
| |
I I

Set TAIFG

)) T
<< I
I

|

|
Set TACCRO CCIFG l

|))

Figure 12-3. Up Mode Flag Setting

Changing the Period Register TACCRO

When changing TACCRO while the timer is running, if the new period is greater than or equal to the old
period, or greater than the current count value, the timer counts up to the new period. If the new period is
less than the current count value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

Continuous Mode

In the continuous mode, the timer repeatedly counts up to OFFFFh and restarts from zero as shown in
Eigure 12-4. The capture/compare register TACCRO works the same way as the other capture/compare
registers.

OFFFFh - — — — — — — o — — — — — — & — — — — — — ———-

Oh

Figure 12-4. Continuous Mode

The TAIFG interrupt flag is set when the timer counts from OFFFFh to zero. shows the flag set
cycle.

mmercock [\ [N\ S\
() |
Ti FFFEn X FFFFh Y Oh 1 FFFEn Y FFFFh Y Oh
mer YCFrrEn Y Fremn Y _on Y Y X rreen Y e)
! !

Set TAIFG “

))

Figure 12-5. Continuous Mode Flag Setting

SLAU208-June 2008 Timer_A 339
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Use of the Continuous Mode www.ti.com

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TACCRx
register in the interrupt service routine. shows two separate time intervals ty and t; being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to n (Timer_An), where n = 0 to 7, independent time
intervals or output frequencies can be generated using capture/compare registers.

TACCR1b TACCR1c
|
TACCROb | TACCROC : TACCROdl
OFFFFh | — — — — — — — 4f|ffff4|f B B
| |
TACCR1a 1R TACCR1d |
| |
TACCROa : | | |
1P |
y |
| T

ty |

Figure 12-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TACCRO is used as the period register.
Their handling is more complex since the sum of the old TACCRXx data and the new period can be higher
than the TACCRO value. When the previous TACCRXx value plus t, is greater than the TACCRO data, the
TACCRO value must be subtracted to obtain the correct time interval.

Up/Down Mode

The up/down mode is used if the timer period must be different from OFFFFh counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TACCRO and
back down to zero, as shown in Eigure 12-7. The period is twice the value in TACCRO.

OFFFFh
TACCRO — — — — — — e —— — — — — — — — — — — — — —— — -

Oh

Figure 12-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the
direction. The TACLR bit also clears the TAR value and the TACLK divider.

In up/down mode, the TACCRO CCIFG interrupt flag and the TAIFG interrupt flag are set only once during
a period, separated by 1/2 the timer period. The TACCRO CCIFG interrupt flag is set when the timer
counts from TACCRO-1 to TACCRO, and TAIFG is set when the timer completes counting down from
0001h to 0000h. shows the flag set cycle.

340

Timer_A SLAU208—-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS
www.ti.com Changing the Period Register TACCRO
(
Timer ccRro-1 Y cCRo Y CCRo-1 Y ccro-2 X 7/ 1h oh
I CEED (CE Con) G G oY
Up/Down |\ / |
Set TAIFG ! « I !
| J)) | |
Set TACCRO CCIFG | « | |
| | |

))

Figure 12-8. Up/Down Mode Flag Setting

Changing the Period Register TACCRO

When changing TACCRO while the timer is running, and counting in the down direction, the timer
continues its descent until it reaches zero. The new period takes affect after the counter counts down to
zero.

When the timer is counting in the up direction, and the new period is greater than or equal to the old
period, or greater than the current count value, the timer counts up to the new period before counting
down. When the timer is counting in the up direction, and the new period is less than the current count
value, the timer begins counting down. However, one additional count may occur before the counter
begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section
Timer_A Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 12-9 the tyeaq iS:

tgead = tiimer X (TACCR1 — TACCR?2)

With:
tyead = Time during which both outputs need to be inactive
timer = Cycle time of the timer clock
TACCRXx = Content of capture/compare register x

The TACCRX registers are not buffered. They update immediately when written to. Therefore, any
required dead time will not be maintained automatically.

\
OFFFFh |

TACCRO — — o — — — — — — oy — — — — — —
\

oOh T il R N
‘ } | } ‘ﬁ < | P ‘MDeadTime
‘ ‘ Output Mode 6: Toggle/Set
| \ | p . gge €
1 NS
b b
| I‘ | \ | ; | \ | I‘ Output Mode 2: Toggle/Reset
o b
- R |
EQU1 | EQU1 EQU1 | EQU1 Interrunt Events
TAIFG | ™ equo ITAFG | "equo | P
EQU2 EQU2 EQU2 EQU2

Figure 12-9. Output Unit in Up/Down Mode

SLAU208—-June 2008 Timer_A
Eubmit Documentation Feedbacl

341

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Capture Mode www.ti.com

12.2.4 Capture/Compare Blocks

Three or five identical capture/compare blocks, TACCRYX, are present in Timer_A. Any of the blocks may
be used to capture the timer data, or to generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIXA and CCIxB are connected to
external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input
signal. If a capture occurs:

» The timer value is copied into the TACCRX register

* The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices may have
different signals connected to CCIXA and CCIxB. Refer to the device-specific data sheet for the
connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit will synchronize the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended. This is illustrated in Eigure 12-10.

Timer :X n—-2 X n-1 X ? X n+1 X n+2 X n+3 X n+4 X
ca [1T7
Capture /_\

I
Set TACCRx CGIFG l

Figure 12-10. Capture Signal (SCS =1)

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in
Eigure T2-T7. COV must be reset with software.

342 Timer_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Compare Mode

ldle

Capture Capture Read

No Read
Capture Taken
Taken

Capture

Capture Read and No Capture

Capture

Clear Bit COV
in Register TACCTLx

Second
Capture
Taken
COV =1

Idle

Figure 12-11. Capture Cycle

12.2.4.0.1 Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets CCIS1 = 1 and toggles bit CCISO to switch the capture signal between V¢ and GND, initiating a
capture each time CCISO changes state:

MOV #CAP+SCS+CCl S1+CM 3, &TACCTLX ; Setup TACCTLx
XOR #CCl SO, &TACCTLX ; TACCTLx = TAR

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output
signals or interrupts at specific time intervals. When TAR counts to the value in a TACCRX:

* Interrupt flag CCIFG is set

* Internal signal EQUx =1

» EQUx affects the output according to the output mode
» The input signal CCl is latched into SCCI

12.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQUO0 and EQUXx signals.

Output Modes

The output modes are defined by the OUTMODX bits and are described in [[able 12-2. The OUTX signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUx = EQUO.

SLAU208—-June 2008

Timer_A 343
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Output Example—Timer in Up Mode www.ti.com
Table 12-2. Output Modes
OUTMODx Mode Description
000 Output The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately
when OUTXx is updated.
001 Set The output is set when the timer counts to the TACCRXx value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.
010 Toggle/Reset The output is toggled when the timer counts to the TACCRXx value. It is reset when the
timer counts to the TACCRO value.
011 Set/Reset The output is set when the timer counts to the TACCRXx value. It is reset when the timer
counts to the TACCRO value.
100 Toggle The output is toggled when the timer counts to the TACCRXx value. The output period is
double the timer period.
101 Reset The output is reset when the timer counts to the TACCRX value. It remains reset until
another output mode is selected and affects the output.
110 Toggle/Set The output is toggled when the timer counts to the TACCRXx value. It is set when the timer
counts to the TACCRO value.
111 Reset/Set The output is reset when the timer counts to the TACCRX value. It is set when the timer

counts to the TACCRO value.

Output Example—Timer in Up Mode
The OUTXx signal is changed when the timer counts up to the TACCRXx value, and rolls from TACCRO to

zero, depending on the output mode. An example is shown in using TACCRO and TACCRL.
\
OFFFFh |
TACCROF — — — — — — —f — — — — — — —_—

\
TACCRT | — — — —

ohelrn - — — ¥ —— ¥ — — — — — — — —_—
\ \ \ | \
pome- 1 1 1
‘ ‘ ‘ Output Mode 1: Set
| \ \ \ \
N Output Mode 2: Toggle/Reset
- —
L
| Output Mode 3: Set/Reset
| | | | |
________ I —_———— _———
5 ; —~ Output Mode 4: Toggle
_— -
| | | | |
\ \ \ Output Mode 5: Reset
" \ \ \
I I f—
L Output Mode 6: Toggle/Set
| | |
- Output Mode 7: Reset/Set
EQUO EQU1 EQUO EQU1 EQUO
TAIFG TAIFG TAIFG Interrupt Events
Figure 12-12. Output Example—Timer in Up Mode
344 Timer_A SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Output Example—Timer in Continuous Mode

Output Example—Timer in Continuous Mode

The OUTXx signal is changed when the timer reaches the TACCRx and TACCRO values, depending on the
output mode. An example is shown in using TACCRO and TACCR1.

I
[| |
| — I I
____ I
I o |
I I
F-——- I
! !
| I I
I I I
1 r T
—_ I I
l____ | | |
I I I I I
| T |
F-———- I
I |
| I

TAIlFG EQU1 EQUO TAIlFG

| | Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Qutput Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

EQU1 EQUO Interrupt Events

Figure 12-13. Output Example—Timer in Continuous Mode

SLAU208-June 2008
Bubmit Documentation FeedbacH

Timer_A

345

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Output Example—Timer in Up/Down Mode www.ti.com

Output Example—Timer in Up/Down Mode
The OUTXx signal changes when the timer equals TACCRX in either count direction and when the timer

equals TACCRO, depending on the output mode. An example is shown in using TACCRO
and TACCR2.
\
OFFFFh |
TACCRO L — — — o — —

TACCR2F — S+ N——— A+ DN\ —— — —
|
oh¢g —— — +— — N/ TN —

[T
e ———

‘ ‘ ‘ ‘ ‘ ‘ Output Mode 1: Set
| R | R
; T ! | Output Mode 2: Toggle/Reset
- \ \ \
\ | | |
| \ \ \ Output Mode 3: Set/Reset
| | | | | |
e — _
| - | - Output Mode 4: Toggle
I A I B B

\ \ \ \ ‘ \ Output Mode 5: Reset
I 1 \ L
____ | \ |
\ Il | ‘ Output Mode 6: Toggle/Set
| I | I
177771‘77 1 1 Output Mode 7: Reset/Set
I | | |
\ EQU2 | EQU2 EQU2 | EQU2

TAIFG EQUO TAIFG EQUO Interrupt Events

Figure 12-14. Output Example—Timer in Up/Down Mode

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BI S #OUTMOD_7, &TACCTLX ; Set output node=7
BI C #OUTMODx, &TACCTLX ; Clear unwanted bits

12.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

» TACCRO interrupt vector for TACCRO CCIFG

* TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the associated TACCRX register.
In compare mode, any CCIFG flag is set if TAR counts to the associated TACCRXx value. Software may

also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit
and the GIE bit are set.

346 Timer_A SLAU208—-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com TACCRO Interrupt

TACCRO Interrupt

The TACCRO CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector
as shown in Figure T2-T5. The TACCRO CCIFG flag is automatically reset when the TACCRO interrupt
request is serviced.

Capture ——————)
EQUO | b Set Q CCIE‘D—} IRQ, Interrupt Service Requested
CAP |

Timer Clock —]

Figure 12-15. Capture/Compare TACCRO Interrupt Flag

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and combined to source a single
interrupt vector. The interrupt vector register TAIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCRL1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TACCR2 CCIFG flag will generate another interrupt.

TAIV Software Example
The following software example shows the recommended use of TAIV and the handling overhead. The

TAIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a
Timer_A3 configuration.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

e Capture/compare block TACCRO: 11 cycles
e Capture/compare blocks TACCR1, TACCR2: 16 cycles
» Timer overflow TAIFG: 14 cycles

; Interrupt handl er for TACCRO CCl FG Cycl es

CCl FG_ 0_HND

; C ; Start of handler Interrupt |atency 6
RETI 5

; Interrupt handler for TAIFG TACCRL and TACCR2 CCl FG

TA_HND . ; Interrupt |atency 6
ADD &TAlI V, PC ; Add offset to Junp table 3
RETI ; Vector 0: No interrupt 5
JMP CCFG_ 1 HND ; Vector 2: TACCRL 2
JMP CC FG 2 HND ; Vector 4: TACCR2 2
RETI ;. Vector 6: Reserved 5
RETI ;. Vector 8: Reserved 5
RETI ; Vector 10: Reserved 5
RETI ; Vector 12: Reserved 5
SLAU208-June 2008 Timer_A 347

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TAIV Software Example

13 TEXAS
INSTRUMENTS

www.ti.com

TAI FG_HND
RETI

CCl FG_2_HN\D
RETI

CCl FG_1_HN\D

RETI

Vector 14: TAIFG Fl ag
Task starts here

Vector 4: TACCR2
Task starts here
Back to main program

Vector 2: TACCRL
Task starts here
Back to main program

348 Timer_A

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Timer_A Registers

12.3 Timer_A Registers

The Timer_A registers are listed in for Timer_A7, which is the largest configuration available.
The base address can be found in the device specific data sheet. The address offsets are listed in
[Table 12-3
Table 12-3. Timer_A7 Registers
Register Short Form _I?;egiester Eigiessfr é?f(ire(iss Initial State
Timer_A7 control TACTL Read/write Word 00h 0000h
TACTL_L Read/write Byte 00h 00h
TACTL_H Read/write Byte 01h 00h
Timer_A7 capture/compare control 0 TACCTLO Read/write Word 02h 0000h
TACCTLO_L Read/write Byte 02h 00h
TACCTLO_H Read/write Byte 03h 00h
Timer_A7 capture/compare control 1 TACCTL1 Read/write Word 04h 0000h
TACCTL1_L Read/write Byte 04h 00h
TACCTL1_H Read/write Byte 05h 00h
Timer_A7 capture/compare control 2 TACCTL2 Read/write Word 06h 0000h
TACCTL2_L Read/write Byte 06h 00h
TACCTL2_H Read/write Byte 07h 00h
Timer_A7 capture/compare control 3 TACCTL3 Read/write Word 08h 0000h
TACCTL3_L Read/write Byte 08h 00h
TACCTL3_H Read/write Byte 0%h 00h
Timer_A7 capture/compare control 4 TACCTL4 Read/write Word 0Ah 0000h
TACCTL4_L Read/write Byte 0Ah 00h
TACCTL4_H Read/write Byte 0Bh 00h
Timer_A7 capture/compare control 5 TACCTL5 Read/write Word 0Ch 0000h
TACCTL5_L Read/write Byte 0Ch 00h
TACCTL5_H Read/write Byte 0Dh 00h
Timer_A7 capture/compare control 6 TACCTL6 Read/write Word OEh 0000h
TACCTL6_L Read/write Byte OEh 00h
TACCTL6_H Read/write Byte OFh 00h
Timer_A7 counter TAR Read/write Word 10h 0000h
TAR_L Read/write Byte 10h 00h
TAR_H Read/write Byte 11h 00h
Timer_A7 capture/compare 0 TACCRO Read/write Word 12h 0000h
TACCRO_L Read/write Byte 12h 00h
TACCRO_H Read/write Byte 13h 00h
Timer_A7 capture/compare 1 TACCR1 Read/write Word 14h 0000h
TACCR1_L Read/write Byte 14h 00h
TACCR1_H Read/write Byte 15h 00h
Timer_A7 capture/compare 2 TACCR2 Read/write Word 16h 0000h
TACCR2_L Read/write Byte 16h 00h
TACCR2_H Read/write Byte 17h 00h
Timer_A7 capture/compare 3 TACCR3 Read/write Word 18h 0000h
TACCR3_L Read/write Byte 18h 00h
TACCR3_H Read/write Byte 19h 00h
Timer_A7 capture/compare 4 TACCR4 Read/write Word 1Ah 0000h
TACCR4_L Read/write Byte 1Ah 00h

SLAU208-June 2008
Eubmit Documentation Feedbacl

Timer_A 349

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
Timer_A Registers www.ti.com
Table 12-3. Timer_A7 Registers (continued)
Register Short Form .IESSLSter igg;sst:r g?fcsigiss Initial State
TACCR4_H Read/write Byte 1Bh 00h
Timer_A7 capture/compare 5 TACCR5 Read/write Word 1Ch 0000h
TACCR5_L Read/write Byte 1Ch 00h
TACCR5_H Read/write Byte 1Dh 00h
Timer_A7 capture/compare 6 TACCR6 Read/write Word 1Eh 0000h
TACCR6_L Read/write Byte 1Eh 00h
TACCR6_H Read/write Byte 1Fh 00h
Timer_A7 Interrupt Vector TAIV Read only Word 2Eh 0000h
TAIV_L Read only Byte 2Eh 00h
TAIV_H Read only Byte 2Fh 00h
Timer_A7 Extension TAEXO Read/write Word 20h 0000h
TAEXO_L Read/write Byte 20h 00h
TAEXO_H Read/write Byte 21h 00h

350

Timer_A

SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Timer_A Registers

TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8
\ Unused \ TASSELX |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
\ IDx MCx Unused TACLR | TAE | TAIFG |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)
Unused Bits 15-10 Unused
TASSELX Bits 9-8 Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
11 Inverted TACLK
IDx Bits 7-6 Input divider. These bits along with the IDEXx bits select the divider for the input clock.
00 1
01 2
10 14
11 /8
MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCRO
10 Continuous mode: the timer counts up to OFFFFh
11 Up/down mode: the timer counts up to TACCRO then down to 0000h
Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the TACLK divider, and the count direction. The TACLR bit is
automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TAIFG Bit O Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending
TAR, Timer_A Register
15 14 13 12 11 10 9 8
\ TARX |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
\ TARX |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
TARX Bits 15-0 Timer_A register. The TAR register is the count of Timer_A.
SLAU208—-June 2008 Timer_A 351

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
Timer_A Registers www.ti.com
TACCTLXx, Capture/Compare Control Register
15 14 13 12 11 10 9 8
\ CMX CcCIsSx scs sccl Unused cap |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0) r-(0) rw-(0)
7 6 5 4 3 2 1 0
\ OUTMODX | ccE ccl ouT cov CCIFG |
rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)
CMx Bit 15-14 Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges
CCISx Bit 13-12 Capture/compare input select. These bits select the TACCRXx input signal. See the device-specific data
sheet for specific signal connections.
00 CCIxA
01 CClIxB
10 GND
11 Vee
SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture
SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and
can be read via this bit.
Unused Bit 9 Unused. Read only. Always read as 0.
CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode
OUTMODx Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TACCRO because EQUx = EQUO.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set
CCIE Bit 4 ﬁ:apture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG
ag.
0 Interrupt disabled
1 Interrupt enabled
CClI Bit 3 Capture/compare input. The selected input signal can be read by this bit.
ouT Bit 2 Output. For output mode O, this bit directly controls the state of the output.
0 Output low
1 Output high
cov Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

352 Timer_A

u

SLAU208—-June 2008

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Timer_A Registers
CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8
0 | 0 \ 0 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
4 3 2 1
0 TAIVX | 0
r0 r0 r0 r0 r-(0) r-(0) r-(0) r0
TAIVX Bits 15-0 Timer_A interrupt vector value
TAIV Contents Interrupt Source Interrupt Flag :Qrtiirrr#ft
00h No interrupt pending
02h Capture/compare 1 TACCRL1 CCIFG Highest
04h Capture/compare 2 TACCR2 CCIFG
06h Capture/compare 3 TACCRS3 CCIFG
08h Capture/compare 4 TACCR4 CCIFG
OAh Capture/compare 5 TACCRS CCIFG
0Ch Capture/compare 6 TACCR®6 CCIFG
OEh Timer overflow TAIFG Lowest
TAEXO, Timer_A Expansion Register 0
15 14 13 12 11 10 9 8
Unused | Unused ‘ Unused Unused Unused Unused Unused Unused
r0 ro r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
Unused Unused Unused Unused Unused IDEX ‘
r0 ro r0 ro r0 rw-(0) rw-(0) rw-(0)
Unused Bits 15-3 Unused. Read only. Always read as 0.
IDEX Bits 2-0 Input divider expansion. These bits along with the IDx bits select the divider for the input clock.
000 1
001 2
010 13
011 14
100 /5
101 16
110 17
111 /8

SLAU208-June 2008
Eubmit Documentation Feedbacl

Timer_A 353

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

354 Timer_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 13
INSTRUMENTS SLAU208—June 2008
Timer_B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes Timer_B
is used in MSP430x5xx devices.

Topic Page
13.1 Timer_B Introduction]o . eeee e i iesaeeeieieiaeaeieieisaeaeeens 354
13.2 Timer_ B Operation] i oo ieeeeeeieieraeaeieiresaeaeieieiaeaeeeieiesaeaeiens 359
13.3 Timer_B RegiSters| oot ie e aeaeeeeieieieieieeeararaeeeeieiereiieaeaeaenen. 370
SLAU208—-June 2008 Timer_ B 355

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Timer_B Introduction www.ti.com

13.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare registers. Timer_B can support
multiple capture/compares, PWM outputs, and interval timing. Timer_B also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_B features include :

» Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths
» Selectable and configurable clock source

» Up to seven configurable capture/compare registers

» Configurable outputs with PWM capability

» Double-buffered compare latches with synchronized loading

« Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Fiqure 13-1].

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter,
then an associated action will not take place.

13.1.1 Similarities and Differences From Timer_A

Timer_B is identical to Timer_A with the following exceptions:

* The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

* Timer_B TBCCRXx registers are double-buffered and can be grouped.
» All Timer_B outputs can be put into a high-impedance state.

» The SCCI bit function is not implemented in Timer_B.

356 Timer_B SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Timer_B Introduction

: Timer Block
TBSSELx IDx IDEXx Timer Clock MCx
A R 0 i
TBCLK—@—— 00] | Divider| | Divider 16-l>TitE5TFimef . —B{ Count | o
/A/2/4/8] | 1../8 <4—] Mode
ACLK ot Clear 8 10 12 16
SMCLK 10 | l CNTLx
—Do— 11 i
TBCLR
TBCLGRPxX 00
01
T T Set TBIFG
10
Group 11
! Load Logic
! -1
CCRO
CCR1
CCR2
CCR3
CCR4
CCR5
-
| CCISx CMx CCR6
CCI6A 00 Capture
ccieB —] o1 Mode 0
TBCCR6
GND 10 Timer Clock
vce 1 {}
CLLDx Load
CCl Group P Compare Latch TBCL6
Load Logic
VCC ng
TBR=0 > Compararator 6
EQUO —
UP/DOWN _ﬁ CCR4 EQU6 | cap
f CCR1
0 Set TBCCR6
1 CCIFG
ouT I—Ti)
Output
EQUO ’I Unit6 D Set Ql-e—p OUTS Signal
Timer Clock —
Reset
POR
OUTMODx H
Figure 13-1. Timer_B Block Diagram
SLAU208-June 2008 Timer_B 357

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Timer_B Operation www.ti.com

13.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in
the following sections.

13.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TBR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider and count
direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions.

When the TBCLK is asynchronous to the CPU clock, any read from TBR should occur while
the timer is not operating or the results may be unpredictable. Alternatively, the timer may be
read multiple times while operating, and a majority vote taken in software to determine the
correct reading. Any write to TBR will take effect immediately.

TBR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTLx bits. The maximum
count value, TBR(max), for the selectable lengths is OFFh, 03FFh, OFFFh, and OFFFFh, respectively. Data
written to the TBR register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

The timer clock TBCLK can be sourced from ACLK, SMCLK, or externally via TBCLK. The clock source is
selected with the TBSSELX bits. The selected clock source may be passed directly to the timer or divided
by 2,4, or 8, using the IDx bits. The selected clock source can be further divided by 2, 3, 4,5, 6, 7, or 8
using the IDEXXx bits.The TBCLK dividers are reset when TBCLR is set.

Note: Timer_B Dividers

Setting the TBCLR bit will clear the contents of TBR, as well as, the dividers. When the
TBCLR bit is cleared, the Timer Clock will immediately begin clocking at the first rising edge
of the Timer_B clock source selected with the TBSSELX bits, and will continue clocking at
the divider settings set by the IDx and IDEXXx bits.

13.2.2 Starting the Timer

The timer may be started or restarted in the following ways:
* The timer counts when MCx > 0 and the clock source is active.

* When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TBCLO. The
timer may then be restarted by loading a nonzero value to TBCLO. In this scenario, the timer starts
incrementing in the up direction from zero.

13.2.3 Timer Mode Control

The timer has four modes of operation as described in [Table 13-1]: stop, up, continuous, and up/down.
The operating mode is selected with the MCx bits.

358 Timer_B SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Changing the Period Register TBCLO
Table 13-1. Timer Modes
MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of compare register TBCLO.
10 Continuous The timer repeatedly counts from zero to the value selected by the TBCNTLx bits.
11 Up/down The timer repeatedly counts from zero up to the value of TBCLO and then back down to zero.

13.2.3.1 Up Mode

The up mode is used if the timer period must be different from TBRmay counts. The timer repeatedly
counts up to the value of compare latch TBCLO, which defines the period, as shown in Figure 13-2. The
number of timer counts in the period is TBCLO+1. When the timer value equals TBCLO the timer restarts
counting from zero. If up mode is selected when the timer value is greater than TBCLO, the timer
immediately restarts counting from zero.

TBR

(max)

TBCLO — — — — — — g — — — — — _— -

Oh

Figure 13-2. Up Mode

The TBCCRO CCIFG interrupt flag is set when the timer counts to the TBCLO value. The TBIFG interrupt
flag is set when the timer counts from TBCLO to zero. shows the flag set cycle.

Timer :XTBCL0-1)(T8CLO X' oh X 1h Xj: X TBCLo-1X TBCLO X' Oh

Set TBIFG | '
!

I

|

S C
)T

|

L

|
{C l
P2

Figure 13-3. Up Mode Flag Setting

Set TBCCRO CCIFG l

Changing the Period Register TBCLO

When changing TBCLO while the timer is running and when the TBCLO load mode is immediate, if the
new period is greater than or equal to the old period, or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.

SLAU208-June 2008 Timer_B 359
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Continuous Mode www.ti.com

Continuous Mode

In continuous mode the timer repeatedly counts up to TBR s,y and restarts from zero as shown in
Eigure T3-4. The compare latch TBCLO works the same way as the other capture/compare registers.

TBRpy ————————————— — — g — — — — — — — _——-

(max)

Oh

Figure 13-4. Continuous Mode

The TBIFG interrupt flag is set when the timer counts from TBR gy to zero. shows the flag
set cycle.

I I

{

Timer XTBR‘“*’_IX TBR., X oh X 1n X'I” X ™BRe-1 X TBR., X on
I I

Set TBIFG o
D)

Figure 13-5. Continuous Mode Flag Setting

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TBCLx latch
in the interrupt service routine. shows two separate time intervals t, and t; being added to the
capture/compare registers. The time interval is controlled by hardware, not software, without impact from
interrupt latency. Up to n (Timer_Bn), where n = 0 to 7, independent time intervals or output frequencies
can be generated using capture/compare registers.

TBCL1b TBCL1c
teclob | TBCcLoc | TBCLOd
TBRuwy |- — — e S
1R i I
TBCL1a| 1R TBCL1d |
I
TBCLOa I : I: |
| | i I
Oh I | V| ! | I
| [T [T o
L 1 | [
EQUO Interrupt ' I . | . | L]
) 1t 1 to II
b
[I I I
EQU1 Interrupt
P I t4 I t4 I t4 [
I | | I
Figure 13-6. Continuous Mode Time Intervals
360 Timer B SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Up/Down Mode

Time intervals can be produced with other modes as well, where TBCLO is used as the period register.
Their handling is more complex since the sum of the old TBCLx data and the new period can be higher
than the TBCLO value. When the sum of the previous TBCLXx value plus t, is greater than the TBCLO data,
the old TBCLO value must be subtracted to obtain the correct time interval.

Up/Down Mode

The up/down mode is used if the timer period must be different from TBR 4y counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare latch TBCLO, and
back down to zero, as shown in Figure 13-7. The period is twice the value in TBCLO.

Note: TBCLO > TBRay)

If TBCLO > TBRmax), the counter operates as if it were configured for continuous mode. It
does not count down from TBR 4y t0 zero.

OO —— —— — — e — — — — — — — — — — — — — — —— -

Oh

Figure 13-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TBCLR bit must be used to clear the
direction. The TBCLR bit also clears the TBR value and the TBCLK divider.

In up/down mode, the TBCCRO CCIFG interrupt flag and the TBIFG interrupt flag are set only once during
the period, separated by 1/2 the timer period. The TBCCRO CCIFG interrupt flag is set when the timer
counts from TBCLO-1 to TBCLO, and TBIFG is set when the timer completes counting down from 0001h to
0000h. shows the flag set cycle.

C
Ti TBCLO-1 X TBCLO X TBCLO-1 X TBCLO-2 ’ 1h Oh 1h
mer —TecLo Tecto YTecior)Teooz) Y Y o X
Up/Down l\ C«

))

1

Set TBIFG (c

))

({4
))

|
I
Set TBCCRO CCIFG '
|

Figure 13-8. Up/Down Mode Flag Setting

Changing the Value of Period Register TBCLO

When changing TBCLO while the timer is running, and counting in the down direction, and when the
TBCLO load mode is immediate, the timer continues its descent until it reaches zero. The new period
takes effect after the counter counts down to zero.

If the timer is counting in the up direction when the new period is latched into TBCLO, and the new period
is greater than or equal to the old period, or greater than the current count value, the timer counts up to
the new period before counting down. When the timer is counting in the up direction, and the new period
is less than the current count value when TBCLO is loaded, the timer begins counting down. However, one
additional count may occur before the counter begins counting down.

SLAU208-June 2008 Timer_B 361
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

i3 TEXAS
INSTRUMENTS

Use of the Up/Down Mode www.ti.com

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section
Timer_B Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must

never be in a high state simultaneously. In the example shown in the tyeaq is:
tgead = tiimer X (TBCL1 — TBCL3)
With:

tyead = Time during which both outputs need to be inactive
timer = Cycle time of the timer clock
TBCLx = Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead times.

o |

TBR

Output Mode 6: Toggle/Set

I
| I Output Mode 2: Toggle/Reset
I

I
I I I 1l
EQU1 | EQU1 EQut | EQU1 Interruot Events
TBIFG | "Equo I™FG | Equo | P

EQU3 EQU3 EQU3 EQU3

Figure 13-9. Output Unit in Up/Down Mode

13.2.4 Capture/Compare Blocks

Three or seven identical capture/compare blocks, TBCCRYX, are present in Timer_B. Any of the blocks
may be used to capture the timer data or to generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxXA and CCIxB are connected to
external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input
signal. If a capture is performed:

* The timer value is copied into the TBCCRX register
* The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices may have
different signals connected to CCIXA and CCIxB. Refer to the device-specific data sheet for the
connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit will synchronize the capture with the next timer clock. Settlng the SCS bit to synchronize the capture
signal with the timer clock is recommended. This is illustrated in Figure 13-10.

362

Timer_B SLAU208—-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Capture Initiated by Software

Ti N —2 —1 1 2 3 4
imer n X n rll X n+ X n+ X n+ X n+ X

A
ccl [// /:
Capture /_\

Set '
TBCCRx CCIFG

Figure 13-10. Capture Signal (SCS =1)

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in
Figure T3-T7. COV must be reset with software.

Idle

[

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture Read and No Capture

Capture

Clear Bit COV
in Register TBCCTLx

Second
Capture
Taken
Cov =1

Idle

Figure 13-11. Capture Cycle

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then

sets bit CCIS1=1 and toggles bit CCISO to switch the capture signal between V¢ and GND, initiating a
capture each time CCISO0 changes state:

MoV #CAP+SCS+CCl S1+CM 3, &TBCCTLX ; Setup TBCCTLx
XCOR #CCl SO, &TBCCTLx ; TBCCTLx = TBR

1

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or
interrupts at specific time intervals. When TBR counts to the value in a TBCLx:

* Interrupt flag CCIFG is set
* Internal signal EQUx =1
» EQUx affects the output according to the output mode

SLAU208—-June 2008

Timer_B 363
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Compare Latch TBCLx www.ti.com

Compare Latch TBCLx

The TBCCRx compare latch, TBCLX, holds the data for the comparison to the timer value in compare
mode. TBCLx is buffered by TBCCRXx. The buffered compare latch gives the user control over when a
compare period updates. The user cannot directly access TBCLx. Compare data is written to each
TBCCRXx and automatically transferred to TBCLx. The timing of the transfer from TBCCRx to TBCLX is
user-selectable with the CLLDx bits as described in [Table 13-7.

Table 13-2. TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when TBCCRX is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRx to TBCLx when TBR counts to O for up and continuous modes. New data is
transferred to from TBCCRx to TBCLx when TBR counts to the old TBCLO value or to 0 for up/down mode

11 New data is transferred from TBCCRx to TBCLx when TBR counts to the old TBCLXx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates with the TBCLGRPx bits.
When using groups, the CLLDx bits of the lowest numbered TBCCRX in the group determine the load
event for each compare latch of the group, except when TBCLGRP = 3, as shown in Table 13-3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the CLLDx bits of the controlling
TBCCRXx are set to zero, all compare latches update immediately when their corresponding TBCCRX is
written - no compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped. First, all TBCCRX registers
of the group must be updated, even when new TBCCRx data = old TBCCRx data. Second, the load event

must occur.
Table 13-3. Compare Latch Operating Modes
TBCLGRPx Grouping Update Control
00 None Individual
01 TBCL1+TBCL2TBCL3+TBCL4TBCL5+TBCL6 TBCCR1TBCCR3TBCCR5
10 TBCL1+TBCL2+TBCL3TBCL4+TBCL5+TBCL6 TBCCR1TBCCR4
11 TBCLO+TBCL1+TBCL2+ TBCL3+TBCL4+TBCL5+TBCL6 TBCCR1

13.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQUO and EQUx signals. The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin (corresponding PSEL bit is
set, and port configured as input), and when the pin is pulled high, all Timer_B outputs are in a
high-impedance state.

13.2.5.1 Output Modes

The output modes are defined by the OUTMODX bits and are described in [Table 13-4. The OUTx signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUx = EQUO.

364 Timer_B SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com Output Example—Timer in Up Mode
Table 13-4. Output Modes
OUTMODx Mode Description

000 Output The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately
when OUTXx is updated.

001 Set The output is set when the timer counts to the TBCLx value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer counts to the TBCLx value. It is reset when the timer
counts to the TBCLO value.

011 Set/Reset The output is set when the timer counts to the TBCLx value. It is reset when the timer
counts to the TBCLO value.

100 Toggle The output is toggled when the timer counts to the TBCLx value. The output period is
double the timer period.

101 Reset The output is reset when the timer counts to the TBCLx value. It remains reset until another
output mode is selected and affects the output.

110 Toggle/Set The output is toggled when the timer counts to the TBCLx value. It is set when the timer
counts to the TBCLO value.

111 Reset/Set The output is reset when the timer counts to the TBCLx value. It is set when the timer

counts to the TBCLO value.

Output Example—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TBCLx value, and rolls from TBCLO to zero,

depending on the output mode. An example is shown in using TBCLO and TBCL1.
[
TBR |
MmCLO}— — — — — — — — — — — — — — — -

TBCLT |- — — —

ohe"——————— ¥ — — —_—
I I I I I
[: : :
| | | Output Mode 1: Set
I I I I I
| Output Mode 2: Toggle/Reset
'— _______
L
| Output Mode 3: Set/Reset
I I I I I
__________ ! —_——————
k ! I Output Mode 4: Toggle
—_ b -
I | I I I
| | | Output Mode 5: Reset
" [[[
!
L Output Mode 6: Toggle/Set
I I I
F ' Output Mode 7: Reset/Set
EQUO EQU1 EQUO EQU1 EQUO
TBIFG TBIFG TBIFG Interrupt Events

Figure 13-12. Output Example—Timer in Up Mode

SLAU208-June 2008
Bubmit Documentation FeedbacH

Timer_B 365

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Output Example—Timer in Continuous Mode

13 TEXAS
INSTRUMENTS

www.ti.com

Output Example—Timer in Continuous Mode

The OUTXx signal is changed when the timer reaches the TBCLx and TBCLO values, depending on the
output mode, An example is shown in using TBCLO and TBCL1.

Qutput Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

QOutput Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

<N B
R
" I I I I
—
I |
I |
| |
Fem- |
| |
I B N
T T] |
N SR R R |
—
o _ | | | |
R
" 1
fo—— |
|
|

TBIFG EQU1 EQUO TBIFG EQU1

EQUO

Output Mode 7: Reset/Set

Interrupt Events

Figure 13-13. Output Example—Timer in Continuous Mode

366

Timer_B

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Output Example—Timer in Up/Down Mode

Output Example—Timer in Up/Down Mode
The OUTXx signal changes when the timer equals TBCLx in either count direction and when the timer

equals TBCLO, depending on the output mode. An example is shown in using TBCLO and
TBCLS3.
TBR o |
TBCLO
TBCL3
o | |
on (] L
] L
r b | | Output Mode 1: Set
I
! -I | | Output Mode 2: Toggle/Reset
I | !
|
' | | | Output Mode 3: Set/Reset
L 1] o
| o N I_"“ N aj-tput Mode 4: Toggle
—t-A 4
] |
|- | | | | | | Qutput Mode 5: Reset
T ' [[[' [
L | | |
| -I | | Output Mode 6: Toggle/Set
' o 1
L]
| ! ! ! Output Mode 7: Reset/Set
| | |
| EQU3 | EQU3 EQU3 | EQU3
TBIFG EQUO TBIFG EQUO Interrupt Events

Figure 13-14. Output Example—Timer in Up/Down Mode

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD 7, &TBCCTLx ; Set output node=7
BI C #OUTMODx, &TBCCTLx ; Clear unwanted bits

13.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:

e TBCCRO interrupt vector for TBCCRO CCIFG

» TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the associated TBCCRx
register. In compare mode, any CCIFG flag is set when TBR counts to the associated TBCLx value.

Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bhit are set.

SLAU208—-June 2008 Timer_B
Eubmit Documentation Feedbacl

367

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

TBCCRO Interrupt Vector www.ti.com

TBCCRO Interrupt Vector

The TBCCRO CCIFG flag has the highest Timer_B interrupt priority and has a dedicated interrupt vector
as shown in Figure 13-T5. The TBCCRO CCIFG flag is automatically reset when the TBCCRO interrupt
request is serviced.

Capture ———)
EQUO b Set aQ CCIEF} IRQ, Interrupt Service Requested
CAP B—@—9O

Timer Clock —

Reset

IRACC, Interrupt Request Accepted
POR

Figure 13-15. Capture/Compare TBCCRO Interrupt Flag

TBIV, Interrupt Vector Generator

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCRO CCIFG) are prioritized and combined to
source a single interrupt vector. The interrupt vector register TBIV is used to determine which flag
requested an interrupt.

The highest priority enabled interrupt (excluding TBCCRO CCIFG) generates a humber in the TBIV
register (see register description). This number can be evaluated or added to the program counter to
automatically enter the appropriate software routine. Disabled Timer_B interrupts do not affect the TBIV
value.

Any access, read or write, of the TBIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TBCCR2 CCIFG flag will generate another interrupt.

TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the handling overhead. The
TBIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

» Capture/compare block CCRO 11 cycles
» Capture/compare blocks CCR1 to CCR6 16 cycles
e Timer overflow TBIFG 14 cycles

368

Timer_B SLAU208—-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV for Timer_B3.

; Interrupt handler for TBCCRO CCl FG Cycl es
CCl FG_0_HND
. ; Start of handler Interrupt |atency 6
RETI 5

; Interrupt handler for TBIFG TBCCRL and TBCCR2 CCl FG

TB_HND .. ; Interrupt |atency 6
ADD &TBI V, PC ; Add offset to Junp table 3
RETI ; Vector 0: No interrupt 5
JMP CCOFG 1 HND ; Vector 2: Mdule 1 2
JwP CCOFG 2 HND ; Vector 4: Mdule 2 2
RETI ; Vector 6
RETI ; Vector 8
RETI ; Vector 10
RETI ;. Vector 12
TBI FG_HND ; Vector 14: TBIFG Fl ag
; Task starts here
RETI 5
CCl FG_2_HND ; Vector 4: Module 2
; Task starts here
RETI ; Back to main program 5
; The Modul e 1 handl er shows a way to |l ook if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCl FG_1 HND ; Vector 6: Mdule 3
;. Task starts here
JwP TB_HND ; Look for pending ints 2
SLAU208-June 2008 Timer_B 369

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Timer_B Registers www.ti.com

13.3 Timer_B Registers

The Timer_B registers are listed in [[able 13-3. The base address can be found in the device specific data
sheet. The address offset is listed in [able 13-5.

Table 13-5. Timer_B Registers

Register Short Form Register Type g?fc;re?ss Initial State
Timer_B control TBCTL Read/write 00h 0000h
Timer_B capture/compare control 0 TBCCTLO Read/write 02h 0000h
Timer_B capture/compare control 1 TBCCTL1 Read/write 04h 0000h
Timer_B capture/compare control 2 TBCCTL2 Read/write 06h 0000h
Timer_B capture/compare control 3 TBCCTL3 Read/write 08h 0000h
Timer_B capture/compare control 4 TBCCTL4 Read/write 0Ah 0000h
Timer_B capture/compare control 5 TBCCTL5 Read/write 0Ch 0000h
Timer_B capture/compare control 6 TBCCTL6 Read/write OEh 0000h
Timer_B counter TBR Read/write 10h 0000h
Timer_B capture/compare 0 TBCCRO Read/write 12h 0000h
Timer_B capture/compare 1 TBCCR1 Read/write 14h 0000h
Timer_B capture/compare 2 TBCCR2 Read/write 16h 0000h
Timer_B capture/compare 3 TBCCR3 Read/write 18h 0000h
Timer_B capture/compare 4 TBCCR4 Read/write 1Ah 0000h
Timer_B capture/compare 5 TBCCR5 Read/write 1Ch 0000h
Timer_B capture/compare 6 TBCCR6 Read/write 1Eh 0000h
Timer_B Interrupt Vector TBIV Read only 2Eh 0000h
Timer_B Extension TBEXO Read/write 20h 0000h
370 Timer_B SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Timer_B Registers
Timer_B Control Register, TBCTL
15 14 13 12 11 10 9 8
| Unused | TBCLGRPX | CNTLX | Unused | TBSSELX |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
\ IDx \ MCx Uused | TBCLR | TBIE | TBIFG |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)
Unused Bit 15 Unused
TBCLGRP Bit 14-13 TBCLx group

00 Each TBCLx latch loads independently

01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)
TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCR5 CLLDx bits control the update)
TBCLO independent

10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCLO independent

11 TBCLO+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6 (TBCCR1 CLLDx bits control the update)
CNTLx Bits 12-11 Counter Length

00 16-bit, TBR(max) = OFFFFh

01 12-bit, TBR(max) = OFFFh

10 10-bit, TBR(max) = 03FFh

11 8-bit, TBR(max) = OFFh

Unused Bit 10 Unused
TBSSELX Bits 9-8 Timer_B clock source select
00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK
IDx Bits 7-6 Input divider. These bits along with the IDEXx bits select the divider for the input clock.
00 1
01 2
10 14
11 /8
MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_B is not in use conserves power.

00 Stop mode: the timer is halted

01 Up mode: the timer counts up to TBCLO

10 Continuous mode: the timer counts up to the value set by TBCNTLx
11 Up/down mode: the timer counts up to TBCLO and down to 0000h

Unused Bit 3 Unused
TBCLR Bit 2 Timer_B clear. Setting this bit resets TBR, the TBCLK divider, and the count direction. The TBCLR bit is
automatically reset and is always read as zero.
TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TBIFG Bit O Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending
SLAU208—-June 2008 Timer_B 371

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Timer_B Registers www.ti.com
TBR, Timer_B Register
15 14 13 12 11 10 9 8
\ TBRX |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 | 3 2 1 0
\ TBRX |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
TBRXx Bits 15-0 Timer_B register. The TBR register is the count of Timer_B.

372 Timer_B

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Timer_B Registers

TBCCTLXx, Capture/Compare Control Register

15 14 13 12 11 10 9 8
\ CMX \ CcCIsSx scs | CLLDx | cap |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
\ OUTMODX | ccE ccl | outr | cov | ccrc |
rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)
CMx Bit 15-14 Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges
CCISx Bit 13-12 Capture/compare input select. These bits select the TBCCRx input signal. See the device-specific data
sheet for specific signal connections.
00 CCIxA
01 CClIxB
10 GND
11 Vce
SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture
CLLDx Bit 10-9 Compare latch load. These bits select the compare latch load event.
00 TBCLx loads on write to TBCCRX
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to O (up or continuous mode)
TBCLx loads when TBR counts to TBCLO or to O (up/down mode)
11 TBCLx loads when TBR counts to TBCLx
CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode
OUTMODx Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TBCLO because EQUx = EQUO.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set
CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled
CClI Bit 3 Capture/compare input. The selected input signal can be read by this bit.
ouT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high
Ccov Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Timer_B

373

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
Timer_B Registers www.ti.com
CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending
TBIV, Timer_B Interrupt Vector Register
15 14 13 12 11 10 9 8
0 | 0 \ 0 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
4 3 2 1
0 TBIVX | 0
r0 r0 r0 r0 r-(0) r-(0) r-(0) r0
TBIVxX Bits 15-0 Timer_B interrupt vector value
CoTnEr’.’tle\r/\ts Interrupt Source Interrupt Flag g‘rtigrrri?ft
00h No interrupt pending
02h Capture/compare 1 TBCCRL1 CCIFG Highest
04h Capture/compare 2 TBCCR2 CCIFG
06h Capture/compare 3 TBCCR3 CCIFG
08h Capture/compare 4 TBCCR4 CCIFG
0Ah Capture/compare 5 TBCCRS5 CCIFG
0Ch Capture/compare 6 TBCCR6 CCIFG
OEh Timer overflow TBIFG Lowest
TBEXO, Timer_B Expansion Register 0
15 14 13 12 11 10 9 8
Unused | Unused ‘ Unused Unused Unused Unused Unused Unused
r0 ro r0 ro r0 ro r0 ro
7 6 5 4 3 2 1 0
Unused Unused Unused Unused Unused | IDEX ‘
r0 ro r0 ro r0 rw-(0) rw-(0) rw-(0)
Unused Bits 15-3 Unused. Read only. Always read as 0.
IDEX Bits 2-0 Input divider expansion. These bits along with the IDx bits select the divider for the input clock.
000 1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

374 Timer_B

SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 14
INSTRUMENTS SLAU208_June 2008

Real-Time Clock (RTC_A)

The Real-Time Clock module provides clock counters with calendar mode, a flexible programmable alarm,
and calibration. This chapter describes the Real-Time Clock (RTC_A) module. The RTC_A is implemented

in the MSP430x5xx devices.

Topic Page
14.1 Real-Time Clock Introductionfoiceieseeieiiieieiieiiieieiaiiieiieieariieneenes 379
14.2 Real-Time Clock Operationo..eeeeeeeieieie i eeeeeeeeeieieieieeeeaeaeeene. 373
14.3 Real-Time Clock RegiSters| . eeeieeeieieieierereaearararareiererereieaeaeeeen, 383

SLAU208-June 2008 Real-Time Clock (RTC_A) 375

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Real-Time Clock Introduction www.ti.com

14.1 Real-Time Clock Introduction

The Real-Time Clock module provides a clock with calendar that can also be configured as a general
purpose counter.

Real-Time Clock features include:

Configurable for Real-Time Clock mode or general purpose counter

Provides seconds, minutes, hours, day of week, day of month, month and year in calender mode.
Interrupt capability.

Selectable BCD or binary format in Real-Time Clock mode

Programmable alarms in Real-Time Clock mode

Calibration logic for time offset correction in Real-Time clock mode

The Real-Time Clock block diagram is shown in Figure 14-1].

Note: Real-Time Clock Initialization

Most Real-Time Clock module registers have no initial condition. These registers must be
configured by user software before use.

376

Real-Time Clock (RTC_A) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Real-Time Clock Introduction
RTOPSHOLD
RTOSSEL '|'
— RTOIP
EN
ACLK 0 RTOPS 3
SMCLK 1 >Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Set_RTOPSIFG

© © o
RTOPSDIV HSA\g =

110
001
101
011
111

/RTCCALS RTCCAL RTCMODE

[Is]

Calibration
RT1SSEL RT1PSHOLD Logic EN

RT1IP

Set_RT1PSIFG

»

© © O O ™
RT1PSDIV 3 8235 r- 8

101
011
111

Set_RTCRDYIFG

_ | Keepout
RTCSSEL " Logic [+ _)—>
2 RTCBCD RTCHOLD
00 I

01

+—| 10 31 .. 24 23 ..
— 11 F 7 RTCTEV

8-bit overflow/minute changed
16-bit overflow/hour changed
24-bit overflow/midnight
32-bit overflow/noon

Set_RTCTEVIFG

EN

Calendar

|| RTCYEARH-][RTCYEARE}[RTCMON][RTCDAY]

EN|
Alarm Set_RTCAIFG
| rrcabow || rTcapay ||RTCAHOUR|| RTCAMIN |
Figure 14-1. Real-Time Clock
SLAU208-June 2008 Real-Time Clock (RTC_A) 377

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Real-Time Clock Operation www.ti.com

14.2 Real-Time Clock Operation

The Real-Time Clock module can be configured as a real-time clock with calendar function or as a 32-bit
general purpose counter with the RTCMODE bit

14.2.1 Counter Mode

Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is
directly accessible by software. Switching from calendar mode to counter mode resets the count value
(RTCNT1, RTCNT2, RTCNT3, RTCNT4), as well as, the prescale counters (RTOPS, RT1PS).

The clock to increment the counter can be sourced from ACLK, SMCLK, or prescaled versions of ACLK or
SMCLK. Prescaled versions of ACLK or SMCLK are sourced from the prescale dividers , RTOPS and
RT1PS. RTOPS and RT1PS output /2, /4, /8, 16, /32, /64, /128, /256 versions of ACLK and SMCLK,
respectively. The output of RTOPS can be cascaded with RT1PS. The cascaded output can be used as a
clock source input to the 32-bit counter.

Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit,
or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An
RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter RTCNT1 through
RTCNT4 is individually accessible and may be written to.

RTOPS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter.
RTOPS and RT1PS can be halted on an individual basis by setting their respective RTOPSHOLD and
RT1PSHOLD bits. When RTOPS is cascaded with RT1PS, setting RTOPSHOLD will cause both RTOPS
and RT1PS to be halted. The 32-bit counter can be halted several ways depending on the configuration. If
the 32-bit counter is sourced directly from ACLK or SMCLK, it can be halted by setting RTCHOLD. If it is
sourced from the output of RT1PS, it can be halted by setting RTIPSHOLD or RTCHOLD. Finally, if it is
sourced from the cascaded outputs of RTOPS and RT1PS, it can be halted by setting RTOPSHOLD,
RT1PSHOLD, or RTCHOLD.

Note: Accessing the RTCNTx registers

When the counter clock is asynchronous to theCPUclock, any read from any RTCNTX,
RTOPS, or RT1PS registers should occur while the counter is not operating. Otherwise, the
results may be unpredictable. Alternatively, the counter may be read multiple times while
operating, and a majority vote taken in software to determine the correct reading. Anywrite to
anyRTCNTXx, RTOPS, or RT1PS registers takes effect immediately.

14.2.2 Calendar Mode

Calendar mode is selected when RTCMODE is set. In calendar mode, the Real-Time Clock module
provides seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or
hexadecimal format. The calendar includes a leap year algorithm that considers all years evenly divisible
by 4 as leap years. This algorithm is accurate from the year 1901 through 2099.

14.2.2.1 Real-Time Clock and Prescale Dividers

The prescale dividers, RTOPS and RT1PS are automatically configured to provide a one second clock
interval for the Real-Time Clock. RTOPS is sourced from ACLK. ACLK must be set to 32768 Hz, nominal
for proper Real-Time Clock calendar operation. RT1PS is cascaded with the output ACLK/256 of RTOPS.
The Real-Time Clock is sourced with the /128 output of RT1PS, thereby providing the required one
second interval. Switching from counter to calendar mode clears the seconds, minutes, hours,
day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, the RTOPS and
RT1PS are cleared.

When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be selected
before the time is set. Changing the state of RTCBCD clears the seconds, minutes, hours, day-of-week,
and year counts and sets day-of-month and month counts to 1. In addition, RTOPS and RT1PS are
cleared.

378

Real-Time Clock (RTC_A) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TEXAS
INSTRUMENTS

www.ti.com Real-Time Clock Operation

In calendar mode, the RTOSSEL, RT1SSEL, RTOPSDIV, RT1PSDIV, RTOPSHOLD, RT1PSHOLD, and
RTCSSEL bits are do not care. Setting RTCHOLD halts the real-time counters and prescale counters,
RTOPS and RT1PS.

14.2.2.2 Real-Time Clock Alarm Function

The Real-Time Clock module provides for a flexible alarm system. There is a single, user programmable
alarm that can be programmed based on the settings contained in the alarm registers for minutes, hours,
day of week, and day of month. The user programmable alarm function is only available in calendar mode
of operation.

Each alarm register contains an alarm enable bit, AE that can be used to enable the respective alarm
register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated.

For example, a user wishes to set an alarm every hour at 15 minutes past the hour i.e. 00:15:00,
01:15:00, 02:15:00, etc. This is possible by setting RTCAMIN to 15. By setting the AE bit of the RTCAMIN,
and clearing all other AE bits of the alarm registers, the alarm will be enabled. When enabled, the AF will
be set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00,
etc.

For example, a user wishes to set an alarm every day at 04:00:00. This is possible by setting RTCAHOUR
to 4. By setting the AE bit of the RTCHOUR, and clearing all other AE bits of the alarm registers, the
alarm will be enabled. When enabled, the AF will be set when the count transitions from 03:59:59 to
04:00:00.

For example, a user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN
would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm will be enabled. Once
enabled, the AF will be set when the the time count transitions from 06:29:59 to 06:30:00. In this case, the
alarm event will occur every day at 06:30:00.

For example, a user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2,
RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADOW,
RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled, the AF will be set when the the
time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2.

For example, a user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be
setto 5, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of
RTCADAY, RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled, the AF will be set when
the the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5.

Note: Invalid Alarm Settings

Invalid alarm settings are not checked via hardware. It is the user responsibility that valid
alarm settings are entered.

Note: Invalid Time and Date Values

Writing of invalid date and/or time information or data values outside the legal ranges
specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH,
RTCYEARL, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in
unpredictable behavior.

Note: Setting the Alarm

In order to prevent potential erroneous alarm conditions from occurring, the alarms should be
disabled be clearing the RTCAIE, RTCAIFG, and AE bits prior to writing new time values to
the RTC time registers.

SLAU208-June 2008 Real-Time Clock (RTC_A) 379
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Real-Time Clock Operation www.ti.com

14.2.2.3 Reading or Writing Real-Time Clock Registers in Calendar Mode

Since the system clock may in fact be asynchronous to the Real-Time Clock clock source, special care
must be used when accessing the Real-Time Clock registers.

In calendar mode, the real-time clock registers are updated once per second. In order to prevent reading
any real-time clock register at the time of an update that could result in an invalid time being read, a
keepout window is provided. The keepout window is centered approximately - 128/32768 seconds around
the update transition. The read only RTCRDY bit is reset during the keepout window period and set
outside the keepout the window period. Any read of the clock registers while RTCRDY is reset, is
considered to be potentially invalid, and the time read should be ignored.

An easy way to safely read the real-time clock registers is to utilize the RTCRDYIFG interrupt flag. Setting
RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt will be generated based on the
rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has
nearly a complete second to safely read any or all of the real-time clock registers. This synchronization
process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically
when the interrupt is serviced, or can be reset with software.

In counter mode, the RTCRDY bit remains reset. The RTCRDYIE is a do not care and the RTCRDYIFG
remains reset.

Note: Reading or Writing Real-Time Clock Registers

When the counter clock is asynchronous to theCPUclock, any read from any RTCSEC,
RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, RTCYEARH registers
while the RTCRDY is resetmay result in invalid data being read. To safely read the counting
registers, either polling of the RTCRDY bit or the synchronization procedure described above
can be used. Alternatively, the counter register can be read multiple times while operating,
and a majority vote taken in software to determine the correct reading. Reading theRTOPS
andRT1PS can only be handled by reading the registers multiple times and a majority vote
taken in software to determine the correct reading or by halting the counters.

Any write to any counting register takes effect immediately. However, the clock is stopped
during the write. In addition, RTOPS and RT1PS registers are reset. This could result in
losing up to one second during a write.Writing of data outside the legal ranges or invalid time
stamp combinations results in unpredictable behavior.

14.2.3 Real-Time Clock Interrupts

The Real-Time Clock module has five interrupt sources available, each with independent enables and
flags.

14.2.3.1 Real-Time Clock Interrupts in Calendar Mode

In calendar mode, five sources for interrupts are available, namely RTOPSIFG, RT1PSIFG, RTCRDYIFG,
RTCTEVIFG, and RTCAIFG. These flags are prioritized and combined to source a single interrupt vector.
The interrupt vector register RTCIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the RTCIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled RTC interrupts do not affect the RTCIV value.

Any access, read or write, of the RTCIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
In addition, all flags can be cleared via software.

The user programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting the RTCAIE
enables the interrupt. In addition to the user programmable alarm, The Real-Time Clock Module provides
for an interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be
selected to cause an alarm event when RTCMIN changed, RTCHOUR changed, every day at midnight
(00:00:00), or every day at noon (12:00:00). The event is selectable with the RTCTEV bits Setting the
RTCTEVIE bit enables the interrupt.

380

Real-Time Clock (RTC_A) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com RTCIV Software Example

The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG and is useful in synchronizing the
read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt.

The RTOPSIFG can be used to generate interrupt intervals selectable by the RTOIP bits. In calendar
mode, RTOPS is sourced with ACLK at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz,
1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RTOPSIE bit enables the interrupt.

The RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In calendar
mode, RT1PS is sourced with the output of RTOPS, which is 128Hz (32768/256 Hz). Therefore, intervals
of 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables
the interrupt.

14.2.3.2 Real-Time Clock Interrupts in Counter Mode

In counter mode, a three interrupt sources are available, namely RTOPSIFG, RT1PSIFG, and
RTCTEVIFG. The RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are do not care.

The RTOPSIFG can be used to generate interrupt intervals selectable by the RTOIP bits. In counter mode,
RTOPS is sourced with ACLK or SMCLK so divide ratios of /2, /4, /8, /16, /32, /64, /128, /256 of the
respective clock source are possible. Setting the RTOPSIE bit enables the interrupt.

The RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode,
RT1PS is sourced with ACLK, SMCLK, or the output of RTOPS so divide ratios of /2, /4, /8, /16, /32, /64,
/128, /256 of the respective clock source are possible. Setting the RT1PSIE bit enables the interrupt.

The Real-Time Clock Module provides for an interval timer that sources real-time clock interrupt,
RTCTEVIFG. The interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-hit,
or 32-bit overflow occurs within the 32-bit counter. The event is selectable with the RTCTEV bits Setting
the RTCTEVIE bit enables the interrupt.

RTCIV Software Example

The following software example shows the recommended use of RTCIV and the handling overhead. The
RTCIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

; Interrupt handler for RTC interrupt flags.

RTC_HND ; Interrupt |atency 6
ADD &RTClV, PC ; Add offset to Junp table 3
RETI ; Vector 0: No interrupt 5
JMP RTCRDYI FG HND ; Vector 2: RTCRDYI FG 2
JMP RTCTEVI FG HND ; Vector 4: RTCTEVI FG 2
JMP RTCAI FG ; Vector 6: RTCAlFG 5
JMP RTOPSI FG ; Vector 8: RTOPSI FG 5
JWP RT1PSI FG ; Vector A RT1PSI FG 5
RETI ;. Vector C. Reserved 5
RTCRDYI FG_HND ; Vector 2: RTCRDYI FG Fl ag
to ; Task starts here
RETI 5
RTCTEVI FG_HND : Vector 4: RTCTEVI FG
to ; Task starts here
RETI ; Back to main program 5
RTCAI FG_HND ; Vector 6: RTCAIFG
to ; Task starts here
RTOPSI FG_HND : Vector 8: RTOPSI FG
SLAU208-June 2008 Real-Time Clock (RTC_A) 381

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
RTCIV Software Example www.ti.com
to ; Task starts here
RT1PSI FG_HND ;. Vector A. RT1PSI FG
to ; Task starts here

14.2.4 Real-Time Clock Calibration

The Real-Time Clock module has calibration logic that allows for adjusting the crystal frequency in +4 ppm
or —2 ppm steps allowing for higher time keeping accuracy from standard crystals.

The RTCCALX bits are used to adjust the frequency. When RTCCALS is set, each RTCCALXx LSB will
cause a +4 ppm adjustment. When RTCCALS is cleared, each RTCCALXx LSB will cause a —2 ppm
adjustment.

To calibrate the frequency, the RTCCLK output signal is available at a pin. The RTCCALF bits can be
used to select the frequency rate of the output signal. During calibration, the RTCCLK can be measured.
The result of this measurement can be applied to the RTCCALS and RTCCALX bits to effectively reduce
the initial offset of the clock. For example, say the RTCCLK is output at a frequency of 512 Hz. The
measured RTCCLK is 511.9658 Hz. This frequency error is approximately 67 ppm too low. In order to
increase the frequency by 67 ppm, RTCCALS would be set, and RTCCALx would be set to 17 (67/4).

In counter mode (RTCMODE = 0), the calibration logic is disabled.

Note: Calibration Output Frequency

The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not effected by
changes in the calibration settings. The 1-Hz output frequency is affected by changes in the
calibration settings.

382

Real-Time Clock (RTC_A) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Real-Time Clock Registers

14.3 Real-Time Clock Registers

The Real-Time Clock module registers are listed in and [Table 14-1. Some of the registers can be
accessed word-wise as shown in [Table 14-7. The base register for the Real-Time Clock module registers
can be found in the device specific data sheet. The address offsets are given in and

[able 12-2.
Table 14-1. Real-Time Clock Registers

Register Short Form Register Type g?f(ire?ss Initial State
Real-Time Clock control register 0 RTCCTLO Read/write 00h 00h
Real-Time Clock control register 1 RTCCTL1 Read/write 01h 40h
Real-Time Clock control register 2 RTCCTL2 Read/write 02h 00h
Real-Time Clock control register 3 RTCCTL3 Read/write 03h 00h
Real-Time Prescale Timer O control register RTCPSOCTL Read/write 08h 10h
Real-Time Prescale Timer 1 control register RTCPS1CTL Read/write 0Ah 10h
Real-Time Prescale Timer 0 RTCPSO Read/write 0Ch Unchanged
Real-Time Prescale Timer 1 RTCPS1 Read/write 0Dh Unchanged
Real Time Clock Interrupt vector RTCIV Read OEh 00h
EZ?S'tZ'rmle Clock Second Real-Time Counter progeEc/RTONTL Readiwrite 10h Unchanged
fé‘;?étzr”;e Clock Minute Real-Time Counter propiun/RTCNT2 — Readiwrite 11h Unchanged
EZ?S'tZ'r”;e Clock Hour Real-Time Counter RTCHOUR/RTCNT3 Read/write 12h Unchanged
Egﬁ'ng“r‘z;';t’g‘ 2y of Week Real-Time RTCDOW/RTCNT4 Read/write 13h Unchanged
Real-Time Clock Day of Month RTCDAY Read/write 14h Unchanged
Real-Time Clock Month RTCMON Read/write 15h Unchanged
Real-Time Clock Year (Low Byte) RTCYEARL Read/write 16h Unchanged
Real-Time Clock Year (High Byte) RTCYEARH Read/write 17h Unchanged
Real-Time Clock Minute Alarm RTCAMIN Read/write 18h Unchanged
Real-Time Clock Hour Alarm RTCAHOUR Read/write 19h Unchanged
Real-Time Clock Day of Week Alarm RTCADOW Read/write 1Ah Unchanged
Real-Time Clock Day of Month Alarm RTCADAY Read/write 1Bh Unchanged

SLAU208-June 2008
Eubmit Documentation Feedbacl

Real-Time Clock (RTC_A)

383

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Real-Time Clock Registers

13 TEXAS
INSTRUMENTS

www.ti.com

Table 14-2. Word Access to Registers in Counter Mode
Word Register Short Form gieggr;;?grte :iz\gi'g)é:e Address Offset
Real-Time control registers 0, 1 RTCCTLO1 RTCCTL1 RTCCTLO 00h
Real-Time control registers 2, 3 RTCCTL23 RTCCTL3 RTCCTL2 02h
Real-Time Prescale Timer O control RTCPSOCTL RTCPSOCTLH RTCPSOCTLL 08h
Real-Time Prescale Timer 1 control RTCPS1CTL RTCPS1CTLH RTCPS1CTLL 0Ah
Real-Time Prescale Timer RTCPS RTCPS1 RTCPSO 0Ch
Real Time Clock Interrupt vector RTCIV OEh
RealTime CockTmeoReatTine premomrontiz BICMY RISES o
ReolTine Codk JmeLReaTne prorwumtonrss TICOOM RTGHOUY iz
Real-Timer Clock Date RTCDATE RTCMON RTCDAY 14h
Real-Timer Clock Year RTCYEAR RTCYEARH RTCYEARL 16h
Real-Timer Clock Alarm min/hour RTCAMINHR RTCAHOUR RTCAMIN 18h
Real-Timer Clock Alarm day of week/day = RTCADOWDAY RTCADAY RTCADOW 1Ah

384

Real-Time Clock (RTC_A)

SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Real-Time Clock Registers

RTCCTLO, Real-Time Clock Control Register 0

7 6 5 4 3 2 1 0
Reserved | RTCTEVIE | RTCAIE | RTCRDYIE Reserved | RTCTEVIFG | RTCAIFG | RTCRDYIFG |
r0 w-0 rw-0 rw-0 r0 rw-(0) rw-(0) rw-(0)
Reserved Bit 7 Reserved. Always read as 0.
RTCTEVIE Bit 6 Real-time clock time event interrupt enable
0 Interrupt not enabled
1 Interrupt enabled
RTCAIE Bit 5 Real-time clock alarm interrupt enable. This bit remains cleared when in counter mode (RTCMODE = 0).
0 Interrupt not enabled
1 Interrupt enabled
RTCRDYIE Bit 4 Real-time clock alarm interrupt enable
0 Interrupt not enabled
1 Interrupt enabled
Reserved Bit 3 Reserved. Always read as 0.
RTCTEVIFG Bit 2 Real-time clock time event flag
0 No time event occurred.
1 Time event occurred.
RTCAIFG Bit 1 Real-time clock alarm flag. This bit remains cleared when in counter mode (RTCMODE = 0).
0 No time event occurred.
1 Time event occurred.
RTCRDYIFG Bit 0 Real-time clock alarm flag
0 RTC can not be read safely
1 RTC can be read safely
SLAU208-June 2008 Real-Time Clock (RTC_A) 385

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Real-Time Clock Registers www.ti.com
RTCCTL1, Real-Time Clock Control Register 1
7 6 5 4 3 2 1 0
| RTCBCD | RTCHOLD | RTCMODE | RTCRDY RTCSSEL \ RTCTEV |
rw-(0) rw-(1) rw-(0) r-(0) rw-0 rw-0 rw-(0) rw-(0)
RTCBCD Bit 7 Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to calendar mode

(RTCMODE = 1) only - setting will be ignored in counter mode. Changing this bit will clear seconds,

minutes, hours, day of week, and year are to 0 and sets day of month and month to 1. The real-time

clock registers need to be set by software afterwards.

0 Binary/hexadecimal code selected

1 BCD (Binary Coded Decimal) code selected

RTCHOLD Bit 6 Real-time clock hold

0 Real-Time Clock (32-bit counter or calendar mode) is operational

1 In counter mode (RTCMODE = 0) only the 32-bit counter is stopped. In calendar mode
(RTCMODE = 1) the calendar is stopped as well as the Prescale counters, RTOPS and RT1PS.
RTOPSHOLD and RT1PSHOLD are do not care.

RTCMODE Bit 5 Real-time clock mode

0 32-bit counter mode

1 Calendar modeSwitching between counter and calendar mode will reset the real-time
clock/counter registers. Switching to calendar mode clears seconds, minutes, hours, day of
week, and year are to 0 and sets day of month and month to 1. The real-time clock registers
need to be set by software afterwards. The Basic Timer counters, BTOCNT and BT1CNT, are
also cleared.

RTCRDY Bit 4 Real-time clock ready

0 RTC time values in transition (calendar mode only).

1 RTC time values safe for reading (calendar mode only)This bit indicates when the RTC time
values are safe for reading (calendar mode only). In counter mode, RTCRDY signal remains
cleared.

RTCSSEL Bits 3-2 Real-time clock source select. Selects clock input source to the RTC/32-bit counter. In Real-Time Clock
calendar mode, these bits are do not care. The clock input is automatically set to the output of RT1PS.

00 ACLK

01 SMCLK

10 Output from RT1PS

11 Output from RT1PS

RTCTEV Bits 1-0 Real-time clock time event

RTC Mode RTCTEVxX Interrupt Interval
Counter Mode (RTCMODE = 0) 00 8-bit overflow
01 16-bit overflow
10 24-bit overflow
11 32-bit overflow
Calendar Mode (RTCMODE = 1) 00 Minute changed
01 Hour changed
10 Every day at midnight (00:00)
11 Every day at noon (12:00)

386 Real-Time Clock (RTC_A)

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Real-Time Clock Registers
RTCCTL2, Real-Time Clock Control Register 2
7 6 5 4 3 2 1 0
| RTCCALS | Reserved | RTCCAL |
rw-(0) r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
RTCCALS Bit 7 Real-time clock calibration sign
0 Frequency adjusted down
1 Frequency adjusted up
Reserved Bit 6 Reserved. Always read as 0.
RTCCAL Bits 5-0 Real-time clock calibration bits

Each LSB represents approximately +4 ppm (RTCCALS = 1) or a -2 ppm (RTCCALS = 0) adjustment in

frequency.

RTCCTL3, Real-Time Clock Control Register 3

7 6 5 4 3 2 1 0
Reserved RTCCALF
r0 ro r0 ro r0 ro rw-0 rw-0
Reserved Bits 7-2 Reserved. Always read as 0.
RTCCALF Bits 1-0 Real-time clock calibration frequency

Selects frequency output to RTCCLK pin for calibration measurement. The corresponding port must be
configured for the peripheral module function. The RTCCLK is not available in counter mode and

remains low and the RTCCALF bits are do not care.
00 No frequency output to RTCCLK pin

01 512 Hz
10 256 Hz
11 1Hz

RTCNT1, RTC Counter Register 1, Counter Mode

7 6 5 4 3 2 1 0
RTCNT1x
rw rw rw rw rw rw rw rw
RTCNT1x Bits 7-0 The RTCNTL1 register is the count of RTCNT1
RTCNT2, RTC Counter Register 2, Counter Mode
7 6 5 4 3 2 1 0
RTCNT2x
rw rw rw rw rw rw rw rw
RTCNT2x Bits 7-0 The RTCNT?2 register is the count of RTCNT2
RTCNT3, RTC Counter Register 3, Counter Mode
7 6 5 4 3 2 1 0
RTCNT3x
rw rw rw rw rw rw rw rw
RTCNT3x Bits 7-0 The RTCNTS3 register is the count of RTCNT3

SLAU208-June 2008
Eubmit Documentation Feedbacl

Real-Time Clock (RTC_A)

387

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

Real-Time Clock Registers www.ti.com
RTCNT4, RTC Counter Register 4, Counter Mode

7 6 5 4 3 2 1 0

RTCNT4x

'w rw 'w rw 'w rw 'w rw
RTCNT4x Bits 7-0 The RTCNT4 register is the count of RTCNT4
RTCSEC, RTC Seconds Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 | 0 ‘ Seconds (0 to 59)

r-0 r-0 rw w rw w rw w
RTCSEC, RTC Seconds Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 | Seconds — high digit (0 to 5) Seconds — low digit (0 to 9)

r-0 'w w 'w 'w 'w w 'w
RTCMIN, RTC Minutes Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 \ Minutes (0 to 59)

r-0 r-0 rw rw rw rw rw rw
RTCMIN, RTC Minutes Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 Minutes — high digit (0 to 5) Minutes — low digit (0 to 9)

r-0 rw 'w rw 'w rw 'w rw
RTCHOUR, RTC Hours Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 ‘ 0 | Hours (0 to 24)

r-0 r-0 r-0 w rw w rw w
RTCHOUR, RTC Hours Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 | 0 ‘ Hours — high digit (0 to 2) Hours — low digit (0 to 9)

r-0 r-0 rw w rw w rw w
RTCDOW, RTC Day of Week Register, Calendar Mode

7 6 5 4 3 2 1 0

0 | 0 \ 0 | 0 0 | Day of week (0 to 6)

r-0 r-0 r-0 r-0 r-0 w rw w
RTCDAY, RTC Day of Month Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 | 0 \ 0 | Day of month (1 to 28, 29, 30, 31)

r-0 r-0 r-0 rw rw rw rw rw
388 Real-Time Clock (RTC_A) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Real-Time Clock Registers

RTCDAY, RTC Day of Month Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0
0 0 Day of month — high digit Day of month — low digit (0 to 9)
(0to 3)
r-0 r-0 rw w rw w rw w
RTCMON, RTC Month Register, Calendar Mode with Hexadecimal Format
7 6 5 4 3 2 1 0
0 0 \ 0 | 0 Month (1 to 12)
r-0 r-0 r-0 r-0 rw w rw rw
RTCMON, RTC Month Register, Calendar Mode with BCD Format
7 5 4 3 2 1 0
0 0 Month — high Month — low digit (0 to 9)
digit (O to 3)
r-0 r-0 r-0 w rw w rw w
RTCYEARL, RTC Year Low-Byte Register, Calendar Mode with Hexadecimal Format
7 6 5 4 3 2 1 0
Year — low byte of 0 to 4095
w rw w rw w rw w rw
RTCYEARL, RTC Year Low-Byte Register, Calendar Mode with BCD Format
7 6 5 4 3 2 1 0
Decade (0 to 9) Year — lowest digit (0 to 9)
rw rw w rw w rw rw rw
RTCYEARH, RTC Year High-Byte Register, Calendar Mode with Hexadecimal Format
7 6 5 4 3 2 1 0
0 0 \ 0 | 0 Year — high byte of 0 to 4095
r-0 r-0 r-0 r-0 rw rw rw rw
RTCYEARH, RTC Year High-Byte Register, Calendar Mode with BCD Format
7 6 5 4 3 2 1 0
0 Century — high digit (0 to 4) Century — low digit (0 to 9)
r-0 rw rw rw rw rw rw rw
RTCAMIN, RTC Minutes Alarm Register, Calendar Mode with Hexadecimal Format
7 6 5 4 3 2 1 0
AE 0 ‘ Minutes (0 to 59)
rw-0 r-0 rw w rw w rw w
RTCAMIN, RTC Minutes Alarm Register, Calendar Mode with BCD Format
7 6 5 4 3 2 1 0
AE Minutes — high digit (0 to 5) Minutes — low digit (0 to 9)
rw-0 rw w rw w rw w rw

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Real-Time Clock (RTC_A)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Real-Time Clock Registers www.ti.com
RTCAHOUR, RTC Hours Alarm Register, Calendar Mode with Hexadecimal Format
7 6 5 4 3 2 1 0
AE 0 ‘ 0 | Hours (0 to 24)
rw-0 r-0 r-0 w rw w rw w
RTCAHOUR, RTC Hours Alarm Register, Calendar Mode with BCD Format
7 6 5 4 3 2 1 0
AE | 0 | Hours — high digit (0 to 2) Hours — low digit (0 to 9)
rw-0 r-0 rw w rw w rw w
RTCADOW, RTC Day of Week Alarm Register, Calendar Mode
7 6 5 4 3 2 1 0
AE | 0 0 | 0 0 | Day of week (0 to 6)
rw-0 r-0 r-0 r-0 r-0 w rw w
RTCADAY, RTC Day of Month Alarm Register, Calendar Mode with Hexadecimal Format
7 6 5 4 3 2 1 0
AE | 0 0 | Day of month (1 to 28, 29, 30, 31)
rw-0 r-0 r-0 w rw w rw w
RTCADAY, RTC Day of Month Alarm Register, Calendar Mode with BCD Format
7 6 5 4 3 2 1 0
AE 0 Day of month — high digit Day of month — low digit (0 to 9)
(0to 3)
rw-0 r-0 rw w rw w rw w
390 Real-Time Clock (RTC_A) SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Real-Time Clock Registers

RTCPSOCTL, Prescale Timer 0 Control Register

15 14 13 12 11 10 9 8
Reserved | RTOSSEL RTOPSDIV Reserved Reserved RTOPSHOLD ‘
r0 rw-0 rw-0 rw-0 rw-0 ro r0 rw-1
7 6 5 4 3 2 1 0
Reserved Reserved Reserved RTOIP RTOPSIE | RTOPSIFG ‘
r0 ro r0 rw-0 rw-0 rw-0 rw-0 rw-(0)
Reserved Bits 15 Reserved. Always read as O.
RTOSSEL Bits 14 Prescale Timer 0 clock source select. Selects clock input source to the RTOPS counter. In Real-Time
Clock calendar mode, these bits are do not care. RTOPS clock input is automatically set to ACLK.
RT1PS clock input is automatically set to the output of RTOPS.
0 ACLK
1 SMCLK
RTOPSDIV Bits 13-11 Prescale Timer O clock divide. These bits control the divide ratio of the RTOPS counter. In Real-Time
Clock calendar mode, these bits are do not care for RTOPS and RT1PS. RTOPS clock output is
automatically set to /256. RT1PS clock output is automatically set to /128.
000 2
001 14
010 8
011 /16
100 132
101 /64
110 /128
111 1256
Reserved Bits 10-9 Reserved. Always read as 0.
RTOPSHOLD Bit 8 Prescale Timer 0 Hold. In Real-Time Clock calendar mode, this bit is do not care. RTOPS is stopped via
the RTCHOLD bit.
0 RTOPS is operational
1 RTOPS is held
Reserved Bits 7-5 Reserved. Always read as 0.
RTOIP Bits 4-2 Prescale Timer O interrupt interval
000 2
001 14
010 8
011 /16
100 132
101 164
110 /128
111 1256
RTOIE Bit 1 Prescale Timer O interrupt enable
0 Interrupt not enabled
1 Interrupt enabled
RTOIFG Bit 0 Prescale Timer O interrupt flag
0 No time event occurred
1 Time event occurred

SLAU208-June 2008
Eubmit Documentation Feedbacl

Real-Time Clock (RTC_A) 391

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
Real-Time Clock Registers www.ti.com
RTCPSI1CTL, Prescale Timer 1 Control Register
15 14 13 12 11 10 9 8
RT1SSEL RT1PSDIV Reserved Reserved RT1PSHOLD
rw-0 rw-0 rw-0 rw-0 rw-0 ro r0 rw-1
7 6 5 4 3 2 1 0
Reserved Reserved Reserved RT1IP RTIPSIE | RTIPSIFG |
r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-(0)
RT1SSEL Bits 15-14 Prescale Timer 1 clock source select. Selects clock input source to the RT1PS counter. In Real-Time

Clock calendar mode, these bits are do not care. RT1PS clock input is automatically set to the output of

RTOPS.
00 ACLK
01 SMCLK

10 Output from RTOPS
11 Output from RTOPS

RT1PSDIV Bits 13-11 Prescale Timer 1 clock divide. These bits control the divide ratio of the RTOPS counter. In Real-Time
Clock calendar mode, these bits are do not care for RTOPS and RT1PS. RTOPS clock output is
automatically set to /256. RT1PS clock output is automatically set to /128.
000 2
001 14
010 8
011 /16
100 132
101 /64
110 /128
111 1256
Reserved Bits 10-9 Reserved. Always read as 0.
RT1PSHOLD Bit 8 Prescale Timer 1 hold. In Real-Time Clock calendar mode, this bit is do not care. RT1PS is stopped via
the RTCHOLD bit.
0 RT1PS is operational
1 RT1PS is held
Reserved Bits 7-5 Reserved. Always read as 0.
RT1IP Bits 4-2 Prescale Timer 1 interrupt interval
000 2
001 14
010 8
011 /16
100 132
101 /64
110 /128
111 1256
RT1PSIE Bit 1 Prescale Timer 1 interrupt enable
0 Interrupt not enabled
1 Interrupt enabled
RT1PSIFG Bit 0 Prescale Timer 1 interrupt flag
0 No time event occurred
1 Time event occurred

392 Real-Time Clock (RTC_A)

SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Real-Time Clock Registers

RTCPSO, Prescale Timer 0 Counter Register

7 6 5 4 3 2 1 0
RTOPS
w rw w rw w rw w rw
RTOPS Bits 7-0 Prescale Timer O counter value
RTCPS1, Prescale Timer 1 Counter Register
7 6 5 4 3 2 1 0
RT1PS
rw rw rw rw rw rw rw rw
RT1PS Bits 7-0 Prescale Timer 1 counter value
RTCIV, RTC Interrupt Vector Register
15 14 13 12 11 10
0 | 0 \ 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0
5 4 3 2 1
[RTCIVX [
r0 r0 r0 r-(0) r-(0) r-(0) r-(0) r0
RTCIVx Bits 15-0 RTC interrupt vector value
RTCIV Interrupt
Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending
02h RTC ready RTCRDYIFG Highest
04h RTC interval timer RTCTEVIFG
06h RTC user alarm RTCAIFG
08h RTC prescaler 0 RTOPSIFG
0Ah RTC prescaler 1 RT1PSIFG
0Ch Reserved
OEh Reserved
10h Reserved Lowest

SLAU208-June 2008
Eubmit Documentation Feedbacl

Real-Time Clock (RTC_A) 393

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

394 Real-Time Clock (RTC_A) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 15
INSTRUMENTS SLAU208June 2008

Universal Serial Communication Interface, UART Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes
with one hardware module. This chapter discusses the operation of the asynchronous UART mode.

Topic Page
15,1 USCI OVOIViEW et e e eneeeueeneeesaeraeeseesaeeseasssessasensessasrasessaerasenses 394
15.2 USCI Introduction: UART MOO €] .t iieie i iieieeeeaeeeeneaeeaeencaeeaeences 391
15.3 USCI Operation: UART Mode[. e eoieeiiei e eeeeeeeeeeeieieeeeeeeeee 399
15.4 USCI Registers: UART MOA€[iieuieieieieiieieieaiieaieieaieiearieazareeene. 474
SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 395

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

USCI Overview www.ti.com

15.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_AO and USCI_A1. See the
device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.
The USCI_Ax modules support:

* UART mode

» Pulse shaping for IrDA communications

» Automatic baud rate detection for LIN communications

* SPI mode

The USCI_Bx modules support:
« 1°C mode
* SPIl mode

396 Universal Serial Communication Interface, UART Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com USCI Introduction: UART Mode

15.2 USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an external system via two
external pins, UCAXRXD and UCAXTXD. UART mode is selected when the UCSYNC bit is cleared.

UART mode features include:

e 7- or 8-bit data with odd, even, or non-parity

* Independent transmit and receive shift registers

» Separate transmit and receive buffer registers

» LSB-first or MSB-first data transmit and receive

e Built-in idle-line and address-bit communication protocols for multiprocessor systems
* Receiver start-edge detection for auto-wake up from LPMx modes

» Programmable baud rate with modulation for fractional baud rate support
» Status flags for error detection and suppression

» Status flags for address detection

* Independent interrupt capability for receive and transmit

shows the USCI_Ax when configured for UART mode.

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 397
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
USCI Introduction: UART Mode www.ti.com
UCRXEIE m— —a UCRXERR
Error Flags
UCMODEx UCSPB UCDORM

UCRXBRKIE m—] [WUCPE

}2 T T —aUCFE
—aUCOE

Receive State Machine P Set Flags
P Set RXIFG - Set UCRXIFG
—] - Set UCBRK
> Set UCADDR /UCIDLE
UCIRRXPL
UCIRRXFLx
. UCIRRXFE }
Receive Buffer UCAXRXBUF UCIREN * 6 UCLISTEN
f IrDA Decoder
1 UCAXRXD
[Receive Shift Register 0
n n " n
UCPEN UCPAR UCMSB UC7BIT

UCOCLK
ACLK
SMCLK
SMCLK

UCABEN
UCSSELx ud
Receive Baudrate Generator
UCOBRx
00 }1 6
01
Prescaler/Divider
10 | BRCLK

1

Receive Clock

Modulator

Transmit Clock

4 /-Fs
UCBRFx UCBRSx UCOS16

o

L I S NS

UCPEN UCPAR UCMSB UC7BIT

UCIREN

Transmit Shift Register

*

Transmit Buffer UCAXTXBUF

Transmit State Machine

L

> Set UCTXIFG
—a UCTXBRK
—a UCTXADDR

IrDA Encoder

6
UCIRTXPLx

2

UCMODEx UCSPB

UCAXTXD

Figure 15-1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

398

Universal Serial Communication Interface, UART Mode

SLAU208-June 2008
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com USCI Operation: UART Mode

15.3 USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another device.
Timing for each character is based on the selected baud rate of the USCI. The transmit and receive
functions use the same baud rate frequency.

15.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE,
UCTXIE, UCRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and UCBTOE bits and sets the
UCTXIFG bit. Clearing UCSWRST releases the USCI for operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

Set UCSWRST (Bl S. B #UCSWRST, &UCAXCTL1)

Initialize all USCI registers with UCSWRST = 1 (including UCAXCTL1)
Configure ports.

Clear UCSWRST via software (Bl C. B #UCSWRST, &UCAXCTL1)
Enable interrupts (optional) via UCRXIE and/or UCTXIE

akrownNpE

15.3.2 Character Format

The UART character format, shown in Figure 15-7, consists of a start bit, seven or eight data bits, an
even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit
controls the direction of the transfer and selects LSB or MSB first. LSB-first is typically required for UART
communication.

—ISTlDO coe D6 [D7 [AD [PA [sPTsP

L [2nd Stop Bit, UCSPB = 1]
[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEXx = 10]
[Optional Bit, Condition] [8th Data Bit, UC7BIT = 0]

Figure 15-2. Character Format

15.3.3 Asynchronous Communication Formats

When two devices communicate asynchronously, no multiprocessor format is required for the protocol.
When three or more devices communicate, the USCI supports the idle-line and address-bit multiprocessor
communication formats.

Idle-Line Multiprocessor Format

When UCMODEX = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an
idle time on the transmit or receive lines as shown in Figure 15-3. An idle receive line is detected when 10
or more continuous ones (marks) are received after the one or two stop bits of a character. The baud rate
generator is switched off after reception of an idle line until the next start edge is detected. When an idle
line is detected the UCIDLE bit is set.

The first character received after an idle period is an address character. The UCIDLE bit is used as an
address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received
character is an address

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 399
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Transmitting an Idle Frame www.ti.com

Blocks of
/ Characters \
\
UCAXTXD/RXD , | [| | | [|

A Idle Periods of 10 Bits or More /

UCAXTXD/RXD Expanded

UCAxTXD/RXD‘l sT| Address [sP| s7| Data SP |s7| Data SP
First Character Within Block Character Within Block Character Within Block
Is Address. It Follows Idle
Period of 10 Bits or More Idle Period Less Than 10 Bits

Figure 15-3. Idle-Line Format

The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When
UCDORM =1, all non-address characters are assembled but not transferred into the UCAXRXBUF, and
interrupts are not generated. When an address character is received, the character is transferred into
UCAXRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE
= 0 and an address character is received but has a framing error or parity error, the character is not
transferred into UCAXRXBUF and UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters will be received. When UCDORM s
cleared during the reception of a character the receive interrupt flag will be set after the reception
completed. The UCDORM bit is not modified by the USCI hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the
USCI to generate address character identifiers on UCAXTXD. The double-buffered UCTXADDR flag
indicates if the next character loaded into UCAXTXBUF is preceded by an idle line of 11 bits. UCTXADDR
is automatically cleared when the start bit is generated.

Transmitting an Idle Frame

The following procedure sends out an idle frame to indicate an address character followed by associated

data:

1. Set UCTXADDR, then write the address character to UCAXTXBUF. UCAXTXBUF must be ready for
new data (UCTXIFG = 1).
This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset
automatically when the address character is transferred from UCAXTXBUF into the shift register.

2. Write desired data characters to UCAXTXBUF. UCAXTXBUF must be ready for new data (UCTXIFG =
1).
The data written to UCAXTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.

The idle-line time must not be exceeded between address and data transmission or between data
transmissions. Otherwise, the transmitted data will be misinterpreted as an address.

400 Universal Serial Communication Interface, UART Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Address-Bit Multiprocessor Format

Address-Bit Multiprocessor Format

When UCMODEX = 10, the address-bit multiprocessor format is selected. Each processed character
contains an extra bit used as an address indicator shown in Figure 15-4. The first character in a block of
characters carries a set address bit which indicates that the character is an address. The USCI UCADDR
bit is set when a received character has its address bit set and is transferred to UCAXRXBUF.

The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When
UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not
transferred to UCAXRXBUF and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAXRXBUF, UCRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is
received, but has a framing error or parity error, the character is not transferred into UCAXRXBUF and
UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters with address bit = 1 will be received. The
UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM =0 all received characters will set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception is
completed.

For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled
by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character
transferred from UCAXTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the

start bit is generated.
Blocks of
/ Cha‘racters \’
UCAXTXD/UCAXRXD / \
LI T |

\LILITI || II/I

Idle Periods of No Significance

\

\

\ UCAXTXD/UCAXRXD

} Expanded

\

\

\

\

\

UCAXTXD/UCAXRXD ‘l sT| Address sp|sT] Data [o] sp |sT] pata [0 sP

First Character Within Block AD Bit Is 0 for
Is an Address. AD Bit Is 1 Data Within Block. Idle Time Is of No Significance

Figure 15-4. Address-Bit Multiprocessor Format

Break Reception and Generation

When UCMODEX = 00, 01, or 10 the receiver detects a break when all data, parity, and stop bits are low,
regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK
bit is set. If the break interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCRXIFG will also be
set. In this case, the value in UCAXRXBUF is Oh since all data bits were zero.

To transmit a break set the UCTXBRK bit, then write Oh to UCAXTXBUF. UCAXTXBUF must be ready for
new data (UCTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared
when the start bit is generated.

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 401
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Break Reception and Generation www.ti.com

15.3.4 Automatic Baud Rate Detection

When UCMODEXx = 11 UART mode with automatic baud rate detection is selected. For automatic baud
rate detection, a data frame is preceded by a synchronization sequence that consists of a break and a
synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length of
the break exceeds 21 bit times the break timeout error flag UCBTOE is set. The USCI can not transmit
data while receiving the break/sync field. The synch field follows the break as shown in Figure 15-5.

Break Delimiter Synch
l¢ ple ple N

Figure 15-5. Auto Baud Rate Detection — Break/Synch Sequence

For LIN conformance the character format should be set to 8 data bits, LSB first, no parity and one stop
bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in Figure 15-8. The synchronization
is based on the time measurement between the first falling edge and the last falling edge of the pattern.
The transmit baud rate generator is used for the measurement if automatic baud rate detection is enabled
by setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the
measurement is transferred into the baud rate control registers UCAXBRO, UCAxBR1, and UCAXMCTL. If
the length of the synch field exceeds the measurable time the synch timeout error flag UCSTOE is set.

5 Synch o
[~ g
| 8 Bit Times o \
\ |
| | | | | !

|

Start Stop

Bit 0 1 2 3 4 5 6 7 Bit

Figure 15-6. Auto Baud Rate Detection — Synch Field

The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are
received but not transferred into the UCAXRXBUF, and interrupts are not generated. When a break/synch
field is detected the UCBRK flag is set. The character following the break/synch field is transferred into
UCAXRXBUF and the UCRXIFG interrupt flag is set. Any applicable error flag is also set. If the UCBRKIE
bit is set, reception of the break/synch sets the UCRXIFG. The UCBRK bit is reset by user software or by
reading the receive buffer UCAXRXBUF.

When a break/synch field is received, user software must reset UCDORM to continue receiving data. If
UCDORM remains set, only the character after the next reception of a break/synch field will be received.
The UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception is
complete.

The counter used to detect the baud rate is limited to 07FFFh (32767) counts. This means the minimum
baud rate detectable is 488 Baud in oversampling mode and 30 Baud in low-frequency mode.

The automatic baud rate detection mode can be used in a full-duplex communication system with some
restrictions. The USCI can not transmit data while receiving the break/sync field and if a Oh byte with
framing error is received any data transmitted during this time gets corrupted. The latter case can be
discovered by checking the received data and the UCFE bit.

402

Universal Serial Communication Interface, UART Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Transmitting a Break/Synch Field
Transmitting a Break/Synch Field

The following procedure transmits a break/synch field:
1. Set UCTXBRK with UMODEXx = 11.
2. Write 055h to UCAXTXBUF. UCAXTXBUF must be ready for new data (UCTXIFG =1).

This generates a break field of 13 bits followed by a break delimiter and the synch character. The
length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically
when the synch character is transferred from UCAXTXBUF into the shift register.

3. Write desired data characters to UCAXTXBUF. UCAXTXBUF must be ready for new data
(UCTXIFG =1).

The data written to UCAXTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 403
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

IrDA Decoding www.ti.com

15.3.5 IrDA Encoding and Decoding

When UCIREN is set the IrDA encoder and decoder are enabled and provide hardware bit shaping for
IrDA communication.

15.3.5.1 IrDA Encoding

The encoder sends a pulse for every zero bit in the transmit bit stream coming from the UART as shown
in Eigure 15-7. The pulse duration is defined by UCIRTXPLX bits specifying the number of half clock
periods of the clock selected by UCIRTXCLK.

Start Stop
‘ Bit ‘ Data Bits Bit
+—r>t—p4—>)

UART | I—_,
o [

Figure 15-7. UART vs IrDA Data Format

To set the pulse time of 3/16 bit period required by the IrDA standard the BITCLK16 clock is selected with

UCIRTXCLK =1 and the pulse length is set to 6 half clock cycles with UCIRTXPLx=6-1=5.

When UCIRTXCLK = 0, the pulse length tpy sg is based on BRCLK and is calculated as follows:
UCIRTXPLX = tPULSE X2 X fBRCLK -1

When UCIRTXCLK = 0 the prescaler UCBRx must to be set to a value greater or equal to 5.

IrDA Decoding

The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects low pulses. In addition to the
analog deglitch filter an additional programmable digital filter stage can be enabled by setting UCIRRXFE.
When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses
are discarded. The equation to program the filter length UCIRRXFLX is:

UCIRRXFLX = (tpyLse — twake) X 2 X fgreik — 4

where:
teuLse = Minimum receive pulse width
twake = Wake time from any low power mode. Zero when MSP430 is in active mode.

404 Universal Serial Communication Interface, UART Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com IrDA Decoding

15.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any pulse on UCAXRXD shorter
than the deglitch time t; (approximately 150 ns) will be ignored. See the device-specific datasheet for
parameters.

When a low period on UCAXRXD exceeds t; a majority vote is taken for the start bit. If the majority vote
fails to detect a valid start bit the USCI halts character reception and waits for the next low period on
UCAXRXD. The majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun errors, and break conditions
when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their respective
condition is detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is also set. The
error conditions are described in [Table 15-1].

Table 15-1. Receive Error Conditions

Error Condition Error Flag Description

Framing error UCFE A framing error occurs when a low stop bit is detected. When two stop bits are
used, both stop bits are checked for framing error. When a framing error is
detected, the UCFE bit is set.

Parity error UCPE A parity error is a mismatch between the number of 1s in a character and the value
of the parity bit. When an address bit is included in the character, it is included in
the parity calculation. When a parity error is detected, the UCPE bit is set.

Receive overrun UCOE An overrun error occurs when a character is loaded into UCAXRXBUF before the
prior character has been read. When an overrun occurs, the UCOE bit is set.

Break condition UCBRK When not using automatic baud rate detection, a break is detected when all data,
parity, and stop bits are low. When a break condition is detected, the UCBRK bit is
set. A break condition can also set the interrupt flag UCRXIFG if the break interrupt
enable UCBRKIE bit is set.

When UCRXEIE = 0 and a framing error, or parity error is detected, no character is received into
UCAXRXBUF. When UCRXEIE = 1, characters are received into UCAXRXBUF and any applicable error
bit is set.

When any of the UCFE, UCPE, UCOE, UCBRK, or UCRXERR bit is set, the bit remains set until user
software resets it or UCAXRXBUF is read. UCOE must be reset by reading UCAXRXBUF. Otherwise it will
not function properly. To detect overflows reliably the following flow is recommended. After a character
was received and UCAXRXIFG is set, first read UCAXSTAT to check the error flags including the overflow
flag UCOE. Read UCAXRXBUF next. This will clear all error flags except UCOE if UCAXRXBUF was
overwritten between the read access to UCAXSTAT and to UCAXRXBUF. So the UCOE flag should be
checked after reading UCAXRXBUF to detect this condition. Note, in this case the UCRXERR flag is not
set.

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 405
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Receive Data Glitch Suppression www.ti.com

15.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle state.
The receive baud rate generator is in a ready state but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a
valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud
rate generator is turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEXx = 01 the UART state machine checks
for an idle line after receiving a character. If a start bit is detected another character is received. Otherwise
the UCIDLE flag is set after 10 ones are received and the UART state machine returns to its idle state and
the baud rate generator is turned off.

Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any glitch on UCAXRXD shorter
than the deglitch time t; (approximately 150 ns) will be ignored by the USCI and further action will be

initiated as shown in Figure 15-8. See the device-specific datasheet for parameters.
UCAXRXD I
]
URXS ;

Figure 15-8. Glitch Suppression, USCI Receive Not Started

When a glitch is longer than t; or a valid start bit occurs on UCAXRXD, the USCI receive operation is
started and a majority vote is taken as shown in Figure 15-9. If the majority vote fails to detect a start bit
the USCI halts character reception.

Majority Vote Taken

Figure 15-9. Glitch Suppression, USCI Activated

15.3.8 USCI Transmit Enable

The USCI module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle
state. The transmit baud rate generator is ready but is not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAXTXBUF. When this occurs, the baud rate generator is
enabled and the data in UCAXTXBUF is moved to the transmit shift register on the next BITCLK after the
transmit shift register is empty. UCTXIFG is set when new data can be written into UCAXTXBUF.

Transmission continues as long as new data is available in UCAXTXBUF at the end of the previous byte
transmission. If new data is not in UCAXTXBUF when the previous byte has transmitted, the transmitter
returns to its idle state and the baud rate generator is turned off.

406 Universal Serial Communication Interface, UART Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I,

TEXAS
INSTRUMENTS

www.ti.com Low-Frequency Baud Rate Generation

15.3.9 UART Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates from non-standard source
frequencies. It provides two modes of operation selected by the UCOS16 bit.

Low-Frequency Baud Rate Generation

The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from
low frequency clock sources (e.g. 9600 baud from a 32768Hz crystal). By using a lower input frequency
the power consumption of the module is reduced. Using this mode with higher frequencies and higher
prescaler settings will cause the majority votes to be taken in an increasingly smaller window and thus
decrease the benefit of the majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one modulator to generate bit
clock timing. This combination supports fractional divisors for baud rate generation. In this mode, the
maximum USCI baud rate is one-third the UART source clock frequency BRCLK.

Timing for each bit is shown in Figure 15-10. For each bit received, a majority vote is taken to determine
the bit value. These samples occur at the N/2 — 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the
number of BRCLKs per BITCLK.

Majority Vote: ~ (m= 0)m
. (m=1)
Bit Start < I m

BRCLK
§ | §
| 1 U Ne TN N2 1 Ine N2
Counter | Ni2 N/2-1 N/2-2 | | |
10 N2 N2 1 | 0 NE
S | C
BITCLK EK \ ¥ » (
S))) JS
[INT(N2)+m(= 0) — | Neven: INT(N/2) »I |
o INT(N/2) + m(= 1) —» Nooo: INT(N/2) + R(=1) | —P»
I I I
h Bit Period @~ — — — — — — — >| — ﬂ

m: corresponding modulation bit
R: Remainder from N/2 division

Figure 15-10. BITCLK Baud Rate Timing with UCOS16 =0

Modulation is based on the UCBRSx setting as shown in [Table 15-2. A 1 in the table indicates that m =1
and the corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m =0. The
modulation wraps around after 8 bits but restarts with each new start bit.

Table 15-2. BITCLK Modulation Pattern

Bit 0

UCBRSx (Start Bit) Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0
3 0 1 0 1 0 1 0 0
4 0 1 0 1 0 1 0 1
5 0 1 1 1 0 1 0 1
6 0 1 1 1 0 1 1 1
7 0 1 1 1 1 1 1 1
SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 407

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Oversampling Baud Rate Generation

13 TEXAS
INSTRUMENTS

www.ti.com

Oversampling Baud Rate Generation

The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bit stream
with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period
apart. This mode also easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and decoder

are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster
than the BITCLK. An additional divider and modulator stage generates BITCLK from BITCLK16. This
combination supports fractional divisions of both BITCLK16 and BITCLK for baud rate generation. In this
mode, the maximum USCI baud rate is 1/16 the UART source clock frequency BRCLK. When UCBRX is
set to 0 or 1 the first prescaler and modulator stage is bypassed and BRCLK is equal to BITCLK16 - in
this case no modulation for the BITCLK16 is possible and thus the UCBRFx bits are ignored.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in [able 15-3. A 1 in the table
indicates that the corresponding BITCLK16 period is one BRCLK period longer than the periods m=0. The

modulation restarts with each new bit timing.

Modulation for BITCLK is based on the UCBRSXx setting as shown in as previously described.

Table 15-3. BITCLK16 Modulation Pattern

No. of BITCLK16 Clocks after last falling BITCLK edge

UCBRFx

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01lh 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1
05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
OAh 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
OEh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
OFh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

408

Universal Serial Communication Interface, UART Mode

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Low-Frequency Baud Rate Mode Setting
15.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required division factor N:
N = fagrcLk/Baudrate

The division factor N is often a non-integer value thus at least one divider and one modulator stage is
used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode can be chosen by setting
UCOS16.

Low-Frequency Baud Rate Mode Setting
In the low-frequency mode, the integer portion of the divisor is realized by the prescaler:
UCBRx = INT(N)
and the fractional portion is realized by the modulator with the following nominal formula:
UCBRSx =round((N — INT(N)) x 8)

Incrementing or decrementing the UCBRSX setting by one count may give a lower maximum bit error for
any given bit. To determine if this is the case, a detailed error calculation must be performed for each bit
for each UCBRSKX setting.

Oversampling Baud Rate Mode Setting

In the oversampling mode the prescaler is set to:
UCBRx = INT(N/16)

and the first stage modulator is set to:
UCBRFx = round(((N/16) — INT(N/16)) x 16)

When greater accuracy is required, the UCBRSx modulator can also be implemented with values from 0
to 7. To find the setting that gives the lowest maximum bit error rate for any given bit, a detailed error
calculation must be performed for all settings of UCBRSx from 0 to 7 with the initial UCBRFx setting and
with the UCBRFx setting incremented and decremented by one.

15.3.11 Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. Using the modulation features of the
baud rate generator reduces the cumulative bit error. The individual bit error can be calculated using the
following steps.

Low-Frequency Baud Rate Mode Bit Timing
In low-frequency mode, calculate the length of bit i Ty 1x[i] based on the UCBRx and UCBRSX settings:
Toit7x[] = (MfareL) (UCBRX + Mycprsyli])
where:
Mycersxli] = Modulation of bit i from
Oversampling Baud Rate Mode Bit Timing

In oversampling baud rate mode calculate the length of bit i Ty 1x[i] based on the baud rate generator
UCBRXx, UCBRFx and UCBRSX settings:

. 1 15
Tondll = 7 (16 + Mygguei]) X UCBRX + 2 Mygye]

BRCLK i=0

where:

15
> Mycerndil
=0

i = Sum of ones from the corresponding row in
Mycarsxlil = Modulation of bit i from

This results in an end-of-bit time t,;; tx[i] equal to the sum of all previous and the current bit times:

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 409
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

i3 TEXAS
INSTRUMENTS

Oversampling Baud Rate Mode Bit Timing www.ti.com

Tbil,TX[I] = IZ Tbit,TX[j]
j=0

To calculate bit error, this time is compared to the ideal bit time ty;; jgea; il
toitideal Tx[I] = (1/Baudrate)(i + 1)

This results in an error normalized to one ideal bit time (1/baudrate):
Errorry[i] = (toit 7x[1] — toitidea Tx[]]) * Baudrate x 100%

15.3.12 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the
transmit bit timing error. The second is the error between a start edge occurring and the start edge being
accepted by the USCI module. shows the asynchronous timing errors between data on the
UCAXRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The
synchronization error tgync is between —0.5 BRCLKs and +0.5 RCLKs, independent of the selected baud
rate generation mode.

i | 0 I 1 I 2

| t | t |

tIdeaI

|1]2]3]4|s|e|7]8]|9ltol11]1213]14] 1]2| 3] 4| 5|6|7 |8 | 9l10|11]1213]14 1| 2| 3| 4] 5] 6|7

BRCLK |

UCAXRXD | | st | | Do D1

I
I

RXD synch. | I ST | I DO D1
T

t t, t,
4 “— Synchron|zat|on Error + 0.5x BRCLK

acluaI

I
Sample |
RXD synch. |

I
|

Majority Vote Taken Majority Vote Taken Majority Vote Taken

Figure 15-11. Receive Error

The ideal sampling time ty igea rx[i] iS in the middle of a bit period:
tbit,ideaI,RX[I] = (1/Baudrate)(i + 05)

The real sampling time ty; rx[i] is equal to the sum of all previous bits according to the formulas shown in
the transmit timing section, plus one half BITCLK for the current bit i, plus the synchronization error tgync.

This results in the foIIowing thit, Rx[i] for the low-frequency baud rate mode:

bn RX[I] - tSYNC + 2 TbIt RX[]] + (INT(%UCBRX) + mUCBRSX[I])

where:
Thitrx[l] = (Ufgrek) (UCBRX + Mycgrs(i])
Myucersxli] = Modulation of bit i from

For the oversampling baud rate mode, the sampling time ty; gx[i] Of bit i is calculated by:

7+ Myggrs[i]

taxli] = tovnc +2wa] ti ((8 + Mycgrsii]) X UCBRX + Z mucam[l])

where:

410 Universal Serial Communication Interface, UART Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Oversampling Baud Rate Mode Bit Timing

15

Tussalll = = (16 + M) x UCBRX + 3] Myceesf])
j=0

BRCLK i

7+ Mycgs,i]

mUCBRFx[j]
j=0 = Sum of ones from columns 0 to (7 + mycgrsy[i]) from the corresponding row in

[Table 15-3
Mycersxlil = Modulation of bit i from

This results in an error normalized to one ideal bit time (1/baudrate) according to the following formula:
Errorgx[i] = (toitrx[i] — toitidear,rx[i]) * Baudrate x 100%

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 411
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Oversampling Baud Rate Mode Bit Timing www.ti.com
15.3.13 Typical Baud Rates and Errors

Standard baud rate data for UCBRx, UCBRSx, and UCBRFx are listed in [Table 15-4 and [Table 15-3 for a
32,768-Hz crystal sourcing ACLK and typical SMCLK frequencies. Please ensure that the selected
BRCLK frequency does not exceed the device specific maximum USCI input frequency. Please refer to
the device-specific datasheet.

The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The
worst case error is given for the reception of an 8-bit character with parity and one stop bit including
synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst case
error is given for the transmission of an 8-bit character with parity and stop bit.

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 =0

Fri?%nﬁy Ba(l;(;u%a)\te UCBRX UCBRSx UCBREX Maximug}/o;'x Error Maximu?g/ogix Error
32,768 1200 27 2 0 -2.8 14 -5.9 2.0
32,768 2400 13 6 0 -4.8 6.0 -9.7 8.3
32,768 4800 6 7 0 -12.1 5.7 -13.4 19.0
32,768 9600 3 3 0 211 15.2 -44.3 21.3

1,000,000 9600 104 1 0 -0.5 0.6 -0.9 1.2

1,000,000 19200 52 0 0 -1.8 0 -2.6 0.9

1,000,000 38400 26 0 0 -1.8 0 -3.6 1.8

1,000,000 57600 17 3 0 2.1 4.8 -6.8 5.8

1,000,000 115200 8 6 0 -7.8 6.4 -9.7 16.1

1,048,576 9600 109 2 0 -0.2 0.7 -1.0 0.8

1,048,576 19200 54 5 0 -1.1 1.0 -1.5 25

1,048,576 38400 27 2 0 -2.8 14 -5.9 2.0

1,048,576 57600 18 1 0 -4.6 3.3 -6.8 6.6

1,048,576 115200 9 1 0 -1.1 10.7 -11.5 11.3

4,000,000 9600 416 6 0 -0.2 0.2 -0.2 0.4

4,000,000 19200 208 3 0 -0.2 0.5 -0.3 0.8

4,000,000 38400 104 1 0 -0.5 0.6 -0.9 1.2

4,000,000 57600 69 4 0 -0.6 0.8 -1.8 11

4,000,000 115200 34 6 0 2.1 0.6 -2.5 3.1

4,000,000 230400 17 3 0 2.1 4.8 -6.8 5.8

4,194,304 9600 436 7 0 -0.3 0 -0.3 0.2

4,194,304 19200 218 4 0 -0.2 0.2 -0.3 0.6

4,194,304 57600 72 7 0 -1.1 0.6 -1.3 1.9

4,194,304 115200 36 3 0 -1.9 15 -2.7 3.4

8,000,000 9600 833 2 0 -0.1 0 -0.2 0.1

8,000,000 19200 416 6 0 -0.2 0.2 -0.2 0.4

8,000,000 38400 208 3 0 -0.2 0.5 -0.3 0.8

8,000,000 57600 138 7 0 -0.7 0 -0.8 0.6

8,000,000 115200 69 4 0 -0.6 0.8 -1.8 11

8,000,000 230400 34 6 0 2.1 0.6 -2.5 3.1

8,000,000 460800 17 3 0 2.1 4.8 -6.8 5.8

8,388,608 9600 873 7 0 -0.1 0.06 -0.2 0,1

8,388,608 19200 436 7 0 -0.3 0 -0.3 0.2

8,388,608 57600 145 5 0 -0.5 0.3 -1.0 0.5

8,388,608 115200 72 7 0 -1.1 0.6 -1.3 1.9

412 Universal Serial Communication Interface, UART Mode SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

Oversampling Baud Rate Mode Bit Timing

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 =0 (continued)

BRCLK

Fre?#;)ncy Ba(lg(;uFfja)\te UCBRX UCBRSx UCBRFx Maximu&;'x Error MaximuEEA);{X Error
12,000,000 9600 1250 0 0 0 0 -0.05 0.05
12,000,000 19200 625 0 0 0 -0.2 0
12,000,000 38400 312 4 0 -0.2 -0.2 0.2
12,000,000 57600 208 2 0 -0.5 0.2 -0.6 0.5
12,000,000 115200 104 1 0 -0.5 0.6 -0.9 1.2
12,000,000 230400 52 0 0 -1.8 0 -2.6 0.9
12,000,000 460800 26 0 0 -1.8 0 -3.6 1.8
16,000,000 9600 1666 6 0 -0.05 0.05 -0.05 0.1
16,000,000 19200 833 2 0 -0.1 0.05 -0.2 0.1
16,000,000 38400 416 6 0 -0.2 0.2 -0.2 0.4
16,000,000 57600 277 7 0 -0.3 0.3 -0.5 0.4
16,000,000 115200 138 7 0 -0.7 0 -0.8 0.6
16,000,000 230400 69 4 0 -0.6 0.8 -1.8 1.1
16,000,000 460800 34 6 0 -2.1 0.6 -2.5 3.1
16,777,216 9600 1747 5 0 -0.04 0.03 -0.08 0.05
16,777,216 19200 873 7 0 -0.09 0.06 -0.2 0.1
16,777,216 57600 291 2 0 -0.2 0.2 -0.5 0.2
16,777,216 115200 145 5 0 -0.5 0.3 -1.0 0.5
20,000,000 9600 2083 2 0 -0.05 0.02 -0.09 0.02
20,000,000 19200 1041 6 0 -0.06 0.06 -0.1 0.1
20,000,000 38400 520 7 0 -0.2 0.06 -0.2 0.2
20,000,000 57600 347 2 0 -0.06 0.2 -0.3 0.3
20,000,000 115200 173 5 0 -0.4 0.3 -0.8 0.5
20,000,000 230400 86 7 0 -1.0 0.6 -1.0 1.7
20,000,000 460800 43 3 0 -1.4 1.3 -3.3 1.8
Table 15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16=1
FrBeSL(Jzzle_any Be(lgguRde)lte UCBRX UCBRSX UCBREX Maximu&;l'x Error MaximuEEA))RX Error
(H2)
1,000,000 9600 6 0 -1.8 -2.2 0.4
1,000,000 19200 3 0 4 -1.8 -2.6 0.9
1,048,576 9600 6 0 13 -2.3 -2.2 0.8
1,048,576 19200 3 1 6 -4.6 3.2 -5.0 4.7
4,000,000 9600 26 0 1 0 0.9 0 1.1
4,000,000 19200 13 0 0 -1.8 -1.9 0.2
4,000,000 38400 0 8 -1.8 0 -2.2 0.4
4,000,000 57600 5 3 -3.5 3.2 -1.8 6.4
4,000,000 115200 2 3 2 2.1 4.8 -2.5 7.3
4,194,304 9600 27 0 5 0 0.2 0 0.5
4,194,304 19200 13 0 10 -2.3 0 -2.4 0.1
4,194,304 57600 4 7 -2.5 2.5 -1.3 51
4,194,304 115200 2 6 3 -3.9 2.0 -1.9 6.7
8,000,000 9600 52 0 1 -0.4 0 -0.4 0.1
8,000,000 19200 26 0 1 0 0.9 0 1.1
SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 413

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Oversampling Baud Rate Mode Bit Timing www.ti.com

Table 15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 =1 (continued)

BRCLK

Fre?#;)ncy Ba(lg(;uF(%ja)\te UCBRX UCBRSx UCBRFx Maximu&;'x Error MaximuEEA);{X Error
8,000,000 38400 13 0 0 -1.8 0 -1.9 0.2
8,000,000 57600 8 0 11 0 0.88 0 1.6
8,000,000 115200 5 -3.5 3.2 -1.8 6.4
8,000,000 230400 2 3 2 2.1 4.8 -2.5 7.3
8,388,608 9600 54 0 10 0 0.2 -0.05 0.3
8,388,608 19200 27 0 5 0 0.2 0 0.5
8,388,608 57600 9 0 2 0 2.8 -0.2 3.0
8,388,608 115200 4 7 -2.5 25 -1.3 5.1
12,000,000 9600 78 0 2 0 0 -0.05 0.05
12,000,000 19200 39 0 1 0 0 0 0.2
12,000,000 38400 19 0 8 -1.8 0 -1.8 0.1
12,000,000 57600 13 0 0 -1.8 0 -1.9 0.2
12,000,000 115200 6 0 8 -1.8 0 -2.2 0.4
12,000,000 230400 3 0 4 -1.8 0 -2.6 0.9
16,000,000 9600 104 0 3 0 0.2 0 0.3
16,000,000 19200 52 0 1 -0.4 0 -0.4 0.1
16,000,000 38400 26 0 1 0 0.9 0 11
16,000,000 57600 17 0 6 0 0.9 -0.1 1.0
16,000,000 115200 8 0 11 0 0.9 0 1.6
16,000,000 230400 5 3 -3.5 3.2 -1.8 6.4
16,000,000 460800 3 2.1 4.8 -2.5 7.3
16,777,216 9600 109 0 4 0 0.2 -0.02 0.3
16,777,216 19200 54 0 10 0 0.2 -0.05 0.3
16,777,216 57600 18 0 3 -1.0 0 -1.0 0.3
16,777,216 115200 9 0 2 0 2.8 -0.2 3.0
20,000,000 9600 130 0 3 -0.2 0 -0.2 0.04
20,000,000 19200 65 0 2 0 0.4 -0.03 0.4
20,000,000 38400 32 0 9 0 0.4 0 0.5
20,000,000 57600 21 0 11 -0.7 0 -0.7 0.3
20,000,000 115200 10 0 14 0 25 -0.2 2.6
20,000,000 230400 0 7 0 25 0 35
20,000,000 460800 6 10 -3.2 1.8 -2.8 4.6
414 Universal Serial Communication Interface, UART Mode SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com USCI Transmit Interrupt Operation
15.3.14 Using the USCI Module in UART Mode with Low Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

15.3.15 USCI Interrupts
The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and
USC_Bx do not share the same interrupt vector.

USCI Transmit Interrupt Operation
The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAXTXBUF is ready to accept

another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCAXTXBUF.

UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST =
1.

USCI Receive Interrupt Operation

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAXRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAXRXBUF is
read.

Additional interrupt control features include:

* When UCAXRXEIE = 0 erroneous characters will not set UCRXIFG.

* When UCDORM = 1, non-address characters will not set UCRXIFG in multiprocessor modes.

* When UCBRKIE = 1 a break condition will set the UCBRK bit and the UCRXIFG flag.

UCAXIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCAXIV is used to determine which flag requested an interrupt. The highest priority
enabled interrupt generates a number in the UCAXIV register that can be evaluated or added to the
program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect
the UCAXIV value.

Any access, read or write, of the UCAXIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCAXIV Software Example

The following software example shows the recommended use of UCAxIV. The UCAXxIV value is added to
the PC to automatically jump to the appropriate routine. The following example is given for USCI_AO.

USCl _UART | SR

ADD &UCAOIV, PC ; Add offset to junp table
RETI ; Vector 0: No interrupt
JMP RXI FG_I SR . Vector 2: RXIFG

TXI FG_| SR . Vector 4: TXIFG
; Task starts here
RETI ; Return

RXI FG_I SR ; Vector 2
; Task starts here
RETI ;. Return

SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 415

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

USCI Registers: UART Mode www.ti.com
15.4 USCI Registers: UART Mode
The USCI registers applicable in UART mode listed in [Table 15-8. The word accessible registers are listed

in Table 15-7
Table 15-6. USCI_AXx Registers
Register Short Form Register Type g?fcsire?ss Initial State
USCI_Ax control register 0 UCAXCTLO Byte - R/IW +01h Reset with PUC
USCI_Ax control register 1 UCAXCTL1 Byte - R/IW +00h 001h with PUC
USCI_Ax Baud rate control register 0 UCAXBRO Byte - R/IW +06h Reset with PUC
USCI_Ax Baud rate control register 1 UCAxBR1 Byte - R/IW +07h Reset with PUC
USCI_Ax modulation control register UCAXMCTL Byte - R/IW +08h Reset with PUC
Reserved - reads zero Byte - R only +09h 000h
USCI_AXx status register UCAXSTAT Byte - R/IW +0Ah Reset with PUC
Reserved - reads zero Byte - R only +0Bh 000h
USCI_Ax Receive buffer register UCAXRXBUF Byte - R/IW +0Ch Reset with PUC
Reserved - reads zero Byte - R only +0Dh 000h
USCI_Ax Transmit buffer register UCAXTXBUF Byte - R/IW +0Eh Reset with PUC
Reserved - reads zero Byte - R only +0Fh 000h
USCI_Ax Auto Baud control register UCAXABCTL Byte - R/IW +10h Reset with PUC
Reserved - reads zero Byte - R only +11h 000h
USCI_Ax IrDA Transmit control register UCAXIRTCTL Byte - R/IW +12h Reset with PUC
USCI_Ax IrDA Receive control register UCAXIRRCTL Byte - R/IW +13h Reset with PUC
USCI_AXx interrupt enable register UCAXIE Byte - R/IW +1Ch Reset with PUC
USCI_Ax interrupt flag register UCAXIFG Byte - R/W +1Dh Reset with PUC
USCI_AXx interrupt vector register UCAxIV Word - R +1Eh Reset with PUC
Table 15-7. Word Access to USCI_Ax Registers
Word Register Short Form gieggr;;?grte Egg{;ge Address Offset
USCI_Ax control word register 0 UCAXCTLWO UCAXCTLO UCAXCTL1 +00h
USCI_Ax Baud rate control word register UCAXBRW UCAxXBR1 UCAXBRO +06h
USCI_AXx IrDA control register UCAXIRCTL UCAXIRRCTL UCAXIRTCTL +12h
USCI_AXx interrupt control register UCAXICTL UCAXIFG UCAXIE +1Ch
416 Universal Serial Communication Interface, UART Mode SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

USCI Registers: UART Mode

UCAXCTLO, USCI_Ax Control Register 0

7 6 5 4 3 2 1 0
UCPEN UCPAR | UCMSB UC7BIT UCSPB UCMODEX | UCSYNC=0
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCPEN Bit 7 Parity enable
0 Parity disabled
1 Parity enabled. Parity bit is generated (UCAXTXD) and expected (UCAXRXD). In address-bit
multiprocessor mode, the address bit is included in the parity calculation.
UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.
0 Odd parity
1 Even parity
UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.
0 LSB first
1 MSB first
UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data
UCSPB Bit 3 Stop bit select. Number of stop bits.
0 One stop bit
1 Two stop bits
UCMODEX Bits 2-1 USCI mode. The UCMODEX bits select the asynchronous mode when UCSYNC = 0.
00 UART mode
01 Idle-line multiprocessor mode
10 Address-bit multiprocessor mode
11 UART mode with automatic baud rate detection
UCSYNC Bit O Synchronous mode enable

0 Asynchronous mode
1 Synchronous mode

SLAU208-June 2008
Eubmit Documentation Feedbacl

Universal Serial Communication Interface, UART Mode 417

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
USCI Registers: UART Mode www.ti.com
UCAXCTL1, USCI_Ax Control Register 1
7 6 5 4 3 2 1 0
UCSSELX ‘ UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
UCSSELXx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock.
00 UCLK
01 ACLK
10 SMCLK
11 SMCLK
UCRXEIE Bit 5 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and UCRXIFG is not set
1 Erroneous characters received will set UCRXIFG
UCBRKIE Bit 4 Receive break character interrupt-enable
0 Received break characters do not set UCRXIFG.
1 Received break characters set UCRXIFG.
UCDORM Bit 3 Dormant. Puts USCI into sleep mode.
0 Not dormant. All received characters will set UCRXIFG.
1 Dormant. Only characters that are preceded by an idle-line or with address bit set will set UCRXIFG. In
UART mode with automatic baud rate detection only the combination of a break and synch field will set
UCRXIFG.
UCTXADDR Bit 2 Transmit address. Next frame to be transmitted will be marked as address depending on the selected
multiprocessor mode.
0 Next frame transmitted is data
1 Next frame transmitted is an address
UCTXBRK Bit 1 Transmit break. Transmits a break with the next write to the transmit buffer.In UART mode with automatic
baud rate detection 055h must be written into UCAXTXBUF to generate the required break/synch fields.
Otherwise Oh must be written into the transmit buffer.
0 Next frame transmitted is not a break
1 Next frame transmitted is a break or a break/synch
UCSWRST Bit O Software reset enable

0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

418 Universal Serial Communication Interface, UART Mode

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com USCI Registers: UART Mode
UCAXxBRO, USCI_Ax Baud Rate Control Register 0
7 6 5 4 3 2 1 0
UCBRXx
rw rw rw rw rw rw rw rw
UCAxBR1, USCI_Ax Baud Rate Control Register 1
7 6 5 4 3 2 1 0
UCBRXx
rw rw rw rw rw rw rw rw
UCBRx Clock prescaler setting of the Baud rate generator.
UCAXMCTL, USCI_Ax Modulation Control Register
7 6 5 4 3 2 1 0
UCBRFx UCBRSXx UCOS16
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCBRFx Bits 7-4 First modulation stage select. These bits determine the modulation pattern for BITCLK16 when UCOS16 = 1.
Ignored with UCOS16 = 0. shows the modulation pattern.
UCBRSx Bits 3-1 Second modulation stage select. These bits determine the modulation pattern for BITCLK. shows
the modulation pattern.
UCOS16 Bit 0 Oversampling mode enabled
0 Disabled
1 Enabled
SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 419

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
USCI Registers: UART Mode www.ti.com
UCAXSTAT, USCI_Ax Status Register
7 6 5 4 3 2 1 0
UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UUCCAI\DDLDS UCBUSY
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0
UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UCAXTXD is internally fed back to the receiver.
UCFE Bit 6 Framing error flag
0 No error
1 Character received with low stop bit
UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCAXRXBUF before the previous
character was read. UCOE is cleared automatically when UCXRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred
UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.
0 No error
1 Character received with parity error
UCBRK Bit 3 Break detect flag
0 No break condition
1 Break condition occurred
UCRXERR Bit 2 Receive error flag. This bit indicates a character was received with error(s). When UCRXERR = 1, on or more
error flags (UCFE, UCPE, UCOE) is also set. UCRXERR is cleared when UCAXRXBUF is read.
0 No receive errors detected
1 Receive error detected
UCADDR Bit 1 Address received in address-bit multiprocessor mode.
0 Received character is data
1 Received character is an address
UCIDLE Idle line detected in idle-line multiprocessor mode.
0 No idle line detected
1 Idle line detected
UCBUSY Bit O USCI busy. This bit indicates if a transmit or receive operation is in progress.

0 USClI inactive
1 USCI transmitting or receiving

UCAXRXBUF, USCI_Ax Receive Buffer Register

7 6 5 4 3 2 1 0
UCRXBUFx
r r r r r r r r
UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCAXRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In
7-bit data mode, UCAXRXBUF is LSB justified and the MSB is always reset.
420 Universal Serial Communication Interface, UART Mode SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com USCI Registers: UART Mode
UCAXTXBUF, USCI_Ax Transmit Buffer Register
7 6 5 4 3 2 1 0
UCTXBUFx
w rw w rw w rw w rw
UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift

register and transmitted on UCAXTXD. Writing to the transmit data buffer clears UCTXIFG. The MSB of
UCAXTXBUF is not used for 7-bit data and is reset.

UCAXIRTCTL, USCI_AXx IrDA Transmit Control Register

7 6 5 4 3 2 1 0
UCIRTXPLXx UCIRTXCLK UCIREN
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCIRTXPLx Bits 7-2 Transmit pulse length
Pulse Length tpy sg = (UCIRTXPLX + 1) / (2 % firTxcLk)
UCIRTXCLK Bit 1 IrDA transmit pulse clock select
0 BRCLK
1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK.
UCIREN Bit 0 IrDA encoder/decoder enable.
0 IrDA encoder/decoder disabled
1 IrDA encoder/decoder enabled

UCAXIRRCTL, USCI_Ax IrDA Receive Control Register

7 6 5 4 3 2 1 0
UCIRRXFLXx UCIRRXPL UCIRRXFE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCIRRXFLXx Bits 7-2 Receive filter length. The minimum pulse length for receive is given by:
tmin = (UCIRRXFLX + 4) / (2 % firTxcLk)
UCIRRXPL Bit 1 IrDA receive input UCAXRXD polarity
0 IrDA transceiver delivers a high pulse when a light pulse is seen.
1 IrDA transceiver delivers a low pulse when a light pulse is seen.
UCIRRXFE Bit 0 IrDA receive filter enabled
0 Receive filter disabled
1 Receive filter enabled
SLAU208-June 2008 Universal Serial Communication Interface, UART Mode 421

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
USCI Registers: UART Mode www.ti.com
UCAXABCTL, USCI_Ax Auto Baud Rate Control Register
7 6 5 4 3 2 1 0
Reserved ‘ UCDELIMx UCSTOE UCBTOE Reserved UCABDEN
r-0 r-0 rw-0 rw-0 rw-0 rw-0 r-0 rw-0
Reserved Bits 7-6 Reserved
UCDELIMx Bits 5-4 Break/synch delimiter length
00 1 bit time
01 2 bit times
10 3 bit times
11 4 bit times
UCSTOE Bit 3 Synch field time out error
0 No error
1 Length of synch field exceeded measurable time.
UCBTOE Bit 2 Break time out error
0 No error
1 Length of break field exceeded 22 bit times.
Reserved Bit 1 Reserved
UCABDEN Bit 0 Automatic baud rate detect enable
0 Baud rate detection disabled. Length of break and synch field is not measured.
1 Baud rate detection enabled. Length of break and synch field is measured and baud rate settings are
changed accordingly.
UCAXIE, USCI_AX Interrupt Enable Register
7 6 5 4 3 2 1 0
Reserved UCTXIE UCRXIE
r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0
Reserved Bits 7-2 Reserved
UCTXIE Bit 1 Transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCRXIE Bit 0 Receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAXIFG, USCI_Ax Interrupt Flag Register
7 6 5 4 3 2 1 0
Reserved UCTXIFG UCRXIFG
r-0 r-0 r-0 r-0 r-0 r-0 rw-1 rw-0
Reserved Bits 7-2 Reserved
UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCAXTXBUF empty.
0 No interrupt pending
1 Interrupt pending
UCRXIFG Bit 0 Receive interrupt flag. UCRXIFG is set when UCAXRXBUF has received a complete character.

0 No interrupt pending
1 Interrupt pending

422

Universal Serial Communication Interface, UART Mode

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

USCI Registers: UART Mode

UCAXIV, USCI_AXx Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 \ 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
4 3 2 1
0 0 UCIVX
r0 ro r0 r-0 r-0 r-0 r-0 ro
UCIVX Bits 15-0 USCI
interrupt
vector value
UCAXIV -
Contents Interrupt Source Interrupt Flag Interrupt Priority
000h No interrupt pending
002h Data received UCRXIFG Highest
004h Transmit buffer empty UCTXIFG Lowest

SLAU208-June 2008
Eubmit Documentation Feedbacl

Universal Serial Communication Interface, UART Mode 423

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

424 Universal Serial Communication Interface, UART Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 16
INSTRUMENTS SLAU208June 2008

Universal Serial Communication Interface, SPI Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes
with one hardware module. This chapter discusses the operation of the synchronous peripheral interface

or SPI mode.
Topic Page
16.1 USCI OVOIViE W e et tueeunerseeneenerseeenseseeesssassaseesseasseserassasseasraseesess 424
16.2 USCI Introduction: SPI ModE]. ..ot iieeiieeeeinerenneeaneeranneanns 421
16.3 USCI Operation: SPIModeleieieieieieei e eeieeeeieeieieeeieazaieeeeee 429
16.4 USCI Registers: SPIMode[.eeerereieieieieieieiieeeeeeeeeeeieieieieieeeeeaeene., 139
SLAU208-June 2008 Universal Serial Communication Interface, SPI Mode 425

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

USCI Overview www.ti.com

16.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_AO and USCI_A1. See the
device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.
The USCI_Ax modules support:

* UART mode

» Pulse shaping for IrDA communications

» Automatic baud rate detection for LIN communications

* SPI mode

The USCI_Bx modules support:
« 1°C mode
* SPIl mode

426 Universal Serial Communication Interface, SPI Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com USCI Introduction: SPI Mode

16.2 USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system via three or four pins:
UCxXSIMO, UCxSOMI, UCXCLK, and UCXSTE. SPI mode is selected when the UCSYNC bit is set and SPI
mode (3-pin or 4-pin) is selected with the UCMODEX bits.

SPI mode features include:

e 7- or 8-bit data length

» LSB-first or MSB-first data transmit and receive
* 3-pin and 4-pin SPI operation

» Master or slave modes

» Independent transmit and receive shift registers
» Separate transmit and receive buffer registers

» Continuous transmit and receive operation

» Selectable clock polarity and phase control

* Programmable clock frequency in master mode
» Independent interrupt capability for receive and transmit
» Slave operation in LPM4

shows the USCI when configured for SPI mode.

SLAU208-June 2008 Universal Serial Communication Interface, SPI Mode 427
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

USCI Introduction: SPI Mode www.ti.com

Receive State Machine P Set UCOE
P Set UCXRXIFG

UCLISTEN UCMST
Receive Buffer UC xRXBUF

UCxSOMI
* 0
[Receive Shift Register 1
" " k
UCMSB UC7BIT &
UCSSELx
Bit Clock Generator
UCXBRx UCCKPH UCCKPL °
N/A —| 00 M6 1 1 |
UCxCLK
ACLK 01 - Clock Direction,
SMCLK 10 [BROLK Prescaler/Divider 1 Phase and Polarity —@ < >
SMCLK 1"
UCMSB UC7BIT —
UCxSIMO
[S Transmit Shift Register
* UCMODEXx
T Buffer UC xTXBUF : VoxsTE
ransmit Buffer X
Transmit Enable O
Control])—} Set UCFE
Transmit State Machine
P Set UCXTXIFG
Figure 16-1. USCI Block Diagram: SPI Mode
428 Universal Serial Communication Interface, SPI Mode SLAU208-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com USCI Operation: SPI Mode

16.3 USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by
the master. An additional pin, UCXSTE, is provided to enable a device to receive and transmit data and is
controlled by the master.

Three or four signals are used for SPI data exchange:
» UCXSIMO Slave in, master out Master mode: UCxSIMO is the data output line. Slave mode: UCxSIMO
is the data input line.

* UCxSOMI Slave out, master in Master mode: UCxSOMI is the data input line. Slave mode: UCxSOMI
is the data output line.

* UCXCLK USCI SPI clock Master mode: UCXCLK is an output. Slave mode: UCXCLK is an input.

* UCXSTE Slave transmit enable. Used in 4-pin mode to allow multiple masters on a single bus. Not
used in 3-pin mode. describes the UCXSTE operation.

Table 16-1. UCXSTE Operation

UCMODEXx UCXSTE Active State UCXSTE Slave Master
) 0 Inactive Active
01 High . .
1 Active Inactive
0 Active Inactive
10 Low . .
1 Inactive Active

16.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set,
keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE,
UCRXIFG, UCOE, and UCFE bits and sets the UCTXIFG flag. Clearing UCSWRST releases the USCI for
operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1. SetUCSWRST (BI S. B #UCSWRST, &UCxCTL1).

Initialize all USCI registers with UCSWRST=1 (including UCxCTL1).
Configure ports.

Clear UCSWRST via software (Bl C. B #UCSWRST, &UCxCTL1).
Enable interrupts (optional) via UCRXIE and/or UCTXIE.

ok wnn

16.3.2 Character Format

The USCI module in SPI mode supports 7- and 8-bit character lengths selected by the UC7BIT bit. In 7-bit
data mode, UCXRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the
direction of the transfer and selects LSB or MSB first.

Note: Default Character Format

The default SPI character transmission is LSB first. For communication with other SPI
interfaces it MSB-first mode may be required.

Note: Character Format for Figures

Figures throughout this chapter use MSB first format.

SLAU208-June 2008 Universal Serial Communication Interface, SPI Mode 429
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Four-Pin SPI Master Mode www.ti.com
16.3.3 Master Mode

MASTER ucxsiMo| _ [simMo SLAVE
L
Receive Buffer Transmit Buffer .
UCXRXBUF UCXTXBUF SPI Receive Bufer
Px.x > STE
P SS
UCXSTE <4 Port.x
UCx
. . . e . SoMmI SOMI . .
Receive Shift Register W L1 Transmit Shift Register < Data Shift Register (DSR)
UCxCLK > SCLK
MSP430 USCI COMMON SPI

Figure 16-2. USCI Master and External Slave

shows the USCI as a master in both 3-pin and 4-pin configurations. The USCI initiates data
transfer when data is moved to the transmit data buffer UCXTXBUF. The UCXTXBUF data is moved to the
TX shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting with
either the most-significant or least-significant bit depending on the UCMSB setting. Data on UCXxSOMI is
shifted into the receive shift register on the opposite clock edge. When the character is received, the
receive data is moved from the RX shift register to the received data buffer UCXRXBUF and the receive
interrupt flag, UCRXIFG, is set, indicating the RX/TX operation is complete.

A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCXTXBUF to the TX shift
register and UCXTXBUF is ready for new data. It does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to UCXTXBUF because receive and
transmit operations operate concurrently.

Four-Pin SPI Master Mode
In 4-pin master mode, UCXSTE is used to prevent conflicts with another master and controls the master
as described in [Table 16-1. When UCXSTE is in the master-inactive state:
» UCXSIMO and UCXCLK are set to inputs and no longer drive the bus
» The error bit UCFE is set indicating a communication integrity violation to be handled by the user.
» The internal state machines are reset and the shift operation is aborted.
If data is written into UCXTXBUF while the master is held inactive by UCXSTE, it will be transmit as soon
as UCXSTE transitions to the master-active state. If an active transfer is aborted by UCXSTE transitioning

to the master-inactive state, the data must be re-written into UCXTXBUF to be transferred when UCXSTE
transitions back to the master-active state. The UCXSTE input signal is not used in 3-pin master mode.

430 Universal Serial Communication Interface, SPI Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Four-Pin SPI Slave Mode

16.3.4 Slave Mode

MASTER sIMO| | ucxsiMO SLAVE
L
)) Receive Buffer
SPI Receive Buffer Transmit Buffer UCXTXBUF UCXRXBUF
Px.x > UCXSTE
- SS
STE - Port.x
UCx
.) SOMI SOMI oL
L{ Data Shift Register DSR < Transmit Shift Register Receive Shift Register |-
SCLK » UCxCLK
COMMON SPI MSP430 USCI

Figure 16-3. USCI Slave and External Master

shows the USCI as a slave in both 3-pin and 4-pin configurations. UCXCLK is used as the
inputfor the SPI clock and must be supplied by the external master. The data-transfer rate is determined
by this clock and not by the internal bit clock generator. Data written to UCXTXBUF and moved to the TX
shift register before the start of UCXCLK is transmitted on UCxSOMI. Data on UCXSIMO is shifted into the
receive shift register on the opposite edge of UCXCLK and moved to UCXRXBUF when the set number of
bits are received. When data is moved from the RX shift register to UCXRXBUF, the UCRXIFG interrupt
flag is set, indicating that data has been received. The overrun error bit, UCOE, is set when the previously
received data is not read from UCXRXBUF before new data is moved to UCXRXBUF.

Four-Pin SPI Slave Mode

In 4-pin slave mode, UCXSTE is used by the slave to enable the transmit and receive operations and is
provided by the SPI master. When UCXSTE is in the slave-active state, the slave operates normally.
When UCXSTE is in the slave- inactive state:

* Any receive operation in progress on UCxSIMO is halted
 UCXSOMI is set to the input direction
» The shift operation is halted until the UCXSTE line transitions into the slave transmit active state.

The UCXSTE input signal is not used in 3-pin slave mode.

16.3.5 SPI Enable

When the USCI module is enabled by clearing the UCSWRST bit it is ready to receive and transmit. In
master mode the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode
the bit clock generator is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active transfer is terminated.
Transmit Enable

In master mode, writing to UCXTXBUF activates the bit clock generator and the data will begin to transmit.

In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the
UCXSTE is in the slave-active state.

Receive Enable

The SPI receives data when a transmission is active. Receive and transmit operations operate
concurrently.

SLAU208-June 2008 Universal Serial Communication Interface, SPI Mode 431
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Receive Enable www.ti.com

16.3.6 Serial Clock Control

UCXCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the
USCI bit clock generator on the UCXCLK pin. The clock used to generate the bit clock is selected with the
UCSSELX bits. When UCMST = 0, the USCI clock is provided on the UCXCLK pin by the master, the bit
clock generator is not used, and the UCSSELX bits are don't care. The SPI receiver and transmitter
operate in parallel and use the same clock source for data transfer.

The 16-bit value of UCBRX in the bit rate control registers UCxxBR1 and UCxxBRO is the division factor of
the USCI clock source, BRCLK. The maximum bit clock that can be generated in master mode is BRCLK.
Modulation is not used in SPI mode and UCAXMCTL should be cleared when using SPI mode for
USCI_A. The UCAXCLK/UCBXCLK frequency is given by:

faitciock = fercLk/UCBRX

16.3.6.1 Serial Clock Polarity and Phase

The polarity and phase of UCXCLK are independently configured via the UCCKPL and UCCKPH control
bits of the USCI. Timing for each case is shown in Figure 16-4.

uc -~ uc I I [3 | I I I I I
CKPHCKPLCycIe#1|2|3|4|5|6|7|8|

I

0 1 UCxCLK | | | | | |

|
UCXSTE\ |

| | i
[[[[
0 X Usksom_IX_MsB :X X :X) :X X A_Ls8
X HSXXS’I)MM?)(: msB_|X X X X

|
Move to UCXTXBUF | |

|
I
|
I
|
X LsB |
|
I
|
|
|
|

Figure 16-4. USCI SPI Timing with UCMSB =1

RX Sample Points

e

16.3.7 Using the SPI Mode with Low Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

In SPI slave mode no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in SPI slave mode while the device is in LPM4 and all clock
sources are disabled. The receive or transmit interrupt can wake up the CPU from any low power mode.

432

Universal Serial Communication Interface, SPI Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
www.ti.com SPI Transmit Interrupt Operation

16.3.8 SPI Interrupts

The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and
USC_Bx do not share the same interrupt vector.

SPI Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCXTXBUF is ready to accept another
character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically
reset if a character is written to UCXTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1.
UCTXIE is reset after a PUC or when UCSWRST = 1.

Note: Writing to UCXTXBUF in SPI Mode

Data written to UCXTXBUFwhen UCTXIFG = 0 may result in erroneous data transmission.

SPI Receive Interrupt Operation

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCXRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCXRXBUF is
read.

UCxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCxIV is used to determine which flag requested an interrupt. The highest priority enabled
interrupt generates a number in the UCXIV register that can be evaluated or added to the program counter
to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV value.

Any access, read or write, of the UCXxIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
UCxIV Software Example

The following software example shows the recommended use of UCxIV. The UCxIV value is added to the
PC to automatically jump to the appropriate routine. The following example is given for USCI_BO.

USCl _SPI _I SR
ADD &UCBOIV, PC ; Add offset to junp table
RETI ; Vector 0: No interrupt
JWP RXI FG_I SR ; Vector 2: RXIFG

TXI FG_I SR ; Vector 4: TXI FG
; Task starts here
RETI ; Return

RXI FG_I SR ; Vector 2
; Task starts here
RETI ; Return

SLAU208-June 2008 Universal Serial Communication Interface, SPI Mode 433

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: SPI Mode

13 TEXAS

INSTRUMENTS

www.ti.com

16.4 USCI Registers: SPI Mode

The USCI registers applicable in SPI mode listed in [Table 16-2. The word accessible registers are listed in

[able 16-3.
Table 16-2. USCI_xx Registers

Register Short Form Register Type g?fcsire?ss Initial State
USCI_Ax control register 0 UCAXCTLO Byte - R/IW +01h Reset with PUC
USCI_Bx control register 0 UCBXCTLO Byte - R/IW +01h 001h with PUC
USCI_xx control register 1 UCxxCTL1 Byte - R/IW +00h 001h with PUC
USCI_xx Bit rate control register 0 UCxxBRO Byte - R/IW +06h Reset with PUC
USCI_xx Bit rate control register 1 UCxxBR1 Byte - R/IW +07h Reset with PUC
USCI_Ax modulation control register UCAXMCTL Byte - R/IW +08h Reset with PUC
USCI_xx status register UCXXSTAT Byte - R/IW +0Ah Reset with PUC
Reserved - reads zero Byte - R only +0Bh 000h

USCI_xx Receive buffer register UCXxXRXBUF Byte - R/IW +0Ch Reset with PUC
Reserved - reads zero Byte - R only +0Dh 000h

USCI_xx Transmit buffer register UCXXTXBUF Byte - R/IW +0Eh Reset with PUC
Reserved - reads zero Byte - R only +0Fh 000h

USCI_xx interrupt enable register UCXXIE Byte - R/IW +1Ch Reset with PUC
USCI_xx interrupt flag register UCxxIFG Byte - R/IW +1Dh 002h with PUC
USCI_xx interrupt vector register UCxxIvV Word - R +1Eh Reset with PUC

Table 16-3. Word Access to USCI_xx Registers

Word Register Short Form gieggr;;?grte Egg{;ge Address Offset
USCI_xx control word register O UCxxCTLWO UCxxCTLO UCxxCTL1 +00h
USCI_xx bit rate control word register UCxxBRW UCxxBR1 UCxxBRO +06h
USCI_xx interrupt control register UCxxICTL UCXxIFG UCxXXIE +1Ch

434

Universal Serial Communication Interface, SPI Mode

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

USCI Registers: SPI Mode

UCAXCTLO, USCI_Ax Control Register 0
UCBXCTLO, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0
UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEXx UCSYNC=1
rw-0
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 w-1@
UCCKPH Bit 7 Clock phase select.
0 Data is changed on the first UCLK edge and captured on the following edge.
1 Data is captured on the first UCLK edge and changed on the following edge.
UCCKPL Bit 6 Clock polarity select.
0 The inactive state is low.
1 The inactive state is high.
UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.
0 LSB first
1 MSB first
UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data
UCMST Bit 3 Master mode select
0 Slave mode
1 Master mode
UCMODEXx Bits 2-1 USCI Mode. The UCMODEX bits select the synchronous mode when UCSYNC = 1.
00 3-pin SPI
01 4-pin SPI with UCXSTE active high: slave enabled when UCXSTE =1
10 4-pin SPI with UCXSTE active low: slave enabled when UCXSTE =0
11 1°C mode
UCSYNC Bit 0 Synchronous mode enable

@) UCAXCTLO (USCI_AX)
@ UCBXCTLO (USCI_Bx)

0 Asynchronous mode
1 Synchronous mode

UCAXCTL1, USCI_Ax Control Register 1
UCBXCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0
UCSSELX Unused UCSWRST
rw-0 rw-0 rv;g(()z()l) rw-0 rw-0 rw-0 rw-0 rw-1
UCSSELXx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock in master mode. UCXCLK is
always used in slave mode.
00 NA
01 ACLK
10 SMCLK
11 SMCLK
Unused Bits 5-1 Unused
UCSWRST Bit 0 Software reset enable

() UCAXCTLL (USCI_AX)
2 UCBXCTL1 (USCI_Bx)

0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Universal Serial Communication Interface, SPI Mode 435

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
USCI Registers: SPI Mode www.ti.com
UCAXBRO, USCI_Ax Bit Rate Control Register 0
UCBxBR1, USCI_Bx Bit Rate Control Register 0
7 6 5 4 3 2 1 0
UCBRXx
rw rw w rw w rw rw rw
UCAxBR1, USCI_Ax Bit Rate Control Register 1
UCBxBR1, USCI_Bx Bit Rate Control Register 1
7 6 5 4 3 2 1 0
UCBRXx
'w rw 'w rw 'w rw 'w rw
UCBRx Bit clock prescaler. The 16-bit value of {UCxxBRO + UCxxBR1} forms the prescaler value.
UCAXMCTL, USCI_Ax Modulation Control Register
7 6 5 4 3 2 1
0 0 \ 0 | 0 0 0 0 0
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
Bits 7-0 Write as 0.
436 Universal Serial Communication Interface, SPI Mode SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com USCI Registers: SPI Mode

UCAXSTAT, USCI_Ax Status Register
UCBXSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0
UCLISTEN UCFE ‘ UCOE Unused UCBUSY
rw-0 w-0 rw-0 er(;c()z()l) rvrv(-)C()z()l) er(;c()z()l) rvrv(-)C()z()l) r-0
UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. The transmitter output is internally fed back to the receiver.
UCFE Bit 6 Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire
master or any slave mode.
0 No error
1 Bus conflict occurred
UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCXRXBUF before the previous

character was read. UCOE is cleared automatically when UCXRXBUF is read, and must not be cleared
by software. Otherwise, it will not function correctly.

0 No error
1 Overrun error occurred
Unused Bits 4-1 Unused
UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.
0 USCI inactive
1 USCI transmitting or receiving

(1) UCAXSTAT (USCI_AX)
2 UCBXSTAT (USCI_Bx)

UCAXRXBUF, USCI_Ax Receive Buffer Register
UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0
UCRXBUFx

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCXRXBUF resets the receive-error bits, and UCRXIFG. In 7-bit data mode,
UCXRXBUF is LSB justified and the MSB is always reset.

UCAXTXBUF, USCI_Ax Transmit Buffer Register
UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0
UCTXBUFx
rw rw rw rw rw rw rw rw
UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift

register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCXTXBUF is
not used for 7-bit data and is reset.

SLAU208-June 2008 Universal Serial Communication Interface, SPI Mode 437
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
USCI Registers: SPI Mode www.ti.com
UCAXIE, USCI_AX Interrupt Enable Register
UCBXIE, USCI_BXx Interrupt Enable Register
7 6 5 4 3 2 1 0
Reserved UCTXIE UCRXIE
r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0
Reserved Bits 7-2 Reserved
UCTXIE Bit 1 Transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCRXIE Bit 0 Receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAXIFG, USCI_Ax Interrupt Flag Register
UCBXIFG, USCI_Bx Interrupt Flag Register
7 6 5 4 3 2 1 0
Reserved UCTXIFG UCRXIFG
r-0 r-0 r-0 r-0 r-0 r-0 rw-1 rw-0
Reserved Bits 7-2 Reserved
UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCXxTXBUF empty.
0 No interrupt pending
1 Interrupt pending
UCRXIFG Bit O Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a complete character.
0 No interrupt pending
1 Interrupt pending

UCAXIV, USCI_AX Interrupt Vector Register
UCBXxIV, USCI_BXx Interrupt Vector Register

15 14 13 12 11 10
0 0 \ 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0
4 3 2 1
0 0 UCIVxX
r0 ro r0 r-0 r-0 r-0 r-0 ro
UCIVX Bits 15-0 USCI interrupt vector value
UCAXIV/
UCBxIV Interrupt Source Interrupt Flag Int_err_upt
c Priority
ontents
000h No interrupt pending -
002h Data received UCRXIFG Highest
004h Transmit buffer empty UCTXIFG Lowest

438 Universal Serial Communication Interface, SPI Mode

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS

INSTRUMENTS

Universal Serial Communication Interface, 12C Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes

with one hardware module. This chapter discusses the operation of the 1°C mode.

Topic Page
17.1 USCIH OVOIVIiEW et e tueeneeeueeneeesaeraeeseesaeeseassssssasensessasrasessaerasenses 447
17.2 USCI Introduction: 1°C MOde[oorrrrrrrrrrrrrrrreeeeeeeereeeeieeereereeeeeeeees 277
17.3 USCI Operation: 1°C Mode[oerrrrrrrrreeeeeeeeeseeeeeeeereereeeeeeeees 273
17.4 USCI Registers: I’C MOd€[irrrrersssrsrrreeeeeeeeeeeeeereeereeeeeeeeeeees 253

SLAU208—-June 2008

Universal Serial Communication Interface, 1°C Mode

Bubmit Documentafion FeedbacK

Chapter 17

SLAU208—-June 2008

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

USCI Overview www.ti.com

17.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_AO and USCI_A1. See the
device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.
The USCI_Ax modules support:

* UART mode

» Pulse shaping for IrDA communications

» Automatic baud rate detection for LIN communications

* SPI mode

The USCI_Bx modules support:
« 1°C mode
* SPIl mode

440 Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com USCI Introduction: 1°C Mode
17.2 USCI Introduction: I°C Mode

In 1°C mode, the USCI module provides an interface between the MSP430 and 12C-compatible devices
connected by way of the two-wire 1°C serial bus. External components attached to the I°C bus serially
transmit and/or receive serial data to/from the USCI module through the 2-wire I°C interface.

The 1°C mode features include:

« Compliance to the Philips Semiconductor I1°C specification v2.1

e J 7-bit and 10-bit device addressing modes

* J General call

* JSTART/RESTART/STOP

* J Multi-master transmitter/receiver mode

» J Slave receiver/transmitter mode

» J Standard mode up to 100 kbps and fast mode up to 400 kbps support
* Programmable UCxCLK frequency in master mode

» Designed for low power

» Slave receiver START detection for auto-wake up from LPMx modes
» Slave operation in LPM4

shows the USCI when configured in 1°C mode.

SLAU208-June 2008 Universal Serial Communication Interface, 1°C Mode 441
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I

TEXAS
INSTRUMENTS

www.ti.com

USCI Introduction: 1°C Mode

UCA10 UCGCEN

Own Address UC10A

*

UCxSDA

Receive Shift Register

v

Receive Buffer UC 1RXBUF

12C State Machine

Transmit Buffer UC 1TXBUF

v

1L

Transmit Shift Register

ﬁ

Slave Address UC1SA

n
UCSLA10

UCxSCL

UCSSELx
Bit Clock Generator

UCxBRx
[

UC1CLK 00

01
10

ACLK
Prescaler/Divider

BRCLK

SMCLK

UCMSTI:) >

SMCLK 11

Figure 17-1. USCI Block Diagram: I1°C Mode

442 Universal Serial Communication Interface, 12C Mode

SLAU208—-June 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com USCI Operation: I°C Mode
17.3 USCI Operation: 1°C Mode
The 1°C mode supports any slave or master 1°C-compatible device. shows an example of an

I2C bus. Each I>C device is recognized by a unique address and can operate as either a transmitter or a
receiver. A device connected to the I1°C bus can be considered as the master or the slave when
performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any
device addressed by a master is considered a slave.

I2C data is communicated using the serial data pin (SDA) and the serial clock pin (SCL). Both SDA and
SCL are bidirectional, and must be connected to a positive supply voltage using a pull-up resistor.

Vee

MSP430 Device A

Serial Data (SDA) ®
Serial Clock (SCL)

Device B Device C

Figure 17-2. I°C Bus Connection Diagram

Note: SDA and SCL Levels
The MSP430 SDA and SCL pins must not be pulled up above the MSP430 VCC level.

17.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. To select I2C operation the UCMODEX bits must
be set to 11. After module initialization, it is ready for transmit or receive operation. Clearing UCSWRST
releases the USCI for operation.

Configuring and re-configuring the USCI module should be done when UCSWRST is set to avoid
unpredictable behavior. Setting UCSWRST in 1°C mode has the following effects:

« |12C communication stops

» SDA and SCL are high impedance

» UCBXI2CSTAT, bits 6-0 are cleared

* UCTXIE and UCRXIE are cleared

* UCTXIFG and UCRXIFG are cleared

« All other bits and register remain unchanged.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1. SetUCSWRST (BI S. B #UCSWRST, &UCxCTL1)

Initialize all USCI registers with UCSWRST=1 (including UCXCTL1)
Configure ports.

Clear UCSWRST via software (Bl C. B #UCSWRST, &UCxCTL1)
Enable interrupts (optional) via UCXRXIE and/or UCXTXIE

arwbd

SLAU208-June 2008 Universal Serial Communication Interface, 1°C Mode 443
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

USCI Operation: 12C Mode www.ti.com

17.3.2 I°C Serial Data

One clock pulse is generated by the master device for each data bit transferred. The 1°C mode operates
with byte data. Data is transferred most significant bit first as shown in Eigure 17-3.

The first byte after a START condition consists of a 7-bit slave address and the R/W bit. When R/W = 0,
the master transmits data to a slave. When R/W = 1, the master receives data from a slave. The ACK bit
is sent from the receiver after each byte on the 9th SCL clock.

— —

SDA wm l I

I
| MSB Acknowledgement Acknowledgement |
Signal From Receiver Signal From Receiver
TanT 1 2 7 8 9 1 2 8 9 TAF
START - STOP
Condition (S) R/W ACK ACK " Gondition (P)

Figure 17-3. I°C Module Data Transfer

START and STOP conditions are generated by the master and are shown in Figure 17-3. A START
condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high
transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

Data on SDA must be stable during the high period of SCL as shown in Eigure 17-4. The high and low
state of SDA can only change when SCL is low, otherwise START or STOP conditions will be generated.

Data Line
| Stable Data | | .
)

o/ X N\
I I

|
scL | | | \

' | |
[«——>»— Change of Data Allowed

Figure 17-4. Bit Transfer on the 1°C Bus

444

Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com 7-Bit Addressing

17.3.3 I°C Addressing Modes
The 1°C mode supports 7-bit and 10-bit addressing modes.
7-Bit Addressing
In the 7-bit addressing format, shown in Eiqure 17-5, the first byte is the 7-bit slave address and the R/W
bit. The ACK bit is sent from the receiver after each byte.
[T 7——> 1 1T 88— 1 [———g—— 1 |1]
|s| SlaveAddress | RW | ACK]| Data | ACK | Data | AcK | P]

1

Figure 17-5. I°C Module 7-Bit Addressing Format

10-Bit Addressing

In the 10-bit addressing format, shown in Fiqure 17-8, the first byte is made up of 11110b plus the two
MSBs of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte.
The next byte is the remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the 8-bit
data.

‘ 1 _7 74ﬂ 1 1 ’47 88— ﬂ 1 ‘47 84ﬂ 1 ‘
| S|slave Address 1st byte | R/W | ACK | Slave Address 2nd byte| ACK | Data | ACK | P]
1 1 1 1 0 X X|

1

Figure 17-6. I°C Module 10-Bit Addressing Format

Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by
issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave
address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is

shown in Figure 17-1.
|1 ——7— 1 | 1 =g 1 [1[&——7—> 1 | 1 ¢&——g—> 1 |1]

| S ‘ Slave Address ‘ R/W ‘ ACK ‘ Data ‘ ACK ‘ S ‘ Slave Address ‘ R/W ‘ ACK ‘ Data ‘ ACK ‘ P |
e Ay e e Ay Number—
umber

Figure 17-7. I°C Module Addressing Format with Repeated START Condition

SLAU208-June 2008 Universal Serial Communication Interface, 1°C Mode 445
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Slave Mode www.ti.com

17.3.4 I1°C Module Operating Modes

In I°C mode the USCI module can operate in master transmitter, master receiver, slave transmitter, or
slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate
the modes.

shows how to interpret the time line figures. Data transmitted by the master is represented by
grey rectangles, data transmitted by the slave by white rectangles. Data transmitted by the USCI module,
either as master or slave, is shown by rectangles that are taller than the others.

Actions taken by the USCI module are shown in grey rectangles with an arrow indicating where in the the
data stream the action occurs. Actions that must be handled with software are indicated with white
rectangles with an arrow pointing to where in the data stream the action must take place.

| [Other Master
‘ [Other Slave
___________ USCI Master

‘ USCI Slave

‘ Bits set or reset by software

‘ Bits set or reset by hardware

Figure 17-8. I°C Time Line Legend

Slave Mode

The USCI module is configured as an 1°C slave by selecting the I°C mode with UCMODEX = 11 and
UCSYNC =1 and clearing the UCMST bit.

Initially the USCI module must to be configured in receiver mode by clearing the UCTR bit to receive the
I2C address. Afterwards, transmit and receive operations are controlled automatically depending on the
R/W bit received together with the slave address.

The USCI slave address is programmed with the UCBxI2COA register. When UCA10 = 0, 7-bit addressing
is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave
responds to a general call.

When a START condition is detected on the bus, the USCI module will receive the transmitted address
and compare it against its own address stored in UCBxI2COA. The UCSTTIFG flag is set when address
received matches the USCI slave address.

I°C Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own
address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses
that are generated by the master device. The slave device does not generate the clock, but it will hold
SCL low while intervention of the CPU is required after a byte has been transmitted.

If the master requests data from the slave the USCI module is automatically configured as a transmitter
and UCTR and UCTXIFG become set. The SCL line is held low until the first data to be sent is written into
the transmit buffer UCBXTXBUF. Then the address is acknowledged, the UCSTTIFG flag is cleared, and
the data is transmitted. As soon as the data is transferred into the shift register the UCTXIFG is set again.

446

Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com I°C Slave Receiver Mode

After the data is acknowledged by the master the next data byte written into UCBXTXBUF is transmitted or
if the buffer is empty the bus is stalled during the acknowledge cycle by holding SCL low until new data is
written into UCBXTXBUF. If the master sends a NACK succeeded by a STOP condition the UCSTPIFG
flag is set. If the NACK is succeeded by a repeated START condition the USCI I2C state machine returns
to its address-reception state.

illustrates the slave transmitter operation.
Reception of own | S I SLAR Al pata | A DATA Al pata |A]P
address and | |
transmission of data A A A A
bytes
UCTR=1 (Transmitter) Write data to UCBXTXBUF | |UCBXTX|FG:O
UCSTTIFG=1
UCBXTXIFG=1
UCSTPIFG=0
UCBXTXBUF discarded i et
Bus stalled (SCL held low)
until data available
Write data to UCBXTXBUF
Y
Repeated start- Al S SLA/R
continue as DATA I I
slave transmitter A)

UCBXTXIFG=0 |

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBXTXIFG=1
UCBXTXBUF discarded

Y
Repeated start- DATA TI s I SLAW
continue as
slave receiver A A
UCBXTXIFG=0 |
o ————

Arbitration lost as 1 A UCTR=0 (Receiver)
master and ——-d UCSTTIFG=1
addressed as slave

UCALIFG=1

UCMST=0

UCTR=1 (Transmitter)

UCSTTIFG=1

UCBXTXIFG=1

UCSTPIFG=0

A 5xx: Replace UCBXTXIFG with UCTXIFG. Replace UCBXRXIFG with UCRXIFG.
Figure 17-9. I°C Slave Transmitter Mode

I°C Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the master is identical to its own
address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are
shifted in with the clock pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been
received.

If the slave should receive data from the master the USCI module is automatically configured as a receiver
and UCTR is cleared. After the first data byte is received the receive interrupt flag UCRXIFG is set. The
USCI module automatically acknowledges the received data and can receive the next data byte.

If the previous data wasn not read from the receive buffer UCBXRXBUF at the end of a reception, the bus
is stalled by holding SCL low. As soon as UCBXRXBUF is read the new data is transferred into
UCBXRXBUF, an acknowledge is sent to the master, and the next data can be received.

SLAU208-June 2008 Universal Serial Communication Interface, 1°C Mode 447
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

I2C Slave 10-bit Addressing Mode www.ti.com

A

Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next
acknowledgment cycle. A NACK is sent even if UCBXRXBUF is not ready to receive the latest data. If the
UCTXNACK bit is set while SCL is held low the bus will be released, a NACK is transmitted immediately,
and UCBxRXBUF is loaded with the last received data. Since the previous data was not read that data will
be lost. To avoid loss of data the UCBXRXBUF needs to be read before UCTXNACK is set.

When the master generates a STOP condition the UCSTPIFG flag is set.

If the master generates a repeated START condition the USCI I°C state machine returns to its address
reception state.

Timing Diagram

illustrates the the 1°C slave receiver operation.
Reception of own | s| staw [aA] DATA | A DATA Al patA || Pors
address and data bdf———— | — ——caaaa
bytes. All are A A A A - A
acknowledged. A ‘ [
UCBXRXIFG=1 |
ST ==
Bus stalled I
UCSTPIFG=0 (SCL held low) |
if UCBXRXBUF not read| Refer to:
| ”Slave Transmitter”

| Read data from UCBXRXBUF

v
\ 4

Last byte is not I DATA

acknowledged.

Al Pors I

A A A

UCTXNACK=1 | ‘ UCTXNACK=0

Bus not stalled even if

\ 4 UCBxRXBUF not read
Reception of the | GenCall | A
general call
address. A A
UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Arbitration lost as
masterand 000 ceeed
addressed as slave A

A

UCALIFG=1

UCMST=0

UCTR=0 (Receiver)
UCSTTIFG=1

(UCGC=1 if general call)
UCBXTXIFG=0
UCSTPIFG=0

5xx: Replace UCBXTXIFG with UCTXIFG. Replace UCBXRXIFG with UCRXIFG.
Figure 17-10. I°C Slave Receiver Mode

I)C Slave 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure T7-17. In 10-bit
addressing mode, the slave is in receive mode after the full address is received. The USCI module
indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode the master sends a repeated START condition together with the first byte of the address
but with the R/W bit set. This will set the UCSTTIFG flag if it was previously cleared by software and the
USCI modules switches to transmitter mode with UCTR = 1.

448

Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TEXAS
INSTRUMENTS

www.ti.com

I°C Slave 10-bit Addressing Mode

Slave Receiver

Reception ofown | s | 41110x0W | o | SLA@) | a| DATA | A DATA Al Pors |
address and data .
bytes. All are .) A
acknowledged.
UCBxRXIFG=1
UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0
\ 4 ————-
Reception of the GenCal | o] DATA | A DATA Al Pors I
general call [
address. A A
UCTR=0 (Receiver) UCBXRXIFG=1
UCSTTIFG=1
UCGC=1
Slave Transmitter
Reception of own |5 1 11110 x00W SLA (2. s | 11110xR OATA A
address and I I A @) A I DATA
transmission of data . A y S
bytes
UCTR=0 (Receiver) UCSTTIFG=0
UCSTTIFG=1
UCSTPIFG=0

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBXTXIFG=1
UCSTPIFG=0

A 5xx: Replace UCBXTXIFG with UCTXIFG. Replace UCBXRXIFG with UCRXIFG.
Figure 17-11. I°C Slave 10-bit Addressing Mode

SLAU208-June 2008
Bubmit Documentation FeedbacH

Universal Serial Communication Interface, 1°C Mode

449

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Master Mode www.ti.com

Master Mode

The USCI module is configured as an 1°C master by selecting the 1°C mode with UCMODEX = 11 and
UCSYNC =1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must
be set and its own address must be programmed into the UCBxI2COA register. When UCA10 = 0, 7-bit
addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the
USCI module responds to a general call.

I°C Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired slave address to the
UCBXI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for
transmitter mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. The UCTXIFG bit is set when the START condition is generated and the first data to be
transmitted can be written into UCBXTXBUF. As soon as the slave acknowledges the address the
UCTXSTT bit is cleared.

The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave
address. UCTXIFG is set again as soon as the data is transferred from the buffer into the shift register. If
there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the
acknowledge cycle with SCL low until data is written into UCBXTXBUF. Data is transmitted or the bus is
held as long as the UCTXSTP hit or UCTXSTT bit is not set.

Setting UCTXSTP will generate a STOP condition after the next acknowledge from the slave. If UCTXSTP
is set during the transmission of the slave's address or while the USCI module waits for data to be written
into UCBXTXBUF, a STOP condition is generated even if no data was transmitted to the slave. When
transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted, or
anytime after transmission begins, without writing new data into UCBXTXBUF. Otherwise, only the
address will be transmitted. When the data is transferred from the buffer to the shift register, UCTXIFG will
become set indicating data transmission has begun and the UCTXSTP bit may be set.

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data the not-acknowledge interrupt flag UCNACKIFG is
set. The master must react with either a STOP condition or a repeated START condition. If data was
already written into UCBXTXBUF it will be discarded. If this data should be transmitted after a repeated
START it must be written into UCBXTXBUF again. Any set UCTXSTT is discarded, too. To trigger a
repeated start, UCTXSTT needs to be set again.

illustrates the 1°C master transmitter operation.

450

Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com I2C Master Transmitter Mode
Successful A A - A A
transmission to a S SLA/W DATA DATA | "~] DATA B
slave receiver Y - A
1) UCTR=1 (Transmitter) UCTXSTT=0 UCTXSTP=0
2) UCTXSTT=1
UCBXTXIFG=1 _
UoBTe DT,
UCBXTXBUF discarded |
Bus stalled (SCL held low)
Next transfer started until data available ===
A
with a repeated start Write data to UCBXTXBUF DATA ° SLAW C===
condition
1) UCTR=1 (Transmitter)
2) UCTXSTT=A
UCTXSTT=0 Y -—-
o ot [AJs] stan
UCBXTXBUF discarded -="
1; Hg;;lgg)r(rReceiver)
2 =1
UCTXSTP=1 3) UCBXTXIFG=0
Y Y
Not acknowledge A P
received afterslave 00000 | L mmmad (S 1_ UCTXSTP=0
address
1) UCTR=1 (Transmitter)
— == |2)UCTXSTT=1
L
v— - 2 i == UCBXTXIFG=1
AL UCBXTXBUF discarded
) A _—
Not acknowledge A
received after a data _! - i SLAR === |1) UCTR=0 (Receiver)
byte A Y 2) UCTXSTT=1
UCNACKIFG=1
UCBXTXIFG=0
UCBXTXBUF discarded
Alrbi"at;%” lost in | Other master continues
slave addressor | | @ (eeme—e—e—_————————
data byte ===
_____________ UCALIFG=1
1 Other master continues UCMST=0
==—————-——--——- (UCSTTIFG=0)
UCALIFG=1
UCMST=0
(UCSTTIFG=0)
Y _______
Arbitration lost and A Other master continues
addressed as slave - - - - - - -
A
UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBXTXIFG=0
UCSTPIFG=0
USCI continues as Slave Receiver

A 5xx: Replace UCBXTXIFG with UCTXIFG. Replace UCBXRXIFG with UCRXIFG.
Figure 17-12. I’C Master Transmitter Mode

SLAU208-June 2008
Bubmit Documentation FeedbacH

Universal Serial Communication Interface, 1°C Mode

451

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

I°C Master Receiver Mode www.ti.com

I°C Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired slave address to the
UCBXI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for
receiver mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. As soon as the slave acknowledges the address the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave the first data byte from the slave is received and
acknowledged and the UCRXIFG flag is set. Data is received from the slave ss long as UCTXSTP or
UCTXSTT is not set. If UCBXRXBUF is not read the master holds the bus during reception of the last data
bit and until the UCBXRXBUF is read.

If the slave does not acknowledge the transmitted address the not-acknowledge interrupt flag
UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit will generate a STOP condition. After setting UCTXSTP, a NACK followed by a
STOP condition is generated after reception of the data from the slave, or immediately if the USCI module
is currently waiting for UCBXRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set while the byte is being
received. For this case, the UCTXSTT may be polled to determine when it is cleared:

Bl S. B #UCTXSTT, &UCBOCTL1 ; Transmt START cond.
POLL_STT BIT.B #UCTXSTT, &UCBCCTL1 ;Poll UCTXSTT bit

JC POLL_STT :When cl eared,

BIS.B #UCTXSTP, &UCBOCTL1 ;transmt STOP cond.

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

illustrates the 12C master receiver operation.

Note: Consecutive Master Transactions Without Repeated Start

When performing multiple consecutive 1>°C master transactions without the repeated start
feature, the current transaction must be completed before the next one is initiated. This can
be done by ensuring that the transmit stop condition flag UCTXSTP is cleared before the
next 12C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction
might be affected.

452

Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com I°C Master Receiver Mode
Successful A DATA DATA DATA | A
reception from a S SLAR I A A AlP
slave transmitter A 1 A A

A

™

1) UCTR=0 (Receiver)
2) UCTXSTT=1

‘ UCTXSTT=0 ‘ ‘ UCBXRXIFG=1

UCTXSTP=1

UCTXSTP=0

Next transfer started
with a repeated start
condition

Not acknowledge
received after slave
address

Arbitration lost in
slave address or
data byte

Arbitration lost and
addressed as slave

pATA | al s

A

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

A

A | Other master continues

UCALIFG=1
UCMST=0

UCSTTIFG=1
UCBXTXIFG=1
UCSTPIFG=0

UCTR=1 (Transmitter)

USCI continues as Slave Transmitter

5xx: Replace UCBXTXIFG with UCTXIFG. Replace UCBXRXIFG with UCRXIFG.
Figure 17-13. I°C Master Receiver Mode

Y
DATA |'A| s| SLAR
A et
UCTXSTP=1 1) UCTR=0 (Receiver)
2) UCTXSTT=1
\ A v
A P
'y UCTXSTP=0
UCTXSTT=0
UCNACKIFG-1 ° 1) UCTR=1 (Transmitter)
Y. S| Sww | ... 2) UCTXSTT=1
A " |UCBXTXIFG=1
1) UCTR=0 (Receiver)
Y. S| SAR . - |2 UeTRe s e
A
! Other master continues
Y-------------—------------ UCALIFG=1
Other master continues UCMST=0
------------------------- (UCSTTIFG=0)
UCALIFG=1
UCMST=0
(UCSTTIFG=0)
Y

SLAU208-June 2008
Bubmit Documentation FeedbacH

Universal Serial Communication Interface, 1°C Mode

453

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
I2C Master 10-bit Addressing Mode www.ti.com
I>C Master 10-bit Addressing Mode
The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 17-14.
Master Transmitter
Successtul [aloiio 0T Al o s T AT oo°° I |
transmission 1o a S| 1111oxw | Al sLA@) | A DATA | A DATA A | P
slave receiver A) A
1) UCTR=1(Transmitter) UCTXSTT=0 [ucTxsTP=0
2) UCTXSTT=1 |
UCBXTXIFG=1 —
UCBXTXIFG=1 UCTXSTP=T
Master Receiver
Successtul [aloiiim T ATl o n Talal i T2l oan —
reception from a S| 1t11oxxw | Al sLA@) | A S| 11110xx/R iI___EiP:T_A_ A DATA AlP
slave transmitter A A A A A
1) UCTR=0(Receiver) |UCTXSTT=0 |UCBxRXIFG=1 |UCTXSTP=0
2) UCTXSTT=1
UCTXSTP=1 |
A 5xx: Replace UCBXTXIFG with UCTXIFG. Replace UCBXRXIFG with UCRXIFG.
Figure 17-14. I°C Master 10-bit Addressing Mode
Arbitration
If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure
is invoked. illustrates the arbitration procedure between two devices. The arbitration

procedure uses the data presented on SDA by the competing transmitters. The first master transmitter
that generates a logic high is overruled by the opposing master generating a logic low. The arbitration
procedure gives priority to the device that transmits the serial data stream with the lowest binary value.
The master transmitter that lost arbitration switches to the slave receiver mode, and sets the arbitration
lost flag UCALIFG. If two or more devices send identical first bytes, arbitration continues on the
subsequent bytes.

Bus Line |
scL |
Device #1 Lost Arbitration
and Switches Off

Data From
Device #1

Data From
Device #2

Bus Line
SDA

Figure 17-15. Arbitration Procedure Between Two Master Transmitters

If the arbitration procedure is in progress when a repeated START condition or STOP condition is
transmitted on SDA, the master transmitters involved in arbitration must send the repeated START
condition or STOP condition at the same position in the format frame. Arbitration is not allowed between:

454 Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
Eubmit Documentation Feedbacq

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Clock Stretching

» Arepeated START condition and a data bit
» A STOP condition and a data bit
» Arepeated START condition and a STOP condition

17.3.5 I°C Clock Generation and Synchronization

The I2C clock SCL is provided by the master on the 1°C bus. When the USCI is in master mode, BITCLK
is provided by the USCI bit clock generator and the clock source is selected with the UCSSELX bits. In
slave mode the bit clock generator is not used and the UCSSELX bits are don't care.

The 16-bit value of UCBRX in registers UCBxBR1 and UCBxBRO is the division factor of the USCI clock
source, BRCLK. The maximum bit clock that can be used in single master mode is fgrc /4. In
multi-master mode the maximum bit clock is fzgrc /8. The BITCLK frequency is given by:

faitciock = fercLk/UCBRX

The minimum high and low periods of the generated SCL are:
tLOW,MIN = tHIGH,MIN = (UCBRX/Z)/fBRCLK when UCBRX is even
tLOW,MIN = tHIGH,MIN = (UCBRX - 1/2)/fBRCLK when UCBRXx is odd

The USCI clock source frequency and the prescaler setting UCBRx must to be chosen such that the
minimum low and high period times of the 12C specification are met.

During the arbitration procedure the clocks from the different masters must be synchronized. A device that
first generates a low period on SCL overrules the other devices forcing them to start their own low periods.
SCL is then held low by the device with the longest low period. The other devices must wait for SCL to be
released before starting their high periods. illustrates the clock synchronization. This allows a
slow slave to slow down a fast master.

Wait \q start HIGH

} State | periog

SCL From ‘
Device #1 —\v \

SCL From
Device #2

Bus Line
SCL

Figure 17-16. Synchronization of Two I°C Clock Generators During Arbitration

Clock Stretching

The USCI module supports clock stretching and also makes use of this feature as described in the
operation mode sections.

The UCSCLLOW bit can be used to observe if another device pulls SCL low while the USCI module
already released SCL due to the following conditions:

» USCI is acting as master and a connected slave drives SCL low.
e USCI is acting as master and another master drives SCL low during arbitration.

The UCSCLLOW bit is also active if the USCI holds SCL low because it is waiting as transmitter for data
being written into UCBXTXBUF or as receiver for the data being read from UCBXRXBUF.

The UCSCLLOW bit might get set for a short time with each rising SCL edge because the logic observes
the external SCL and compares it to the internally generated SCL.

SLAU208-June 2008 Universal Serial Communication Interface, 1°C Mode 455
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

I2C Transmit Interrupt Operation www.ti.com

17.3.6 Using the USCI Module in I°C Mode with Low Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

In 1C slave mode no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in I1°C slave mode while the device is in LPM4 and all internal
clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any low power
mode.

17.3.7 USCI Interrupts in I’C Mode

The USCI has only one interrupt vector that is shared for transmission, for reception, and for the state
change. USCI_Ax and USC_Bx do not share the same interrupt vector.

Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled, and the GIE bit is set,
the interrupt flag will generate an interrupt request. DMA transfers are controlled by the UCTXIFG and
UCRXIFG flags on devices with a DMA controller.

I2C Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCBXTXBUF is ready to accept
another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCBXTXBUF or if a NACK is received. UCTXIFG is set
when UCSWRST = 1 and the 1°C mode is selected. UCTXIE is reset after a PUC or when UCSWRST = 1.

I’C Receive Interrupt Operation

The UCRXIFG interrupt flag is set when a character is received and loaded into UCBXRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset after a
PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCXRXBUF is read.

IC State Change Interrupt Operation

describes the 1°C state change interrupt flags.
Table 17-1. I°C State Change Interrupt Flags
Interrupt Flag Interrupt Condition
UCALIFG Arbitration-lost. Arbitration can be lost when two or more transmitters start a transmission

simultaneously, or when the USCI operates as master but is addressed as a slave by another master in
the system. The UCALIFG flag is set when arbitration is lost. When UCALIFG is set the UCMST bit is
cleared and the 1C controller becomes a slave.

UCNACKIFG Not-acknowledge interrupt. This flag is set when an acknowledge is expected but is not received.
UCNACKIFG is automatically cleared when a START condition is received.
UCSTTIFG Start condition detected interrupt. This flag is set when the I°C module detects a START condition

together with its own address while in slave mode. UCSTTIFG is used in slave mode only and is
automatically cleared when a STOP condition is received.

UCSTPIFG Stop condition detected interrupt. This flag is set when the I2C module detects a STOP condition while in
slave mode. UCSTPIFG is used in slave mode only and is automatically cleared when a START
condition is received.

UCBXxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCBXxIV is used to determine which flag requested an interrupt. The highest priority
enabled interrupt generates a number in the UCBXxIV register that can be evaluated or added to the
program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect
the UCBXIV value.

Any access, read or write, of the UCBXxIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

456

Universal Serial Communication Interface, 12C Mode SLAU208-June 2008
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com UCBXxIV Software Example

UCBXxIV Software Example

The following software example shows the recommended use of UCBxIV. The UCBXxIV value is added to
the PC to automatically jump to the appropriate routine. The example is given for USCI_BO.

USCl _I 2C I SR
ADD &UCBOIV, PC ; Add offset to junp table
RETI ; Vector 0: No interrupt
JMP ALI FG | SR ; Vector 2: ALIFG
JMP NACKI FG I SR ; Vector 4: NACKI FG
JMP STTI FG_I SR ; Vector 6: STTIFG
JwP STPIFG_ ISR ; Vector 8: STPIFG
JMP RXI FG_I SR : Vector 10: RXIFG
TXI FG_I SR ;. Vector 12
;. Task starts here
RETI . Return
ALI FG_I SR ; Vector 2
; Task starts here
RETI ; Return
NACKI FG_I SR ;. Vector 4
;. Task starts here
RETI . Return
STTI FG_I SR ; Vector 6
; Task starts here
RETI ; Return
STPI FG_I SR ;. Vector 8
;. Task starts here
RETI ;. Return
RXI FG_I SR ; Vector 10
; Task starts here
RETI ; Return
SLAU208-June 2008 Universal Serial Communication Interface, 12°C Mode 457

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: 1°C Mode

13 TEXAS

INSTRUMENTS

www.ti.com

17.4 USCI Registers: I1°C Mode
The USCI registers applicable in I2C mode listed in [[able 17-2. The word accessible registers are listed in

[able T7-3.

Table 17-2. USCI_Bx Registers
Register Short Form Register Type g?fcsire?ss Initial State
USCI_Bx control register 0 UCBXCTLO Byte - R/IW +01h 001h with PUC
USCI_Bx control register 1 UCBXxCTL1 Byte - R/IW +00h 001h with PUC
USCI_Bx Bit rate control register O UCBxBRO Byte - R/IW +06h Reset with PUC
USCI_Bx Bit rate control register 1 UCBxBR1 Byte - R/IW +07h Reset with PUC
USCI_Bx status register UCBXSTAT Byte - R/IW +0Ah Reset with PUC
Reserved - reads zero Byte - R only +0Bh 000h
USCI_Bx Receive buffer register UCBXRXBUF Byte - R/IW +0Ch Reset with PUC
Reserved - reads zero Byte - R only +0Dh 000h
USCI_Bx Transmit buffer register UCBXTXBUF Byte - R/IW +0Eh Reset with PUC
Reserved - reads zero Byte - R only +0Fh 000h
USCI_Bx 12C Own Address register UCBxI2COA Word - R/IW +10h Reset with PUC
USCI_Bx I12C Slave Address register UCBxI2CSA Word - R/IW +12h Reset with PUC
USCI_Bx interrupt enable register UCBXIE Byte - R/IW +1Ch Reset with PUC
USCI_Bx interrupt flag register UCBXIFG Byte - R/IW +1Dh 002h with PUC
USCI_Bx interrupt vector register ucBxiv Word - R +1Eh Reset with PUC

Table 17-3. Word Access to USCI_Bx Registers

Word Register Short Form gieggr;;?grte Egg{;ge Address Offset
USCI_Bx control word register 0 UCBXCTLWO UCBXCTLO UCBXCTL1 +00h
USCI_Bx bit rate control word register UCBXBRW UCBxBR1 UCBxBRO +06h
USCI_Bx interrupt control register UCBXICTL UCBXIFG UCBXIE +1Ch

458

Universal Serial Communication Interface, 12C Mode

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

USCI Registers: 1°C Mode

UCBXCTLO, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0
UCA10 UCSLA10 ‘ UCMM Unused UCMST UCMODEx=11 | UCSYNC=1
R/W-0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-1
UCA10 Bit 7 Own addressing mode select
0 Own address is a 7-bit address
1 Own address is a 10-bit address
UCSLA10 Bit 6 Slave addressing mode select
0 Address slave with 7-bit address
1 Address slave with 10-bit address
UCMM Bit 5 Multi-master environment select
0 Single master environment. There is no other master in the system. The address compare unit is
disabled.
1 Multi master environment
Unused Bit 4 Unused
UCMST Bit 3 Master mode select. When a master looses arbitration in a multi-master environment (UCMM = 1) the
UCMST bit is automatically cleared and the module acts as slave.
0 Slave mode
1 Master mode
UCMODEX Bits 2-1 USCI Mode. The UCMODEX bits select the synchronous mode when UCSYNC = 1.
00 3-pin SPI
01 4-pin SPI (master/slave enabled if STE = 1)
10 4-pin SPI (master/slave enabled if STE = 0)
11 I’)C mode
UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode
1 Synchronous Mode

SLAU208-June 2008
Eubmit Documentation Feedbacl

Universal Serial Communication Interface, 1°C Mode

459

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: 1°C Mode

13 TEXAS
INSTRUMENTS

www.ti.com

UCBxCTL1, USCI_Bx Control Register 1

7 6

5 4 3 2 1 0

UCSSELX

Unused UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST

rw-0 rw-0

UCSSELX Bits 7-6

Unused Bit 5
UCTR Bit 4

UCTXNACK Bit 3

UCTXSTP Bit 2

UCTXSTT Bit 1

UCSWRST Bit 0

r0 rw-0 rw-0 rw-0 rw-0 rw-1

USCI clock source select. These bits select the BRCLK source clock.
00 UCLKI

01 ACLK

10 SMCLK

11 SMCLK

Unused

Transmitter/Receiver

0 Receiver

1 Transmitter

Transmit a NACK. UCTXNACK is automatically cleared after a NACK is transmitted.
0 Acknowledge normally

1 Generate NACK

Transmit STOP condition in master mode. Ignored in slave mode. In master receiver mode the STOP
condition is preceded by a NACK. UCTXSTP is automatically cleared after STOP is generated.

0 No STOP generated
1 Generate STOP

Transmit START condition in master mode. Ignored in slave mode. In master receiver mode a repeated
START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and
address information is transmitted.Ignored in slave mode.

0 Do not generate START condition

1 Generate START condition

Software reset enable

0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

UCBxXxBRO, USCI_Bx Baud Rate Control Register 0

7 6

5 4 3 2 1 0

UCBRX

'w w

'w w 'w w 'w w

UCBxBR1, USCI_Bx Baud Rate Control Register 1

7 6 5 4 3 2 1 0
UCBRX
rw rw rw rw rw rw rw rw
UCBRx Bit clock prescaler. The 16-bit value of {UCxxBRO + UCxxBR1} forms the prescaler value.
460 Universal Serial Communication Interface, 1°C Mode SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com USCI Registers: 1°C Mode
UCBXSTAT, USCI_Bx Status Register
7 6 5 4 3 2 1 0
Unused UCSCLLOW UCGC UCBBUSY Unused
rw-0 r-0 rw-0 r-0 r0 ro r0 ro
Unused Bit 7 Unused
UCSCLLOW Bit 6 SCL low
0 SCL is not held low
1 SCL is held low
UCGC Bit 5 General call address received. UCGC is automatically cleared when a START condition is received.
0 No general call address received
1 General call address received
UCBBUSY Bit 4 Bus busy
0 Bus inactive
1 Bus busy
Unused Bits 3-0 Unused

UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0
UCRXBUFx

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCBXRXBUF resets UCRXIFG.

UCBXxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0
UCTXBUFx
rw rw rw rw rw rw rw rw
UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift

register and transmitted. Writing to the transmit data buffer clears UCTXIFG.

SLAU208-June 2008 Universal Serial Communication Interface, 1°C Mode 461
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
USCI Registers: 1°C Mode www.ti.com
UCBXxI2COA, USCIBx I2C Own Address Register
15 14 13 12 11 10 9 8
UCGCEN | 0 0 | 0 0 0 I2COAX
rw-0 ro r0 ro r0 ro rw-0 rw-0
7 6 5 4 3 2 1 0
I2COAX
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCGCEN Bit 15 General call response enable
Do not respond to a general call
Respond to a general call
I2COAX Bits 9-0 I2C own address. The I2COAX bits contain the local address of the USCI_Bx I2C controller. The address

UCBxI2CSA, USCI_Bx I?C Slave Address Register

is right-justified. In 7-bit addressing mode, Bit 6 is the MSB and Bits 9-7 are ignored. In 10-bit
addressing mode, Bit 9 is the MSB.

15 14 13 12 11 10 9 8
0 0 0 | 0 0 0 12CSAX
r0 ro r0 ro r0 ro rw-0 rw-0
7 6 5 4 3 2 1 0
12CSAX
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
I2CSAX Bits 9-0 I°C slave address. The 12CSAXx bits contain the slave address of the external device to be addressed by

the USCI_Bx module. It is only used in master mode. The address is right-justified. In 7-bit slave
addressing mode Bit 6 is the MSB, Bits 9-7 are ignored. In 10-bit slave addressing mode Bit 9 is the

MSB.

462 Universal Serial Communication Interface, 12C Mode

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

www.ti.com

USCI Registers: 1°C Mode

UCBXIE, USCI_Bx I?C Interrupt Enable Register

7 6 5 4 3 2 1 0
Reserved ‘ UCNACKIE | UCALIE UCSTPIE UCSTTIE UCTXIE | UCRXIE
r-0 r-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
Reserved Bits 7-6 Reserved
UCNACKIE Bit 5 Not-acknowledge interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCALIE Bit 4 Arbitration lost interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCSTPIE Bit 3 Stop condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCSTTIE Bit 2 Start condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCTXIE Bit 1 Transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCRXIE Bit O Receive interrupt enable

0 Interrupt disabled
1 Interrupt enabled

UCBXIFG, USCI_Bx I°C Interrupt Flag Register

7 6 5 4 3 2 1 0
Reserved ‘ UCNACKIFG | UCALIFG UCSTPIFG UCSTTIFG UCTXIFG UCRXIFG
r-0 r-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0
Reserved Bits 7-6 Reserved
UCNACKIFG Bit 5 Not-acknowledge received interrupt flag. UCNACKIFG is automatically cleared when a START condition
is received.
0 No interrupt pending
1 Interrupt pending
UCALIFG Bit 4 Arbitration lost interrupt flag
0 No interrupt pending
1 Interrupt pending
UCSTPIFG Bit 3 Stop condition interrupt flag. UCSTPIFG is automatically cleared when a START condition is received.
0 No interrupt pending
1 Interrupt pending
UCSTTIFG Bit 2 Start condition interrupt flag. UCSTTIFG is automatically cleared if a STOP condition is received.
0 No interrupt pending
1 Interrupt pending
UCTXIFG Bit 1 USCI transmit interrupt flag. UCTXIFG is set when UCBXTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
UCRXIFG Bit O USCI receive interrupt flag. UCRXIFG is set when UCBxRXBUF has received a complete character.

0 No interrupt pending
1 Interrupt pending

SLAU208—-June 2008

Bubmit Documentafion FeedbacK

Universal Serial Communication Interface, 1°C Mode 463

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
USCI Registers: 1°C Mode www.ti.com
UCBxIV, USCI_BXx Interrupt Vector Register
15 14 13 12 11 10 9 8
0 0 \ 0 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
4 3 2 1
UCIVX 0
r0 ro r0 ro r-0 r-0 r-0 ro
UCIVx Bits 15-0 USCI interrupt vector value
UCBXxIV Interrupt
Contents Interrupt Source Interrupt Flag Priority
000h No interrupt pending -
002h Arbitration lost UCALIFG Highest
004h Not acknowledgement UCNACKIFG
006h Start condition received UCSTTIFG
008h Stop condition received UCSTPIFG
00Ah Data received UCRXIFG
00Ch Transmit buffer empty UCTXIFG Lowest

464

Universal Serial Communication Interface, 12C Mode

u

SLAU208—-June 2008

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 18
INSTRUMENTS SLAU208_June 2008

ADC12_A

The ADC12_A module is a high-performance 12-bit analog-to-digital converter (ADC). This chapter
describes the ADC12_A of the MSP430 5xx devices.

Topic Page
18.1 ADCI12 A IntrodUcCtionieee e e iieeaeieieisaeaeieieiaraeaeieiiaeaeeens 464
18.2 ADC12 A OperatioN]iieeeeeeeeeeeeeerereieieeaeaearaeaeererereieieeeaeaeaenen. 168
18.3 ADCI12 A REQISterS[oiiuieieieieaeararaeaeeieieieiieataraeaeareiereieieieaeaeaenen. 4817
SLAU208—-June 2008 ADC12_A 465

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

ADC12_A Introduction www.ti.com

18.1 ADC12_A Introduction
The ADC12_A module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit
SAR core, sample select control, reference generator (MSP430F54xx only in other devices separate REF
module) and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16
independent ADC samples to be converted and stored without any CPU intervention.
ADC12_A features include:
» Greater than 200-ksps maximum conversion rate
* Monotonic 12-bit converter with no missing codes
» Sample-and-hold with programmable sampling periods controlled by software or timers.
» Conversion initiation by software, Timer_A, or Timer_B
» Software selectable on-chip reference voltage generation (MSP430F54xx: 1.5 V or 2.5 V, other

devices: 1.5V, 2.0V or25YV)
» Software selectable internal or external reference
» Twelve individually configurable external input channels
» Conversion channels for internal temperature sensor, AVc, and external references
» Independent channel-selectable reference sources for both positive and negative references
» Selectable conversion clock source
» Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
» ADC core and reference voltage can be powered down separately (MSP430F54xx only. Other devices
see REF module specification for details)

* Interrupt vector register for fast decoding of 18 ADC interrupts
» 16 conversion-result storage registers
The block diagram of ADC12_A is shown in Figure 18-1. The reference generation is in the MSP430F54xx
devices located in the ADC12_A module. In other devices the reference generator is located in the
reference module. See also the device specific datasheet.

466 ADC12_A SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS
www.ti.com ADC12_A Introduction
REFOUT REBURST
r Verer. " REF2_5V REFON
> ADC12SR — INCHx = 0Ah
1 I
9 VREF+ on
/I ® 15Vor25V |— V.
. Veer/V ner. \l l Reference
Ref_x v
AV
|
INGH 11 10 01 oot: SREF! ADC120SC
4 SRER (see Note A)
A0 0000] SREF2 ADC120N ADC12SSELx
Al 0001 T ADC12DIVx
A2 0010 T T T ADC12DIV4
A3 0011 Sample V.. \"
Ad 0100 and
A5 0101 Divider 1
A6 0110 —»| Hold \ 12-bit ADC Core -4 n./8 ﬂ 4
A7 o111 —
S/H
1000 Convert ¢—» ADC12CLK
1010 .
—11011 SH%’(SY ISSH
A12 1100 SHP LY
e 1o : 00 |— Apcizsc
1110 Sample Timer| SHI [0
A15 1111 — 01 TA1
/4..n024
|~ N U Sync 10— TBO
SAMPCON i\4 l 1 TB1
Vécc ADC12SHTx MSC
C/L INCHx = 0Bh
Fef ADC12MEMO ADC12MCTLO
er X N
CSTARTADDX - -
R Vv 16 x 12 16x 8
| Memory Memory
CONSE Buffer Control
QX'—‘-TJ.m f !
v
R % ADC12MEM15 ADC12MCTL15
VSS
A The MODOSC is part of the UCS. See the UCS chapter for more information.
Figure 18-1. ADC12_A Block Diagram
SLAU208-June 2008 ADC12 A 467

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12_A Operation

13 TEXAS
INSTRUMENTS

www.ti.com

18.2 ADC12_A Operation

The ADC12_A module is configured with user software. The setup and operation of the ADC12_A is
discussed in the following sections.

18.2.1 12-Bit ADC Core

The ADC core converts an analog input to its 12-bit digital representation and stores the result in
conversion memory. The core uses two programmable/selectable voltage levels (Vr, and Vg.) to define
the upper and lower limits of the conversion. The digital output (Napc) is full scale (OFFFh) when the input
signal is equal to or higher than V., and zero when the input signal is equal to or lower than V.. The
input channel and the reference voltage levels (Vg and Vg.) are defined in the conversion-control
memory. The corvl_ersi?/n formula for the ADC result Napc is:

in—V._

Nioe = 4095 x g~y

The ADC12_A core is configured by two control registers, ADC12CTLO and ADC12CTL1. The core is
enabled with the ADC120N bit. The ADC12_A can be turned off when not in use to save power. With few
exceptions the ADC12_A control bits can only be modified when ADC12ENC = 0. ADC12ENC must be set
to 1 before any conversion can take place.

Conversion Clock Selection

The ADC12CLK is used both as the conversion clock and to generate the sampling period when the pulse
sampling mode is selected. The ADC12_A source clock is selected using the pre-divider controlled by the
ADC12DIV4 bit and the divider using the ADC12SSELXx bits. The input clock can be divided from 1-32
using both the ADC12DIVx bits and the ADC12DIV4 bit. Possible ADC12CLK sources are SMCLK, MCLK,
ACLK, and the MODOSC.

The ADC120SC, generated internally, is in the 5-MHz range, but varies with individual devices, supply
voltage, and temperature. See the device-specific datasheet for the ADC120SC specification.

The user must ensure that the clock chosen for ADC12CLK remains active until the end of a conversion. If
the clock is removed during a conversion, the operation will not complete and any result will be invalid.

18.2.2 ADC12_A Inputs and Multiplexer

The twelve external and four internal analog signals are selected as the channel for conversion by the
analog input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise
injection resulting from channel switching as shown in Eigure 18-2. The input multiplexer is also a T-switch
to minimize the coupling between channels. Channels that are not selected are isolated from the A/D and

the intermediate node is connected to analog ground (AVsg) so that the stray capacitance is grounded to
help eliminate crosstalk.

The ADC12_A uses the charge redistribution method. When the inputs are internally switched, the

switching action may cause transients on the input signal. These transients decay and settle before
causing errant conversion.

R ~100Q ADC12MCTLx.0-3
Ax : E :‘l T * Input
L L
ESD Protection

~

Figure 18-2. Analog Multiplexer

468

ADC12_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Analog Port Selection

Analog Port Selection

The ADC12_A inputs are multiplexed with digital port pins. When analog signals are applied to digital
gates, parasitic current can flow from V¢ to GND. This parasitic current occurs if the input voltage is near
the transition level of the gate. Disabling the digital pat of the port pin eliminates the parasitic current flow
and therefore reduces overall current consumption. The PySELX bits provide the ability to disable the port
pin input and output buffers.

; Py.0 and Py.1 configured for anal og i nput
Bl S. B #3h, &Py SEL ; Py.1 and Py.0 ADC12_A function

18.2.3 Voltage Reference Generator

The ADC12_A module of the MSP430F54xx contains a built-in voltage reference with two selectable
voltage levels, 1.5 V and 2.5 V. Either of these reference voltages may be used internally and externally
on pin Vgers-

The ADC12_A modules of other devices have a separate reference module which supplies three
selectable voltage levels, 1.5V, 2.0V and 2.5V to the ADC12_A. Either of these voltages may be used
internally and externally on pin Vggps.

Setting ADC12REFON = 1 enables the reference voltage of the ADC12_A module. When
ADC12REF2_5V =1, the internal reference is 2.5 V; when ADC12REF2_5V = 0, the reference is 1.5V .
The reference can be turned off to save power when not in use. Devices with the REF module can use the
control bits located in the ADC12_A module or the control registers located in the REF module to control
the reference voltage supplied to the ADC. Per default the register settings of the REF module define the
reference voltage settings. The control bit REFMSTR in the REF module is used to hand over control to
the ADC12_A reference control register settings. If the register bit REFMSTR is set to 1 (default) then the
REF module registers control the reference settings. If REFMSTR is set to 0 then the ADC12_A reference
setting define the reference voltage of the ADC12_A module.

External references may be supplied for Vg, and Vg through pins Vgeri/Vegers and Viger/Vegee.
respectively.

External storage capacitors are only requied if REFOUT = 1 and the reference voltage is made available
at the pins.

Internal Reference Low-Power Features

The ADC12_A internal reference generator is designed for low power applications. The reference
generator includes a band-gap voltage source and a separate buffer. The current consumption of each is
specified separately in the device-specific datasheet. When ADC12REFON = 1, both are enabled and if
ADC12REFON = 0 both are disabled. The total settling time when ADC12REFON gets set is < 30 ps.

When ADC12REFON = 1 and REFBURST = 1, but no conversion is active, the buffer is automatically
disabled and automatically re-enabled when needed. When the buffer is disabled, it consumes no current.
In this case, the band-gap voltage source remains enabled.

The REFBURST bit controls the operation of the reference buffer. When REFBURST = 1, the buffer is
automatically disabled when the ADC12_A is not actively converting, and automatically re-enabled when
needed. When REFBURST = 0, the buffer will be on continuously this allows the reference voltage to be
present outside the device continuously if REFOUT = 1.

The internal reference buffer also has selectable speed vs. power settings. When the maximum
conversion rate is below 50 ksps, setting ADC12SR = 1 reduces the current consumption of the buffer
approximately 50%.

18.2.4 Auto Power-Down

The ADC12_A is designed for low power applications. When the ADC12_A is not actively converting, the
core is automatically disabled and automatically re-enabled when needed The MODOSC is also
automatically enabled when needed and disabled when not needed.

SLAU208-June 2008 ADC12_A 469
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Extended Sample Mode www.ti.com

18.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of the sample input signal SHI. The source
for SHI is selected with the SHSx bits and includes the following:

e The ADC12SC bit

» The Timer_A Output Unit 1

* The Timer_B Output Unit O

* The Timer_B Output Unit 1

The polarity of the SHI signal source can be inverted with the ADC12ISSH hit. The SAMPCON signal
controls the sample period and start of conversion. When SAMPCON is high, sampling is active. The
high-to-low SAMPCON transition starts the analog-to-digital conversion, which requires 13 ADC12CLK

cycles in 12-bit resolution mode. Two different sample-timing methods are defined by control bit
ADC12SHP, extended sample mode and pulse mode.

Extended Sample Mode
The extended sample mode is selected when ADC12SHP = 0. The SHI signal directly controls SAMPCON

and defines the length of the sample period tsympe. When SAMPCON is high, sampling is active. The
high-to-low SAMPCON transition starts the conversion after synchronization with ADC12CLK (see

Fiqure 18-3).

Start Stop Start Conversion
Sampling Sampling Conversion Complete

| |

SHI I I

I I

| | | |

| | | |

SAMPCON : 13 x ADC12CLK :

| |

— o — P E——— tn ——— P

! —»l b :4—

Figure 18-3. Extended Sample Mode

Pulse Sample Mode

The pulse sample mode is selected when ADC12SHP = 1. The SHI signal is used to trigger the sampling
timer. The ADC12SHTOx and ADC12SHT1x bits in ADC12CTLO control the interval of the sampling timer
that defines the SAMPCON sample period tsampe. The sampling timer keeps SAMPCON high after
synchronization with AD12CLK for a programmed interval tsympe- The total sampling time is tsampie plus

tsync (see Figure T8-4).

The ADC12SHTx bits select the sampling time in 4x multiples of ADC12CLK. ADC12SHTOx selects the
sampling time for ADC12MCTLO to 7, and ADC12SHT1x selects the sampling time for ADC12MCTLS8 to
15.

470 ADC12_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com Sample Timing Considerations
Start Stop Start Conversion
Sampling Sampling Conversion Complete

¢ + ¢
|

13 x ADC12CLK

SAMPCON I

| |
| e e Pe—————— L ———— P

>| tsync '4 |
| |

Figure 18-4. Pulse Sample Mode

Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time ts,mpie, as shown below in Figure 18-5. An
internal MUX-on input resistance R, (maximum 2 kQ) in series with capacitor C, (40 pF maximum) is seen
by the source. The capacitor C, voltage Vc must be charged to within 1/2 LSB of the source voltage Vs for
an accurate 12-bit conversion.

. V, = Input voltage at pin Ax
| V; = External source voltage
Rs v, R, R, = External source resistance

Vs Ve R, = Internal MUX-on input resistance
| C, = Input capacitance
V. = Capacitance-charging voltage

Figure 18-5. Analog Input Equivalent Circuit

The resistance of the source Rs and R, affect ts;mpe. The following equation can be used to calculate the
minimum sampling time ts,ype for a 12-bit conversion:

tsample > (RS + RI) x |n(213) x C, +800ns

Substituting the values for R, and C, given above, the equation becomes:
tsample > (Rs + 2kQ) x 9.011 x 40pF + 800ns

For example, if Rg is 10 KQ, tsampie Must be greater than 5.13 ys.

18.2.6 Conversion Memory

There are 16 ADC12MEMXx conversion memory registers to store conversion results. Each ADC12MEMx
is configured with an associated ADC12MCTLXx control register. The SREFx bits define the voltage
reference and the INCHXx bits select the input channel. The ADC12EOS bit defines the end of sequence
when a sequential conversion mode is used. A sequence rolls over from ADC12MEM15 to ADC12MEMO
when the ADC12EOS bit in ADC12MCTL15 is not set.

The CSTARTADDX bits define the first ADC12MCTLXx used for any conversion. If the conversion mode is
single-channel or repeat-single-channel the CSTARTADDX points to the single ADC12MCTLx to be used.

SLAU208-June 2008 ADC12_A 471
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Single-Channel Single-Conversion Mode www.ti.com

If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels,
CSTARTADDX points to the first ADC12MCTLXx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLXx in a sequence when each conversion
completes. The sequence continues until an ADC12EOS bit in ADC12MCTLXx is processed - this is the
last control byte processed.

When conversion results are written to a selected ADC12MEMYX, the corresponding flag in the ADC12IFGx
register is set.

18.2.7 ADC12_A Conversion Modes
The ADC12_A has four operating modes selected by the CONSEQXx bits as discussed in [able 18-7].

Table 18-1. Conversion Mode Summary

ADC12CONSEQx Mode Operation
00 Single channel single-conversion A single channel is converted once.
01 Sequence-of-channels A sequence of channels is converted once.
10 Repeat-single-channel A single channel is converted repeatedly.
11 Repeat-sequence-of-channels A sequence of channels is converted repeatedly.

Single-Channel Single-Conversion Mode

A single channel is sampled and converted once. The ADC result is written to the ADC12MEMx defined
by the CSTARTADDX bits. shows the flow of the Single-Channel, Single-Conversion mode.
When ADC12SC triggers a conversion, successive conversions can be triggered by the ADC12SC bit.
When any other trigger source is used, ADC12ENC must be toggled between each conversion.

472 ADC12_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I} TEXAS
INSTRUMENTS
Single-Channel Single-Conversion Mode

www.ti.com

CONSEQx = 00 ADC12
off

ADC120N =1
ADC12ENC = 4

x = CSTARTADDx

\

R Wait for Enable

7 sHsceo ADC12ENC = Y.
/ and ADC12ENC = 4
1 ADC12ENC=1ork

and

I ADC12SC =4 (wait for Trigger
h
Iy !
IR
[

SAMPCON = £

\

SAMPCON =1

i | ADC12ENC =0
, N

1 N
Lo AN Sample, Input
A Channel Defined in
' ADC12ENC =0 ADC12MCTLx
| (see Note A)
', SAMPCON=Y
| \ 12 x ADC12CLK
\ \
\ \\\
\‘ b Convert
ADC12ENC =0
N A
(see Note A) 1 x ADC12CLK
\
' Conversion
N Completed,
N Result Stored Into
ADC12MEMXx,

ADC12IFG.x is Set

x = pointer to ADC12MCTLx

A Conversion result is unpredictable.
Figure 18-6. Single-Channel, Single-Conversion Mode

SLAU208—-June 2008 ADC12_A 473

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Sequence-of-Channels Mode www.ti.com

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The ADC results are written to the conversion
memories starting with the ADCMEMXx defined by the CSTARTADDX bits. The sequence stops after the
measurement of the channel with a set ADC12EOS bit. shows the sequence-of-channels
mode. When ADC12SC triggers a sequence, successive sequences can be triggered by the ADC12SC
bit. When any other trigger source is used, ADC12ENC must be toggled between each sequence.

CONSEQx = 01

ADC120N =1

ADC12ENC = &

x = CSTARTADDx
Wait for Enable

ADC12ENC = 1

SHSx =0 ADC12ENC = &
and
ADC12ENC =1or &
and Wait for Trigger
ADC12SC = &

SAMPCON = &

ADC12EOS.x =1

SAMPCON =1

Sample, Input
Channel Defined in
ADC12MCTLx

Ifx<15thenx=x+1 Ifx<15thenx=x+1

else x = 0 elsex=0
SAMPCON = Y_ 12 x ADC12CLK
I (ADC12MSC =0
Convert or
ADC1§:\‘IIdSC =1 ADC12SHP = 0)
and
ADC1 :::P =1 1xADC12CLK Apc12E0S.X = 0

ADC12EO0S.x=0 Conversion

Completed,

Result Stored Into
ADC12MEMXx,
ADC12IFG.x is Set

x = pointer to ADC12MCTLx

Figure 18-7. Sequence-of-Channels Mode

474 ADC12_A SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

Repeat-Single-Channel Mode

Repeat-Single-Channel Mode

A single channel is sampled and converted continuously. The ADC results are written to the ADC12MEMx

defined by the CSTARTADDX hits. It is necessary to read the result after the completed conversion

because only one ADC12MEMx memory is used and is overwritten by the next conversion.

shows repeat-single-channel mode

CONSEQx =10 ADC12
off

ADC120N =1

ADC12ENC = 4

x = CSTARTADDx
Wait for Enable

ADC12
ADC12 ENC =
SHSx =0
and ENC = 4
ADC12ENC =1or 4
and
ADC12SC = 4 Wait for Trigger

SAMPCON= 4 ADC12ENC =0

SAMPCON =1

Sample, Input
Channel Defined in
ADC12MCTLx

SAMPCON = Y_ 12 x ADC12CLK

(ADC12MSC =0

ADC12MSC =1 Convert or

and ADC12SHP = 0)
ADC12SHP =1 and

and 1xADC12CLK \p e orne 4
ADC12ENC =1

Conversion
Completed,
Result Stored Into
ADC12MEMXx,
ADC12IFG.x is Set

x = pointer to ADC12MCTLx

Figure 18-8. Repeat-Single-Channel Mode

SLAU208-June 2008 ADC12_A
Eubmit Documentation Feedbacl

475

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Repeat-Sequence-of-Channels Mode www.ti.com

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The ADC results are written to the
conversion memories starting with the ADC12MEMx defined by the CSTARTADDX bits. The sequence
ends after the measurement of the channel with a set ADC12EQOS bit and the next trigger signal re-starts
the sequence. shows the repeat-sequence-of-channels mode.

CONSEQx = 11 ADC12
off

ADC120N =1

ADC12ENC = &

x = CSTARTADDx
Wait for Enable

ADC12ENC = Y

ADC12ENC = 4

SHSx =0
and
ADC12ENC =1or 4
and Wait for Trigger
ADC12SC =_4‘
ADC12ENC =0
SAMPCON =_[and

ADC12EOS.x =1
SAMPCON =1

Sample, Input
Channel Defined in
ADC12MCTLx

If ADC12EOS.x = 1 then
x =CSTARTADDx
else {if x <15 then x = x + 1 else

SAMPCON =Y x =0}

If ADC12EOS.x = 1 then
x =CSTARTADDx
else {if x <15 then x = x + 1 else 12 x ADC12CLK

x = 0} Convert

(ADC12MSC =0
or
ADC12SHP = 0)

and
ADC12MSC =1 and ADC12SHP =1 (ADC12ENC =1
and (ADC12ENC = 1 or ADC12EOS.x = 0) 1 x ADC12CLK or

x = pointer to ADC12MCTLx ADC12EOS.x = 0)

Conversion Completed,
Result Stored Into
ADC12MEMXx,
ADC12IFG.x is Set

Figure 18-9. Repeat-Sequence-of-Channels Mode

476 ADC12_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com Using the Multiple Sample and Convert (ADC12MSC) Bit

Using the Multiple Sample and Convert (ADC12MSC) Bit

To configure the converter to perform successive conversions automatically and as quickly as possible, a
multiple sample and convert function is available. When ADC12MSC = 1, CONSEQXx > 0, and the sample
timer is used, the first rising edge of the SHI signal triggers the first conversion. Successive conversions
are triggered automatically as soon as the prior conversion is completed. Additional rising edges on SHI
are ignored until the sequence is completed in the single-sequence mode or until the ADC12ENC bit is
toggled in repeat-single-channel, or repeated-sequence modes. The function of the ADC12ENC bit is
unchanged when using the ADC12MSC bit.

Stopping Conversions

Stopping ADC12_A activity depends on the mode of operation. The recommended ways to stop an active

conversion or conversion sequence are:

» Resetting ADC12ENC in single-channel single-conversion mode stops a conversion immediately and
the results are unpredictable. For correct results, poll the busy bit until reset before clearing
ADC12ENC.

* Resetting ADC12ENC during repeat-single-channel operation stops the converter at the end of the
current conversion.

» Resetting ADC12ENC during a sequence or repeat-sequence mode stops the converter at the end of
the sequence.

» Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting
ADC12ENC bit. Conversion data are unreliable.

Note: No ADC12EOS Bit Set For Sequence

If no ADC12EOS bit is set and a sequence mode is selected, resetting the ADC12ENC bit
does not stop the sequence. To stop the sequence, first select a single-channel mode and
then reset ADC12ENC.

18.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input channel INCHx = 1010. Any
other configuration is done as if an external channel was selected, including reference selection,
conversion-memory selection, etc. The temperature sensor is in the ADC12_A in the MSP430F54xx
devices while it is part of the REF module in other devices.

The typical temperature sensor transfer function is shown in Eigure 18-10. When using the temperature
sensor, the sample period must be greater than 30 =s. The temperature sensor offset error can be large,
and may need to be calibrated for most applications. See device-specific datasheet for parameters.

Selecting the temperature sensor automatically turns on the on-chip reference generator as a voltage
source for the temperature sensor. However, it does not enable the Vger, output or affect the reference
selections for the conversion. The reference choices for converting the temperature sensor are the same
as with any other channel.

SLAU208-June 2008 ADC12_A 477
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

Stopping Conversions www.ti.com

1.300 —

1.200 —

NOT UPAO DATE

1.100 —

1.000 —

Voltage

0.900 —

Viewe = 0.00355(TEMP,) + 0.986
0.800 —

0.700 T T T
-50 0 50 100

Temperature - °C

Figure 18-10. Typical Temperature Sensor Transfer Function

18.2.9 ADC12_A Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should
be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths that are common with
other analog or digital circuitry. If care is not taken, this current can generate small, unwanted offset
voltages that can add to or subtract from the reference or input voltages of the A/D converter. The
connections shown in help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due to digital switching or
switching power supplies can corrupt the conversion result. A noise-free design using separate analog and
digital ground planes with a single-point connection is recommend to achieve high accuracy.

478 ADC12_A SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com ADC121V, Interrupt Vector Generator

A 4

Digital f’f,

Power Supply

Decoupling k
" 10pF 100 nF

Analog J{,

Power Supply +

Decoupling k

> 10 yF 100 nF

Using an
External
Positive
Reference

10 yF 100 nF

A\ 4

Using an
External +
Negative

Reference
10 yF 100 nF

Figure 18-11. ADC12_A Grounding and Noise Considerations

18.2.10 ADC12_A Interrupts

The ADC12_A has 18 interrupt sources:

+ ADCI12|IFG0-ADC12IFG15

+ ADC120V, ADC12MEMXx overflow

+ ADC12TOV, ADC12_A conversion time overflow

The ADC12IFGx bits are set when their corresponding ADC12MEMx memory register is loaded with a
conversion result. An interrupt request is generated if the corresponding ADC12IEx bit and the GIE bit are
set. The ADC120V condition occurs when a conversion result is written to any ADC12MEMx before its
previous conversion result was read. The ADC12TOV condition is generated when another
sample-and-conversion is requested before the current conversion is completed. The DMA is triggered
after the conversion in single channel conversion mode or after the completion of a sequence of channel
conversions in sequence of channels conversion mode.

ADCI12lV, Interrupt Vector Generator

All ADC12_A interrupt sources are prioritized and combined to source a single interrupt vector. The
interrupt vector register ADC121V is used to determine which enabled ADC12_A interrupt source
requested an interrupt.

The highest priority enabled ADC12_A interrupt generates a number in the ADC12IV register (see register
description). This number can be evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled ADC12_A interrupts do not affect the ADC12IV value.

Any access, read or write, of the ADC12IV register automatically resets the ADC120V condition or the
ADC12TOV condition if either was the highest pending interrupt. Neither interrupt condition has an
accessible interrupt flag. The ADC12IFGx flags are not reset by an ADC12|V access. ADC12IFGx bits are
reset automatically by accessing their associated ADC12MEMx register or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if
the ADC120V and ADC12IFG3 interrupts are pending when the interrupt service routine accesses the
ADCI12lV register, the ADC120V interrupt condition is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the ADC12IFG3 generates another interrupt.

SLAU208-June 2008 ADC12_A 479
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

ADC12_A Interrupt Handling Software Example www.ti.com

ADC12_A Interrupt Handling Software Example

The following software example shows the recommended use of ADC12IV and the handling overhead.
The ADC12IV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

 ADCI12IFGO-ADC12IFG14, ADC12TOV, and ADC120V: 16 cycles

» ADCI12IFG15: 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if a higher prioritized interrupt
occurred during the processing of ADC12IFG15. This saves nine cycles if another ADC12_A interrupt is
pending.

; Interrupt handl er for ADCl2.

| NT_ADC12 ; Enter Interrupt Service Routine
ADD &ADC121V,PC ; Add offset to PC
RETI ; Vector 0: No interrupt
JMP ADOV ; Vector 2: ADC overflow
JWP ADTOV ; Vector 4: ADC timng overflow
JMP ADMD ;. Vector 6: ADCl2| F&O
. Vectors 8-32
JMP ADML4 : Vector 34: ADCl12| FG14

; Handl er for ADCl2l FGL5 starts here. No JMP required.

ADML5 0. &ADC12MEML5, xxX ; Move result, flag is reset
e ; Other instruction needed?
JMP I NT_ADC12 ; Check other int pending

; ADC12l FGL4- ADC121 FGL handl ers go here

ADMD 0. &ADC12MEMD, XXX ; Move result, flag is reset
e ; Other instruction needed?
RETI ;. Return
ADTOV e ; Handl e Conv. tine overflow
RETI ; Return
ADOV e ;. Handl e ADCMEMK over f | ow
RETI ;. Return
480 ADC12_A SLAU208-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

ADC12_A Registers

18.3 ADC12_A Registers

The ADC12_A registers are listed in [Table 18-2. The base address of the ADC12_A can be found in the
devices specific datasheet. The address offset of each ADC12_A register is given in [Table 18-7.

Table 18-2. ADC12_A Registers

Register Short Form Register Type Address Initial State

ADC12 control register 0 ADC12CTLO Read/write 00h Reset with POR
ADC12 control register 1 ADC12CTL1 Read/write 02h Reset with POR
ADC12 control register 2 ADC12CTL2 Read/write 04h Reset with POR
ADC12 interrupt flag register ADC12IFG Read/write 0Ah Reset with POR
ADC12 interrupt enable register ADC12IE Read/write 0Ch Reset with POR
ADC12 interrupt vector word ADC12IV Read OEh Reset with POR
ADC12 memory O ADC12MEMO Read/write 20h Reset with POR
ADC12 memory 1 ADC12MEM1 Read/write 22h Reset with POR
ADC12 memory 2 ADC12MEM2 Read/write 24h Reset with POR
ADC12 memory 3 ADC12MEM3 Read/write 26h Reset with POR
ADC12 memory 4 ADC12MEM4 Read/write 28h Reset with POR
ADC12 memory 5 ADC12MEM5 Read/write 2Ah Reset with POR
ADC12 memory 6 ADC12MEM6 Read/write 2Ch Reset with POR
ADC12 memory 7 ADC12MEM7 Read/write 2Eh Reset with POR
ADC12 memory 8 ADC12MEM8 Read/write 30h Reset with POR
ADC12 memory 9 ADC12MEM9 Read/write 32h Reset with POR
ADC12 memory 10 ADC12MEM10 Read/write 34h Reset with POR
ADC12 memory 11 ADC12MEM11 Read/write 36h Reset with POR
ADC12 memory 12 ADC12MEM12 Read/write 38h Reset with POR
ADC12 memory 13 ADC12MEM13 Read/write 3Ah Reset with POR
ADC12 memory 14 ADC12MEM14 Read/write 3Ch Reset with POR
ADC12 memory 15 ADC12MEM15 Read/write 3Eh Reset with POR
ADC12 memory control O ADC12MCTLO Read/write 10h Reset with POR
ADC12 memory control 1 ADC12MCTL1 Read/write 11h Reset with POR
ADC12 memory control 2 ADC12MCTL2 Read/write 12h Reset with POR
ADC12 memory control 3 ADC12MCTL3 Read/write 13h Reset with POR
ADC12 memory control 4 ADC12MCTL4 Read/write 14h Reset with POR
ADC12 memory control 5 ADC12MCTL5 Read/write 15h Reset with POR
ADC12 memory control 6 ADC12MCTL6 Read/write 16h Reset with POR
ADC12 memory control 7 ADC12MCTL7 Read/write 17h Reset with POR
ADC12 memory control 8 ADC12MCTL8 Read/write 18h Reset with POR
ADC12 memory control 9 ADC12MCTL9 Read/write 19h Reset with POR
ADC12 memory control 10 ADC12MCTL10 Read/write 1Ah Reset with POR
ADC12 memory control 11 ADC12MCTL11 Read/write 1Bh Reset with POR
ADC12 memory control 12 ADC12MCTL12 Read/write 1Ch Reset with POR
ADC12 memory control 13 ADC12MCTL13 Read/write 1Dh Reset with POR
ADC12 memory control 14 ADC12MCTL14 Read/write 1Eh Reset with POR
ADC12 memory control 15 ADC12MCTL15 Read/write 1Fh Reset with POR

SLAU208-June 2008
Eubmit Documentation Feedbacl

ADC12_A

481

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
ADC12_A Registers www.ti.com
ADC12CTLO, ADC12_A Control Register 0
15 14 13 12 11 10 9 8
\ ADC12SHTix \ ADC12SHTOX |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
ADC12MSC meoS12 |ADCI2REFON| ADCI20N | ADCI20VIE | ADCI2TOVIE | ADCI2ENC | ADCI2SC
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Modifiable only when ADC12ENC =0
ADC12SHT1x Bits 15-12 ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling
period for registers ADC12MEM8 to ADC12MEM15.
ADC12SHTOx Bits 11-8 ~ ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling
period for registers ADC12MEMO to ADC12MEM7.
ADC12SHTx ADC12CLK
Bits Cycles
0000 4
0001 8
0010 16
0011 32
0100 64
0101 96
0110 128
0111 192
1000 256
1001 384
1010 512
1011 768
1100 1024
1101 1024
1110 1024
1111 1024
ADC12MSC Bit 7 ADC12_A multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-convert.
1 The first rising edge of the SHI signal triggers the sampling timer, but further
sample-and-conversions are performed automatically as soon as the prior conversion is
completed.
ADC12REF2_5V Bit 6 ADC12_A reference generator voltage. ADC12REFON must also be set.
0 15V
1 25V
ADC12REFON Bit 5 ADC12_A reference generator on. In devices with the REF module this bit is only valid if the REFMSTR
bit of the REF module is set to 0. In the F54xx device the REF module is not available.
0 Reference off
1 Reference on
ADC120N Bit 4 ADC12_A on
0 ADC12_A off
1 ADC12_Aon
ADC120VIE Bit 3 ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable the interrupt.
0 Overflow interrupt disabled
1 Overflow interrupt enabled

482 ADC12_A

SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
www.ti.com ADC12_A Registers
ADC12TOVIE Bit 2 ADClZ_A conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the
interrupt.
0 Conversion time overflow interrupt disabled
1 Conversion time overflow interrupt enabled
ADC12ENC Bit 1 ADC12_A enable conversion
0 ADC12_A disabled
1 ADC12_A enabled
ADC12SC Bit 0 ADC12_A start conversion. Software-controlled sample-and-conversion start. ADC12SC and
ADC12ENC may be set together with one instruction. ADC12SC is reset automatically.
0 No sample-and-conversion-start
1 Start sample-and-conversion
SLAU208—-June 2008 ADC12_A 483

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS
ADC12_A Registers www.ti.com
ADC12CTL1, ADC12_A Control Register 1
15 14 13 12 11 10 9 8
\ ADC12CSTARTADDX \ ADC12SHSx | ADci2sHP | ADC12ISSH |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 | 3 2 1 0
\ ADC12DIVx | ADC12SSELx | ADC12CONSEQX | ADC12BUSY |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0)
Modifiable only when ADC12ENC =0
ADC12 Bits 15-12 ADC12_A conversion start address. These bits select which ADC12_A conversion-memory register is
CSTARTADDx used for a single conversion or for the first conversion in a sequence. The value of CSTARTADDx is 0 to
OFh, corresponding to ADC12MEMO to ADC12MEM15.
ADC12SHSx Bits 11-10 ADC12_A sample-and-hold source select
00 ADC12SC hit
01 Timer_A.OUT1
10 Timer_B.OUTO
11 Timer_B.OUT1
ADC12SHP Bit 9 ADC12_A sample-and-hold pulse-mode select. This bit selects the source of the sampling signal
(SAMPCON) to be either the output of the sampling timer or the sample-input signal directly.
0 SAMPCON signal is sourced from the sample-input signal.
1 SAMPCON signal is sourced from the sampling timer.
ADC12ISSH Bit 8 ADC12_A invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.
ADC12DIVx Bits 7-5 ADC12_A clock divider
000 1
001 2
010 /3
011 14
100 /5
101 16
110 17
111 /8
ADC12SSELX Bits 4-3 ADC12_A clock source select
00 MODCLK
01 ACLK
10 MCLK
11 SMCLK
ADC12CONSEQx Bits 2-1 ADC12_A Conversion sequence mode select
00 Single-channel, single-conversion
01 Sequence-of-channels
10 Repeat-single-channel
11 Repeat-sequence-of-channels
ADC12BUSY Bit O ADC12_A busy. This bit indicates an active sample or conversion operation.
0 No operation is active.
1 A sequence, sample, or conversion is active.

484 ADC12_A

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com ADC12_A Registers

ADC12CTL2, ADC12_A Control Register 2

15 14 13 12 11 10 9 8
Reserved ADC12PDIV
r-0 r-0 r-0 r-0 r-0 r-0 r-0 rw-0
7 6 5 4 3 2 1 0
ADC12 ADC12
ADC12TCOFF Reserved ADC12RES ADC12DF ADC12SR REFOUT REFBURST
rw-(0) r-0 rw-(1) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Modifiable only when ADC12ENC =0

Reserved Bits 15-9 Reserved. Read back as 0.
ADC12PDIV Bit 8 ADC12_A pre-divider. This bit pre-divides the selected ADC12_A clock source.
0 Pre-divide by 1
1 Pre-divide by 4
ADC12TCOFF Bit 7 ADC12_A temperature sensor off. If the bit is set the temperature sensor turned off. This is used to save
power.
Reserved Bit 6 Reserved. Read back as 0.
ADCI12RES Bits 5-4 ADC12_A resolution. This bit defines the conversion result resolution.
00 8-bit (9 clock cycle conversion time)
01 10-bit (11 clock cycle conversion time)
10 12-bit (13 clock cycle conversion time)
11 Reserved
ADC12DF Bit 3 ADC12_A data read-back format. Data is always stored in the binary unsigned format.
0 Binary unsigned. Theoretically the analog input voltage — Vggr results in 0000h, the analog input
voltage + Vgr results in OFFFh.
1 Signed binary (2's complement), left aligned. Theoretically the analog input voltage — Vrer
results in 8000h, the analog input voltage + Vrgg results in 7FFOh.
ADC12SR Bit 2 ADC12_A sampling rate. This bit selects the reference buffer drive capability for the maximum sampling
rate. Setting ADC12SR reduces the current consumption of the reference buffer.
0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps
ADC12REFOUT Bit 1 Reference output
0 Reference output off
1 Reference output on
ADC12REFBURST Bit0 Reference burst. ADC12REFOUT must also be set.
0 Reference buffer on continuously
1 Reference buffer on only during sample-and-conversion

ADC12MEMXx, ADC12_A Conversion Memory Registers

15 14 13 12 11 10 9 8

0 0 0 | 0 Conversion Results

r0 ro r0 ro rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results

rw rw rw rw rw rw rw rw
Conversion Bits 15-0 The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12 are 0 in 12-bit mode, bits
Results 15-10 are 0 in 10-bit mode and bits 15-8 are 0 in 8-bit mode. Writing to the conversion memory registers

will corrupt the results. This data format is used if ADC12DF = 0.

SLAU208-June 2008 ADC12_A 485
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS

INSTRUMENTS

ADC12_A Registers www.ti.com
ADC12MEMx, ADC12_A Conversion-Memory Register, 2's Complement Format

15 14 13 12 11 10 9 8

Conversion Results
rw rw rw rw rw rw rw rw
7 6 5 4
Conversion Results

rw w rw w r0 ro r0 ro
Conversion Bits 15-0 The 12-bit conversion results are left-justified, 2's complement format. Bit 15 is the MSB. Bits 3-0 are 0 in
Results 12-bit mode, bits 5-0 are 0 in 10-bit mode and bits 7-0 are O in 8-bit mode. This data format is used if

ADC12DF = 1. The data is stored in the right justified format and is converted to the left-justified 2's
complement during read-back.

ADC12MCTLXx, ADC12_A Conversion Memory Control Registers

7 6 5 4 3 2 1 0
ADC12EOS ADC12SREFx ADCI12INCHx
rw rw rw rw rw rw rw rw

Modifiable only when ADC12ENC = 0

ADC12EOS Bit 7
0

1

ADC12SREFx Bits 6-4
000

001

010

011

100

101

110

111
ADC12INCHx Bits 3-0
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Not end of sequence
End of sequence

Select reference

Vgs = AV and Vi, = AVss

Vr+ = VRer+ @and Vg = AVsg

VR+ = Veggr+ and Vg. = AVss

VR+ = Veggr+ and Vg. = AVss

VRr+ = AVcc and Vg, = Vger/ Veger.
Vr+ = Vrer+ and Vg. = Vrer/ VeRer.
VR+ = Veger+ and Vg. = Vrer/ Vegrer-
VR+ = Veger+ and Vg. = Vrer/ Vegrer-

Input channel select

A0

Al

A2

A3

A4

A5

A6

A7

Verer+
VRer-/VeRrgr-
Temperature diode
(AVcc — AVss) / 2
Al2

Al3

Al4

Al5

End of sequence. Indicates the last conversion in a sequence.

486 ADC12_A

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com

ADC12_A Registers

ADCI12IE, ADC12_A Interrupt Enable Register

15 14 13 12 11 10 9 8
| ADC12IE15 | ADCI2IE14 | ADCI2IE13 | ADCI2IE12 | ADC12IE11 | ADCI2IEI0 | ADCI2IFG9 | ADCI2IES |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
| ADCI2IE7 | ADCI2IE6 | ADCI2IE5 | ADCI2IE4 ADCI2IE3 | ADCI2IE2 | ADCI2IEL | ADCI2IEQ |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
ADC12IEx Bits 15-0 Interrupt enable. These bits enable or disable the interrupt request for the ADC12IFGx bits.
0 Interrupt disabled
1 Interrupt enabled
ADCI12IFG, ADC12_A Interrupt Flag Register
15 14 13 12 11 10 9 8
| ADCI2IFG15 | ADCI2IFG14 | ADC12IFG13 | ADCI2IFG12 | ADCI2IFG11 | ADCI2IFG10 | ADCI2IFG9 | ADCI2IFG8 |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
| ADCI2IFG7 | ADCI2IFG6 | ADCI2IFG5 | ADCI2IFG4 | ADCI2IFG3 | ADCI2IFG2 | ADCI2IFGL | ADCI2IFGO |
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
ADC12IFGx Bits 15-0 ADC12MEMKX Interrupt flag. These bits are set when corresponding ADC12MEMX is loaded with a

conversion result. The ADC12IFGx bits are reset if the corresponding ADC12MEMX is accessed, or may

be reset with software.
0 No interrupt pending
1 Interrupt pending

SLAU208-June 2008
Eubmit Documentation Feedbacl

ADC12_A 487

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I3 TEXAS
INSTRUMENTS
ADC12_A Registers www.ti.com
ADC12IV, ADC12_A Interrupt Vector Register
15 14 13 12 11 10
0 0 \ 0 | 0 0 0 0 0
r0 ro r0 ro r0 ro r0 ro
5 4 3 2 1
\ ADC12IVx | 0
r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0
ADC12IVx Bits 15-0 ADC12_A interrupt vector value.
éoDnCtér%It\; Interrupt Source Interrupt Flag ::nrtiirrri?;t
000h No interrupt pending -
002h ADC12MEMx overflow - Highest
004h Conversion time overflow -
006h ADC12MEMO interrupt flag ADC12IFGO
008h ADC12MEML1 interrupt flag ADC12IFG1
00Ah ADC12MEM?2 interrupt flag ADC12IFG2
00Ch ADC12MEMS interrupt flag ADC12IFG3
00Eh ADC12MEM4 interrupt flag ADC12IFG4
010h ADC12MEMS interrupt flag ADC12IFG5
012h ADC12MEMS interrupt flag ADC12IFG6
014h ADC12MEM?Y interrupt flag ADC12IFG7
016h ADC12MEMS interrupt flag ADC12IFG8
018h ADC12MEM9 interrupt flag ADC12IFG9
01Ah ADC12MEM10 interrupt flag ADC12IFG10
01Ch ADC12MEM11 interrupt flag ADC12IFG11
01lEh ADC12MEM12 interrupt flag ADC12IFG12
020h ADC12MEM13 interrupt flag ADC12IFG13
022h ADC12MEM14 interrupt flag ADC12IFG14
024h ADC12MEM15 interrupt flag ADC12IFG15 Lowest
488 ADC12_A SLAU208—-June 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I$ TEXAS Chapter 19
INSTRUMENTS SLAU208June 2008

Embedded Emulation Module (EEM)

This chapter describes the Embedded Emulation Module (EEM) that is implemented in all MSP430 flash
devices.

Topic Page
e = =1\ W Y d foTo [V o3 4 (o] o | T 490
19.2 EEMBuilding Blocks[o oo eeeeene 492
19.3 EEM ConfigurationS]..oouou e eeeeeeeeeee e ieeeenen 199
SLAU208-June 2008 Embedded Emulation Module (EEM) 489

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

EEM Introduction www.ti.com

19.1 EEM Introduction

Every MSP430 flash-based microcontroller implements an embedded emulation module (EEM). It is
accessed and controlled through either 4-wire JTAG mode or Spy-Bi-Wire mode. Each implementation is
device dependent and is described in EEM Configurations and the device data sheet.

In general, the following features are available:

* Nonintrusive code execution with real-time breakpoint control

» Single step, step into, and step over functionality

» Full support of all low-power modes

» Support for all system frequencies, for all clock sources

» Up to eight (device dependent) hardware triggers/breakpoints on memory address bus (MAB) or
memory data bus (MDB)

« Up to two (device dependent) hardware triggers/breakpoints on CPU register write accesses

« MAB, MDB, and CPU register access triggers can be combined to form up to ten (device dependent)
complex triggers/breakpoints

» Up to two (device dependent) cycle counters

» Trigger sequencing (device dependent)

» Storage of internal bus and control signals using an integrated trace buffer (device dependent)

e Clock control for timers, communication peripherals, and other modules on a global device level or on
a per-module basis during an emulation stop

shows a simplified block diagram of the largest currently available 5xx EEM implementation.

For more details on how the features of the EEM can be used together with the IAR Embedded
Workbench™ debugger see the application report Advanced Debugging Using the Enhanced Emulation
Module (BLAAZG]) at vww.msp430.conj. Code Composer Essentials (CCE) and most other debuggers
supporting MSP430 have the same or a similar feature set. For details see the user's guide of the
applicable debugger.

490

Embedded Emulation Module (EEM) SLAU208-June 2008
ubmit Documentation Feedbac

http://www-s.ti.com/sc/techlit/SLAA263
http://www.msp430.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com EEM Introduction

Trigger "AND" Matrix- Combination Triggers
Blocks

0 1 2 3 4 5 6 7 8 9
MBO

MB1

MB2

i

MB3

MB4

MB5

MB6

mB7

CPUO

1gfe

CPU1

Trigger Sequencer

V\

G+ + {1 +{+{+{+{Horp CPU Stop
{1+ H{ {1 L +{}{HOR}> startstop State Storage
] m Start/Stop Cycle Counter

Figure 19-1. Large Implementation of the Embedded Emulation Module (EEM)

SLAU208-June 2008 Embedded Emulation Module (EEM) 491
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

EEM Building Blocks www.ti.com

19.2 EEM Building Blocks

19.2.1 Triggers

The event control in the EEM of the MSP430 system consists of triggers, which are internal signals
indicating that a certain event has happened. These triggers may be used as simple breakpoints, but it is
also possible to combine two or more triggers to allow detection of complex events and trigger various
reactions besides stopping the CPU.

In general, the triggers can be used to control the following functional blocks of the EEM:
» Breakpoints (CPU stop)

» State storage

e Sequencer

* Cycle counter

There are two different types of triggers: the memory trigger and the CPU register write trigger.

Each memory trigger block can be independently selected to compare either the MAB or the MDB with a
given value. Depending on the implemented EEM the comparison can be =, #, 2, or <. The comparison
can also be limited to certain bits with the use of a mask. The mask is either bit-wise or byte-wise,
depending upon the device. In addition to selecting the bus and the comparison, the condition under which
the trigger is active can be selected. The conditions include read access, write access, DMA access, and
instruction fetch.

Each CPU register write trigger block can be independently selected to compare what is written into a
selected register with a given value. The observed register can be selected for each trigger independently.
The comparison can be =, #, 2, or <. The comparison can also be limited to certain bits with the use of a
bit mask.

Both types of triggers can be combined to form more complex triggers. For example, a complex trigger
can signal when a particular value is written into a user-specified address.

19.2.2 Trigger Sequencer

The trigger sequencer allows the definition of a certain sequence of trigger signals before an event is
accepted for a break or state storage event. Within the trigger sequencer, it is possible to use the following
features:

» Four states (State 0 to State 3)
« Two transitions per state to any other state
» Reset trigger that resets the sequencer to State 0.

The trigger sequencer always starts at State 0 and must execute to State 3 to generate an action. If
State 1 or State 2 are not required, they can be bypassed.

19.2.3 State Storage (Internal Trace Buffer)

The state storage function uses a built-in buffer to store MAB, MDB, and CPU control signal information
(i.e., read, write, or instruction fetch) in a nonintrusive manner. The built-in buffer can hold up to eight
entries. The flexible configuration allows the user to record the information of interest very efficiently.

19.2.4 Cycle Counter

The cycle counter provides one or two 40-bit counters to measure the cycles used by the CPU to execute
certain tasks. On some devices, the cycle counter operation can be controlled using triggers. This allows,
for example, conditional profiling, such as profiling a specific section of code.

492 Embedded Emulation Module (EEM) SLAU208-June 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13 TEXAS
INSTRUMENTS

www.ti.com EEM Building Blocks
19.2.5 Clock Control
The EEM provides device dependent flexible clock control. This is useful in applications where a running

clock is needed for peripherals after the CPU is stopped (e.g., to allow a UART module to complete its
transfer of a character or to allow a timer to continue generating a PWM signal).

The clock control is flexible and supports both modules that need a running clock and modules that must
be stopped when the CPU is stopped due to a breakpoint.

SLAU208-June 2008 Embedded Emulation Module (EEM) 493
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

EEM Configurations

13 TEXAS
INSTRUMENTS

www.ti.com

19.3 EEM Configurations

gives an overview of the EEM configurations in the MSP430 5xx family

configuration is device dependent (see the device-specific data sheet for details).

Table 19-1. 5xx EEM Configurations

. The implemented

Feature XS S
Memory bus triggers 2 3 5
(=, # only)

Memory bus trigger mask for 1) Low byte 1) Low byte 1) Low byte All 16 or 20 bits

2) High byte 2) High byte 2) High byte

3) Four upper addr bits 3) Four upper addr bits 3) Four upper addr bits
CPU register write triggers 0 1 1 2
Combination triggers 2 4 6 10
Sequencer No No Yes Yes
State storage No No No Yes
Cycle counter 1 1 1 2

(including

triggered start/stop)

In general the following features can be found on any 5xx device:

» At least two MAB/MDB triggers supporting:
— Distinction between CPU, DMA, read, and write accesses
— =, #,2, or < comparison (in XS, only =, %)

» At least two trigger combination registers

» Hardware breakpoints using the CPU stop reaction

» At least one 40-bit cycle counter

» Enhanced clock control with individual control of module clocks

494

Embedded Emulation Module (EEM)

u

SLAU208-June 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers Emplifier-i.com Audio [pww Ti.com/audid

Data Converters Fataconverterir.com Automotive [vww Tr.com/automofiv

DSP Esp-ii.con Broadband [pww i.com/broadband

Clocks and Timers [www i-com/clocky Digital Control [pww ir-com/digitalcontrol

Interface [nierface-fi.com Medical [pww Ti.com/medical

Logic [ogicircon Military [vww i-com/militany

Power Mgmt power-i.com Optical Networking [xww Ti.com/opficalnetwor

Microcontrollers [nicrocontroller-t.com Security [nww r-com/secur

RFID ‘ i .CO Telephony lvww.tr.com/telephony

RF/IF and ZigBee® Solutions [WWw.ir.com/Ipr Video & Imaging vww Tr.com/vided
Wireless [vww T.com/wirelesy

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
	1.1 System Control Module Introduction
	1.2 Principle of Operation
	1.2.1 Device Descriptor Table
	1.2.1.1 Identifying the Device type
	1.2.1.2 MSP430 Calibration Descriptors

	1.2.2 Boot Code
	1.2.3 Boot Strap Loader (BSL)
	1.2.4 JTAG Mailbox System (JMB)

	1.3 Memory Map–Uses and Abilities
	1.3.1 Vacant Memory Space
	1.3.2 JTAG Lock Mechanism
	1.3.3 SYS Interrupt Vector Generators
	1.3.3.1 SYSSNIV Software Example

	1.4 Interrupts
	1.4.1 (Non)-Maskable Interrupts (NMI)
	1.4.2 SNMI Timing
	1.4.3 Maskable Interrupts
	 Interrupt Processing
	1.4.4.1 Interrupt Acceptance
	1.4.4.2 Return From Interrupt
	1.4.4.3 Interrupt Nesting

	1.5 Operating Modes
	1.5.1 Entering and Exiting Low-Power Modes
	1.5.1.1 Extended Time in Low-Power Modes

	1.6 Principles for Low-Power Applications
	1.7 Connection of Unused Pins
	1.8 Reset and Subtypes
	1.9 Interrupt Vectors
	1.10 Special Function Registers
	1.11 SYS Registers

	2 Watchdog Timer (WDT_A)
	2.1 Watchdog Timer Introduction
	2.2 Watchdog Timer Block Diagram
	2.2.1 Watchdog Timer Counter
	2.2.2 Watchdog Mode
	2.2.3 Interval Timer Mode
	2.2.4 Watchdog Timer Interrupts
	2.2.5 Clock Fail-Safe Feature
	2.2.6 Operation in Low-Power Modes
	2.2.7 Software Examples

	2.3 Watchdog Timer Registers

	3 Unified Clock System (UCS)
	3.1 Unified Clock System Introduction
	3.2 Unified Clock System Module Operation
	3.2.1 Unified Clock System Module Features for Low-Power Applications
	3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
	3.2.3 Internal Trimmed Low-Frequency Reference Oscillator(REFO)
	3.2.4 XT1 Oscillator
	3.2.5 XT2 Oscillator
	3.2.6 Digitally-Controlled Oscillator (DCO)
	3.2.7 Frequency Locked Loop (FLL)
	3.2.8 DCO Modulator
	3.2.9 Disabling the FLL Hardware and Modulator
	3.2.10 FLL Operation from Low-Power Modes
	3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules
	3.2.12 Unified Clock System Module Fail-Safe Operation
	3.2.13 Synchronization of Clock Signals

	3.3 MODOSC Module Oscillator
	3.3.1 MODOSC Operation

	3.4 Unified Clock System Module Registers

	4 Power Management Module and Supply Voltage Supervisor
	4.1 PMM Introduction
	4.2 PMM Operation
	4.2.1 Supply Voltage Supervisor and Monitor – High Side
	4.2.2 Supply Voltage Supervisor and Monitor – Low Side
	4.2.3 Supply Voltage Monitor Output (SVMOUT, Optional)
	4.2.4 Performance Optimization
	4.2.5 Voltage Reference
	4.2.6 Brown-Out Reset (BOR)
	4.2.7 Manual Control of the Power Management Module
	4.2.7.1 Manual Control of the Voltage Regulator
	4.2.7.2 Controlling the SVSH,L and SVMH,L Performance
	4.2.7.3 Disabling the Core Voltage Regulator – LPM5

	4.2.8 I/O-Port Control
	4.2.9 PMM Interrupts

	4.3 PMM Registers

	5 CPUX
	5.1 CPU Introduction
	5.2 Interrupts
	5.3 CPU Registers
	5.3.1 Program Counter (PC)
	5.3.2 Stack Pointer (SP)
	5.3.3 Status Register (SR)
	5.3.4 Constant Generator Registers (CG1 and CG2)
	5.3.5 General Purpose Registers R4 to R15

	5.4 Addressing Modes
	5.4.1 Register Mode
	5.4.2 Indexed Mode
	5.4.3 Symbolic Mode
	5.4.4 Absolute Mode
	5.4.5 Indirect Register Mode
	5.4.6 Indirect, Autoincrement Mode
	5.4.7 Immediate Mode

	5.5 MSP430 and MSP430X Instructions
	5.5.1 MSP430 Instructions
	5.5.2 MSP430X Extended Instructions

	5.6 Instruction Set Description
	5.6.1 Extended Instruction Binary Descriptions
	5.6.2 MPS430 Instructions
	5.6.3 Extended Instructions
	5.6.4 Address Instructions

	6 Flash Memory Controller
	6.1 Flash Memory Introduction
	6.2 Flash Memory Segmentation
	6.2.1 Segment A

	6.3 Flash Memory Operation
	6.3.1 Erasing Flash Memory
	6.3.2 Writing Flash Memory
	6.3.3 Flash Memory Access During Write or Erase
	6.3.4 Stopping Write or Erase Cycle
	6.3.5 Checking Flash memory
	6.3.6 Configuring and Accessing the Flash Memory Controller
	6.3.7 Flash Memory Controller Interrupts
	6.3.8 Programming Flash Memory Devices

	6.4 Flash Memory Registers

	7 Digital I/O
	7.1 Digital I/O Introduction
	7.2 Digital I/O Operation
	7.2.1 Input Register PxIN
	7.2.2 Output Registers PxOUT
	7.2.3 Direction Registers PxDIR
	7.2.4 Pullup/Pulldown Resistor Enable Registers PxREN
	7.2.5 Output Drive Strength Registers PxDS
	7.2.6 Function Select Registers PxSEL
	7.2.7 P1 and P2 Interrupts
	7.2.8 Configuring Unused Port Pins

	7.3 Digital I/O Registers

	8 RAM Controller
	8.1 RAMCTL Introduction
	8.2 RAMCTL Operation
	8.3 RAMCTL Module Registers

	9 DMA Controller
	9.1 DMA Introduction
	9.2 DMA Operation
	9.2.1 DMA Addressing Modes
	9.2.2 DMA Transfer Modes
	9.2.2.1 Burst-Block Transfers

	9.2.3 Initiating DMA Transfers
	9.2.4 Stopping DMA Transfers
	9.2.5 DMA Channel Priorities
	9.2.6 DMA Transfer Cycle Time
	9.2.7 Using DMA With System Interrupts
	9.2.8 DMA Controller Interrupts
	9.2.9 Using the USCI_B I2C Module with the DMA Controller
	9.2.10 Using ADC12 with the DMA Controller
	9.2.11 Using DAC12 With the DMA Controller

	9.3 DMA Registers

	10 32-Bit Hardware Multiplier (MPY32)
	10.1 32-Bit Hardware Multiplier Introduction
	10.2 32-Bit Hardware Multiplier Operation
	10.2.1 Operand Registers
	10.2.2 Result Registers
	10.2.3 Software Examples
	10.2.4 Fractional Numbers
	10.2.5 Putting It All Together
	10.2.6 Indirect Addressing of Result Registers
	10.2.7 Using Interrupts
	10.2.8 Using DMA

	10.3 32-Bit Hardware Multiplier Registers

	11 CRC Module
	11.1 CRC Module Introduction
	11.2 CRC Checksum Generation
	11.2.1 CRC Implementation
	11.2.2 Assembler Examples

	11.3 CRC Module Registers

	12 Timer_A
	12.1 Timer_A Introduction
	12.2 Timer_A Operation
	12.2.1 16-Bit Timer Counter
	12.2.2 Starting the Timer
	12.2.3 Timer Mode Control
	12.2.4 Capture/Compare Blocks
	12.2.4.0.1 Capture Initiated by Software

	12.2.5 Output Unit
	12.2.6 Timer_A Interrupts

	12.3 Timer_A Registers

	13 Timer_B
	13.1 Timer_B Introduction
	13.1.1 Similarities and Differences From Timer_A

	13.2 Timer_B Operation
	13.2.1 16-Bit Timer Counter
	13.2.2 Starting the Timer
	13.2.3 Timer Mode Control
	13.2.3.1 Up Mode

	13.2.4 Capture/Compare Blocks
	13.2.5 Output Unit
	13.2.5.1 Output Modes

	13.2.6 Timer_B Interrupts

	13.3 Timer_B Registers

	14 Real-Time Clock (RTC_A)
	14.1 Real-Time Clock Introduction
	14.2 Real-Time Clock Operation
	14.2.1 Counter Mode
	14.2.2 Calendar Mode
	14.2.2.1  Real-Time Clock and Prescale Dividers
	14.2.2.2  Real-Time Clock Alarm Function
	14.2.2.3  Reading or Writing Real-Time Clock Registers in Calendar Mode

	14.2.3 Real-Time Clock Interrupts
	14.2.3.1  Real-Time Clock Interrupts in Calendar Mode
	14.2.3.2  Real-Time Clock Interrupts in Counter Mode

	14.2.4 Real-Time Clock Calibration

	14.3 Real-Time Clock Registers

	15 Universal Serial Communication Interface, UART Mode
	15.1 USCI Overview
	15.2 USCI Introduction: UART Mode
	15.3 USCI Operation: UART Mode
	15.3.1 USCI Initialization and Reset
	15.3.2 Character Format
	15.3.3 Asynchronous Communication Formats
	15.3.4 Automatic Baud Rate Detection
	15.3.5 IrDA Encoding and Decoding
	15.3.5.1 IrDA Encoding

	15.3.6 Automatic Error Detection
	15.3.7 USCI Receive Enable
	15.3.8 USCI Transmit Enable
	15.3.9 UART Baud Rate Generation
	15.3.10 Setting a Baud Rate
	15.3.11 Transmit Bit Timing
	15.3.12 Receive Bit Timing
	15.3.13 Typical Baud Rates and Errors
	15.3.14 Using the USCI Module in UART Mode with Low Power Modes
	15.3.15 USCI Interrupts

	15.4 USCI Registers: UART Mode

	16 Universal Serial Communication Interface, SPI Mode
	16.1 USCI Overview
	16.2 USCI Introduction: SPI Mode
	16.3 USCI Operation: SPI Mode
	16.3.1 USCI Initialization and Reset
	16.3.2 Character Format
	16.3.3 Master Mode
	16.3.4 Slave Mode
	16.3.5 SPI Enable
	16.3.6 Serial Clock Control
	16.3.6.1 Serial Clock Polarity and Phase

	16.3.7 Using the SPI Mode with Low Power Modes
	16.3.8 SPI Interrupts

	16.4 USCI Registers: SPI Mode

	17 Universal Serial Communication Interface, I2C Mode
	17.1 USCI Overview
	17.2 USCI Introduction: I2C Mode
	17.3 USCI Operation: I2C Mode
	17.3.1 USCI Initialization and Reset
	17.3.2 I2C Serial Data
	17.3.3 I2C Addressing Modes
	17.3.4 I2C Module Operating Modes
	17.3.5 I2C Clock Generation and Synchronization
	17.3.6 Using the USCI Module in I2C Mode with Low Power Modes
	17.3.7 USCI Interrupts in I2C Mode

	17.4 USCI Registers: I2C Mode

	18 ADC12_A
	18.1 ADC12_A Introduction
	18.2 ADC12_A Operation
	18.2.1 12-Bit ADC Core
	18.2.2 ADC12_A Inputs and Multiplexer
	18.2.3 Voltage Reference Generator
	18.2.4 Auto Power-Down
	18.2.5 Sample and Conversion Timing
	18.2.6 Conversion Memory
	18.2.7 ADC12_A Conversion Modes
	18.2.8 Using the Integrated Temperature Sensor
	18.2.9 ADC12_A Grounding and Noise Considerations
	18.2.10 ADC12_A Interrupts

	18.3 ADC12_A Registers

	19 Embedded Emulation Module (EEM)
	19.1 EEM Introduction
	19.2 EEM Building Blocks
	19.2.1 Triggers
	19.2.2 Trigger Sequencer
	19.2.3 State Storage (Internal Trace Buffer)
	19.2.4 Cycle Counter
	19.2.5 Clock Control

	19.3 EEM Configurations

