
MSP430x5xx Family

User's Guide

Literature Number: SLAU208
June 2008

2 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Contents

Preface.. 15

1 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 17
1.1 System Control Module Introduction .. 18
1.2 Principle of Operation.. 18

1.2.1 Device Descriptor Table .. 18
1.2.2 Boot Code .. 18
1.2.3 Boot Strap Loader (BSL) ... 18
1.2.4 JTAG Mailbox System (JMB) .. 19

1.3 Memory Map–Uses and Abilities ... 20
1.3.1 Vacant Memory Space ... 20
1.3.2 JTAG Lock Mechanism... 20
1.3.3 SYS Interrupt Vector Generators.. 21

1.4 Interrupts .. 22
1.4.1 (Non)-Maskable Interrupts (NMI).. 22
1.4.2 SNMI Timing ... 23
1.4.3 Maskable Interrupts ... 24

Interrupt Processing... 24
1.5 Operating Modes ... 26

1.5.1 Entering and Exiting Low-Power Modes ... 28
1.6 Principles for Low-Power Applications .. 30
1.7 Connection of Unused Pins ... 30
1.8 Reset and Subtypes ... 30
1.9 Interrupt Vectors.. 31
1.10 Special Function Registers ... 33
1.11 SYS Registers .. 37

2 Watchdog Timer (WDT_A) ... 45
2.1 Watchdog Timer Introduction ... 46
2.2 Watchdog Timer Block Diagram.. 48

2.2.1 Watchdog Timer Counter... 48
2.2.2 Watchdog Mode ... 48
2.2.3 Interval Timer Mode... 48
2.2.4 Watchdog Timer Interrupts... 48
2.2.5 Clock Fail-Safe Feature .. 49
2.2.6 Operation in Low-Power Modes... 49
2.2.7 Software Examples ... 49

2.3 Watchdog Timer Registers.. 50

3 Unified Clock System (UCS) ... 53
3.1 Unified Clock System Introduction ... 54
3.2 Unified Clock System Module Operation.. 56

3.2.1 Unified Clock System Module Features for Low-Power Applications 56

SLAU208–June 2008 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO).. 56
3.2.3 Internal Trimmed Low-Frequency Reference Oscillator(REFO) .. 57
3.2.4 XT1 Oscillator.. 57
3.2.5 XT2 Oscillator.. 57
3.2.6 Digitally-Controlled Oscillator (DCO) ... 58
3.2.7 Frequency Locked Loop (FLL) .. 58
3.2.8 DCO Modulator .. 59
3.2.9 Disabling the FLL Hardware and Modulator ... 60
3.2.10 FLL Operation from Low-Power Modes ... 60
3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules 60
3.2.12 Unified Clock System Module Fail-Safe Operation .. 61
3.2.13 Synchronization of Clock Signals .. 64

3.3 MODOSC Module Oscillator .. 65
3.3.1 MODOSC Operation .. 65

3.4 Unified Clock System Module Registers .. 66

4 Power Management Module and Supply Voltage Supervisor .. 77
4.1 PMM Introduction... 78
4.2 PMM Operation... 80

4.2.1 Supply Voltage Supervisor and Monitor – High Side ... 82
4.2.2 Supply Voltage Supervisor and Monitor – Low Side ... 83
4.2.3 Supply Voltage Monitor Output (SVMOUT, Optional) .. 84
4.2.4 Performance Optimization.. 84
4.2.5 Voltage Reference .. 85
4.2.6 Brown-Out Reset (BOR).. 85
4.2.7 Manual Control of the Power Management Module .. 85
4.2.8 I/O-Port Control.. 86
4.2.9 PMM Interrupts .. 86

4.3 PMM Registers ... 87

5 CPUX .. 95
5.1 CPU Introduction ... 96
5.2 Interrupts .. 98
5.3 CPU Registers .. 99

5.3.1 Program Counter (PC).. 99
5.3.2 Stack Pointer (SP) ... 100
5.3.3 Status Register (SR) .. 101
5.3.4 Constant Generator Registers (CG1 and CG2) ... 102
5.3.5 General Purpose Registers R4 to R15.. 103

5.4 Addressing Modes .. 105
5.4.1 Register Mode.. 106
5.4.2 Indexed Mode .. 107
5.4.3 Symbolic Mode... 111
5.4.4 Absolute Mode ... 116
5.4.5 Indirect Register Mode .. 118
5.4.6 Indirect, Autoincrement Mode .. 119
5.4.7 Immediate Mode ... 120

5.5 MSP430 and MSP430X Instructions ... 123
5.5.1 MSP430 Instructions .. 123
5.5.2 MSP430X Extended Instructions .. 127

4 Contents SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

5.6 Instruction Set Description... 139
5.6.1 Extended Instruction Binary Descriptions... 140
5.6.2 MPS430 Instructions .. 142
5.6.3 Extended Instructions ... 194
5.6.4 Address Instructions... 235

6 Flash Memory Controller ... 251
6.1 Flash Memory Introduction .. 252
6.2 Flash Memory Segmentation.. 253

6.2.1 Segment A .. 254
6.3 Flash Memory Operation .. 255

6.3.1 Erasing Flash Memory .. 255
6.3.2 Writing Flash Memory ... 259
6.3.3 Flash Memory Access During Write or Erase.. 266
6.3.4 Stopping Write or Erase Cycle ... 267
6.3.5 Checking Flash memory .. 267
6.3.6 Configuring and Accessing the Flash Memory Controller .. 267
6.3.7 Flash Memory Controller Interrupts ... 267
6.3.8 Programming Flash Memory Devices... 267

6.4 Flash Memory Registers ... 269

7 Digital I/O ... 273
7.1 Digital I/O Introduction ... 274
7.2 Digital I/O Operation.. 275

7.2.1 Input Register PxIN.. 275
7.2.2 Output Registers PxOUT ... 275
7.2.3 Direction Registers PxDIR.. 275
7.2.4 Pullup/Pulldown Resistor Enable Registers PxREN .. 275
7.2.5 Output Drive Strength Registers PxDS ... 276
7.2.6 Function Select Registers PxSEL ... 276
7.2.7 P1 and P2 Interrupts .. 276
7.2.8 Configuring Unused Port Pins.. 278

7.3 Digital I/O Registers .. 279

8 RAM Controller ... 285
8.1 RAMCTL Introduction .. 286
8.2 RAMCTL Operation... 286
8.3 RAMCTL Module Registers ... 287

9 DMA Controller ... 289
9.1 DMA Introduction ... 290
9.2 DMA Operation.. 292

9.2.1 DMA Addressing Modes .. 292
9.2.2 DMA Transfer Modes.. 292
9.2.3 Initiating DMA Transfers .. 297
9.2.4 Stopping DMA Transfers.. 299
9.2.5 DMA Channel Priorities ... 299
9.2.6 DMA Transfer Cycle Time .. 300
9.2.7 Using DMA With System Interrupts ... 300
9.2.8 DMA Controller Interrupts... 300
9.2.9 Using the USCI_B I2C Module with the DMA Controller.. 301

SLAU208–June 2008 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

9.2.10 Using ADC12 with the DMA Controller .. 302
9.2.11 Using DAC12 With the DMA Controller.. 302

9.3 DMA Registers .. 303

10 32-Bit Hardware Multiplier (MPY32) ... 311
10.1 32-Bit Hardware Multiplier Introduction .. 312
10.2 32-Bit Hardware Multiplier Operation .. 314

10.2.1 Operand Registers ... 314
10.2.2 Result Registers .. 316
10.2.3 Software Examples ... 317
10.2.4 Fractional Numbers... 317
10.2.5 Putting It All Together .. 322
10.2.6 Indirect Addressing of Result Registers ... 324
10.2.7 Using Interrupts ... 324
10.2.8 Using DMA .. 325

10.3 32-Bit Hardware Multiplier Registers ... 326

11 CRC Module ... 329
11.1 CRC Module Introduction .. 330
11.2 CRC Checksum Generation... 331

11.2.1 CRC Implementation ... 331
11.2.2 Assembler Examples... 332

11.3 CRC Module Registers... 333

12 Timer_A ... 335
12.1 Timer_A Introduction ... 336
12.2 Timer_A Operation ... 337

12.2.1 16-Bit Timer Counter ... 337
12.2.2 Starting the Timer... 338
12.2.3 Timer Mode Control .. 338
12.2.4 Capture/Compare Blocks .. 342
12.2.5 Output Unit .. 343
12.2.6 Timer_A Interrupts.. 346

12.3 Timer_A Registers .. 349

13 Timer_B ... 355
13.1 Timer_B Introduction ... 356

13.1.1 Similarities and Differences From Timer_A ... 356
13.2 Timer_B Operation ... 358

13.2.1 16-Bit Timer Counter ... 358
13.2.2 Starting the Timer... 358
13.2.3 Timer Mode Control .. 358
13.2.4 Capture/Compare Blocks .. 362
13.2.5 Output Unit .. 364
13.2.6 Timer_B Interrupts.. 367

13.3 Timer_B Registers .. 370

14 Real-Time Clock (RTC_A) ... 375
14.1 Real-Time Clock Introduction ... 376
14.2 Real-Time Clock Operation.. 378

14.2.1 Counter Mode ... 378
14.2.2 Calendar Mode.. 378

6 Contents SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

14.2.3 Real-Time Clock Interrupts .. 380
14.2.4 Real-Time Clock Calibration .. 382

14.3 Real-Time Clock Registers .. 383

15 Universal Serial Communication Interface, UART Mode ... 395
15.1 USCI Overview.. 396
15.2 USCI Introduction: UART Mode .. 397
15.3 USCI Operation: UART Mode... 399

15.3.1 USCI Initialization and Reset.. 399
15.3.2 Character Format ... 399
15.3.3 Asynchronous Communication Formats ... 399
15.3.4 Automatic Baud Rate Detection .. 402
15.3.5 IrDA Encoding and Decoding ... 404
15.3.6 Automatic Error Detection ... 405
15.3.7 USCI Receive Enable .. 406
15.3.8 USCI Transmit Enable ... 406
15.3.9 UART Baud Rate Generation ... 407
15.3.10 Setting a Baud Rate .. 409
15.3.11 Transmit Bit Timing ... 409
15.3.12 Receive Bit Timing .. 410
15.3.13 Typical Baud Rates and Errors.. 412
15.3.14 Using the USCI Module in UART Mode with Low Power Modes 415
15.3.15 USCI Interrupts .. 415

15.4 USCI Registers: UART Mode ... 416

16 Universal Serial Communication Interface, SPI Mode .. 425
16.1 USCI Overview.. 426
16.2 USCI Introduction: SPI Mode ... 427
16.3 USCI Operation: SPI Mode.. 429

16.3.1 USCI Initialization and Reset.. 429
16.3.2 Character Format ... 429
16.3.3 Master Mode .. 430
16.3.4 Slave Mode .. 431
16.3.5 SPI Enable... 431
16.3.6 Serial Clock Control .. 432
16.3.7 Using the SPI Mode with Low Power Modes ... 432
16.3.8 SPI Interrupts.. 433

16.4 USCI Registers: SPI Mode .. 434

17 Universal Serial Communication Interface, I2C Mode ... 439
17.1 USCI Overview.. 440
17.2 USCI Introduction: I2C Mode .. 441
17.3 USCI Operation: I2C Mode .. 443

17.3.1 USCI Initialization and Reset.. 443
17.3.2 I2C Serial Data .. 444
17.3.3 I2C Addressing Modes ... 445
17.3.4 I2C Module Operating Modes ... 446
17.3.5 I2C Clock Generation and Synchronization ... 455
17.3.6 Using the USCI Module in I2C Mode with Low Power Modes .. 456
17.3.7 USCI Interrupts in I2C Mode... 456

17.4 USCI Registers: I2C Mode... 458

SLAU208–June 2008 Contents 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

18 ADC12_A ... 465
18.1 ADC12_A Introduction ... 466
18.2 ADC12_A Operation.. 468

18.2.1 12-Bit ADC Core .. 468
18.2.2 ADC12_A Inputs and Multiplexer ... 468
18.2.3 Voltage Reference Generator ... 469
18.2.4 Auto Power-Down .. 469
18.2.5 Sample and Conversion Timing .. 470
18.2.6 Conversion Memory .. 471
18.2.7 ADC12_A Conversion Modes ... 472
18.2.8 Using the Integrated Temperature Sensor .. 477
18.2.9 ADC12_A Grounding and Noise Considerations ... 478
18.2.10 ADC12_A Interrupts .. 479

18.3 ADC12_A Registers .. 481

19 Embedded Emulation Module (EEM) ... 489
19.1 EEM Introduction.. 490
19.2 EEM Building Blocks ... 492

19.2.1 Triggers .. 492
19.2.2 Trigger Sequencer.. 492
19.2.3 State Storage (Internal Trace Buffer) .. 492
19.2.4 Cycle Counter ... 492
19.2.5 Clock Control .. 493

19.3 EEM Configurations .. 494

8 Contents SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

List of Figures
1-1 Interrupt Priority... 22
1-2 NMI Interrupts With Reentrance Protection... 23
1-3 Interrupt Processing.. 24
1-4 Return From Interrupt.. 25
1-5 Operation Modes ... 27
1-6 BOR/POR/PUC Reset Circuit... 31
2-1 Watchdog Timer Block Diagram.. 47
3-1 Unified Clock System Block Diagram.. 55
3-2 Modulator Patterns ... 59
3-3 Module Request Clock System... 61
3-4 Oscillator Fault Logic .. 63
3-5 Switch MCLK from DCOCLK to ACLK .. 64
4-1 System Frequency and Supply/Core Voltages ... 78
4-2 PMM Block Diagram ... 79
4-3 Powering Up the System .. 80
4-4 High-Side and Low-Side Voltage Failure.. 81
4-5 High-Side Supply Voltage Supervisor and Monitor .. 82
4-6 Low Side Supply Voltage Supervisor and Monitor... 83
4-7 Changing VCORE and the SVML and SVSL Levels.. 85
5-1 MSP430X CPU Block Diagram... 97
5-2 Program Counter Storage on the Stack for Interrupts... 98
5-3 Program Counter ... 99
5-4 Program Counter Storage on the Stack for CALLA.. 99
5-5 Stack Pointer .. 100
5-6 Stack Usage ... 100
5-7 PUSHX.A Format on the Stack ... 100
5-8 PUSH SP, POP SP Sequence.. 100
5-9 Status Register Bits .. 101
5-10 Register-Byte/Byte-Register Operation .. 103
5-11 Register-Word Operation .. 103
5-12 Word-Register Operation .. 104
5-13 Register – Address-Word Operation ... 104
5-14 Address-Word – Register Operation ... 105
5-15 Indexed Mode in Lower 64 KB.. 107
5-16 Indexed Mode in Upper Memory ... 108
5-17 Overflow and Underflow for the Indexed Mode ... 109
5-18 Example for the Indexed Mode ... 110
5-19 Symbolic Mode Running in Lower 64 KB.. 112
5-20 Symbolic Mode Running in Upper Memory ... 113
5-21 Overflow and Underflow for the Symbolic Mode.. 114
5-22 MSP430 Double Operand Instruction Format... 123
5-23 MSP430 Single Operand Instructions.. 124
5-24 Format of the Conditional Jump Instructions.. 125
5-25 Extension Word for Register Modes ... 128
5-26 Extension Word for Non-Register Modes.. 128
5-27 Example for an Extended Register/Register Instruction ... 129
5-28 Example for an Extended Immediate/Indexed Instruction... 130
5-29 Extended Format-I Instruction Formats .. 131
5-30 20-Bit Addresses in Memory .. 131
5-31 Extended Format-II Instruction Format... 132
5-32 PUSHM/POPM Instruction Format ... 133
5-33 RRCM, RRAM, RRUM and RLAM Instruction Format... 133

SLAU208–June 2008 List of Figures 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

5-34 BRA Instruction Format .. 133
5-35 CALLA Instruction Format ... 133
5-36 Decrement Overlap... 159
5-37 Stack After a RET Instruction ... 178
5-38 Destination Operand—Arithmetic Shift Left ... 180
5-39 Destination Operand—Carry Left Shift... 181
5-40 Rotate Right Arithmetically RRA.B and RRA.W .. 182
5-41 Rotate Right Through Carry RRC.B and RRC.W .. 183
5-42 Swap Bytes in Memory... 190
5-43 Swap Bytes in a Register .. 190
5-44 Rotate Left Arithmetically—RLAM[.W] and RLAM.A ... 217
5-45 Destination Operand-Arithmetic Shift Left ... 218
5-46 Destination Operand-Carry Left Shift .. 219
5-47 Rotate Right Arithmetically RRAM[.W] and RRAM.A .. 220
5-48 Rotate Right Arithmetically RRAX(.B,.A) – Register Mode.. 222
5-49 Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode .. 222
5-50 Rotate Right Through Carry RRCM[.W] and RRCM.A .. 223
5-51 Rotate Right Through Carry RRCX(.B,.A) – Register Mode .. 225
5-52 Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode .. 225
5-53 Rotate Right Unsigned RRUM[.W] and RRUM.A... 226
5-54 Rotate Right Unsigned RRUX(.B,.A) – Register Mode .. 227
5-55 Swap Bytes SWPBX.A Register Mode .. 231
5-56 Swap Bytes SWPBX.A In Memory ... 231
5-57 Swap Bytes SWPBX[.W] Register Mode .. 232
5-58 Swap Bytes SWPBX[.W] In Memory ... 232
5-59 Sign Extend SXTX.A ... 233
5-60 Sign Extend SXTX[.W] ... 233
6-1 Flash Memory Module Block Diagram ... 252
6-2 Flash Memory Segments, 256-KB Example .. 253
6-3 Erase Cycle Timing... 256
6-4 Erase Cycle From Flash ... 257
6-5 Erase Cycle From RAM.. 258
6-6 Byte/Word/Long-Word Write Timing.. 259
6-7 Initiating a Byte/Word Write From Flash ... 260
6-8 Initiating a Byte/Word Write From RAM ... 261
6-9 Initiating Long-Word Write From Flash .. 262
6-10 Initiating Long-Word Write from RAM .. 263
6-11 Block-Write Cycle Timing .. 264
6-12 Block Write Flow .. 265
6-13 User-Developed Programming Solution ... 268
9-1 DMA Controller Block Diagram ... 291
9-2 DMA Addressing Modes ... 292
9-3 DMA Single Transfer State Diagram ... 294
9-4 DMA Block Transfer State Diagram .. 295
9-5 DMA Burst-Block Transfer State Diagram... 297
10-1 32-Bit Hardware Multiplier Block Diagram... 313
10-2 Q15 Format Representation... 318
10-3 Q14 Format Representation... 318
10-4 Saturation Flow Chart .. 320
10-5 Multiplication Flow Chart... 322
11-1 LFSR Implementation of the CRC-CCITT Standard, Bit 0 is the MSB of the result 330
11-2 Implementation of the CRC-CCITT... 331
12-1 Timer_A Block Diagram.. 337

10 List of Figures SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

12-2 Up Mode ... 339
12-3 Up Mode Flag Setting .. 339
12-4 Continuous Mode ... 339
12-5 Continuous Mode Flag Setting.. 339
12-6 Continuous Mode Time Intervals ... 340
12-7 Up/Down Mode.. 340
12-8 Up/Down Mode Flag Setting .. 341
12-9 Output Unit in Up/Down Mode .. 341
12-10 Capture Signal (SCS = 1).. 342
12-11 Capture Cycle ... 343
12-12 Output Example—Timer in Up Mode... 344
12-13 Output Example—Timer in Continuous Mode .. 345
12-14 Output Example—Timer in Up/Down Mode ... 346
12-15 Capture/Compare TACCR0 Interrupt Flag .. 347
13-1 Timer_B Block Diagram.. 357
13-2 Up Mode ... 359
13-3 Up Mode Flag Setting .. 359
13-4 Continuous Mode ... 360
13-5 Continuous Mode Flag Setting.. 360
13-6 Continuous Mode Time Intervals ... 360
13-7 Up/Down Mode.. 361
13-8 Up/Down Mode Flag Setting .. 361
13-9 Output Unit in Up/Down Mode .. 362
13-10 Capture Signal (SCS = 1).. 363
13-11 Capture Cycle ... 363
13-12 Output Example—Timer in Up Mode... 365
13-13 Output Example—Timer in Continuous Mode .. 366
13-14 Output Example—Timer in Up/Down Mode ... 367
13-15 Capture/Compare TBCCR0 Interrupt Flag .. 368
14-1 Real-Time Clock .. 377
15-1 USCI_Ax Block Diagram: UART Mode (UCSYNC = 0).. 398
15-2 Character Format ... 399
15-3 Idle-Line Format... 400
15-4 Address-Bit Multiprocessor Format... 401
15-5 Auto Baud Rate Detection – Break/Synch Sequence.. 402
15-6 Auto Baud Rate Detection – Synch Field.. 402
15-7 UART vs IrDA Data Format ... 404
15-8 Glitch Suppression, USCI Receive Not Started .. 406
15-9 Glitch Suppression, USCI Activated.. 406
15-10 BITCLK Baud Rate Timing with UCOS16 = 0... 407
15-11 Receive Error.. 410
16-1 USCI Block Diagram: SPI Mode .. 428
16-2 USCI Master and External Slave ... 430
16-3 USCI Slave and External Master ... 431
16-4 USCI SPI Timing with UCMSB = 1 ... 432
17-1 USCI Block Diagram: I2C Mode... 442
17-2 I2C Bus Connection Diagram.. 443
17-3 I2C Module Data Transfer.. 444
17-4 Bit Transfer on the I2C Bus .. 444
17-5 I2C Module 7-Bit Addressing Format ... 445
17-6 I2C Module 10-Bit Addressing Format ... 445
17-7 I2C Module Addressing Format with Repeated START Condition ... 445
17-8 I2C Time Line Legend .. 446

SLAU208–June 2008 List of Figures 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

17-9 I2C Slave Transmitter Mode ... 447
17-10 I2C Slave Receiver Mode .. 448
17-11 I2C Slave 10-bit Addressing Mode.. 449
17-12 I2C Master Transmitter Mode.. 451
17-13 I2C Master Receiver Mode... 453
17-14 I2C Master 10-bit Addressing Mode .. 454
17-15 Arbitration Procedure Between Two Master Transmitters... 454
17-16 Synchronization of Two I2C Clock Generators During Arbitration .. 455
18-1 ADC12_A Block Diagram .. 467
18-2 Analog Multiplexer .. 468
18-3 Extended Sample Mode ... 470
18-4 Pulse Sample Mode .. 471
18-5 Analog Input Equivalent Circuit ... 471
18-6 Single-Channel, Single-Conversion Mode... 473
18-7 Sequence-of-Channels Mode ... 474
18-8 Repeat-Single-Channel Mode... 475
18-9 Repeat-Sequence-of-Channels Mode.. 476
18-10 Typical Temperature Sensor Transfer Function .. 478
18-11 ADC12_A Grounding and Noise Considerations ... 479
19-1 Large Implementation of the Embedded Emulation Module (EEM).. 491

12 List of Figures SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

List of Tables
1-1 Connection of Unused Pins ... 30
1-2 Interrupt Sources, Flags, and Vectors ... 32
1-3 SFR Base Address... 33
1-4 Special Function Registers.. 33
1-8 SYS Base Address... 37
1-9 SYS Configuration Registers ... 37
2-1 Watchdog Timer Base Register .. 50
2-2 Watchdog Timer Registers.. 50
3-1 Unified Clock System Registers.. 66
4-1 High-Side Supply Voltage Supervisor and Monitor Levels (see the device-specific datasheet)................. 81
4-2 Low-Side Supply Voltage Supervisor and Monitor Levels (see the device specific datasheet).................. 82
4-3 Power Mode Overwrite (see also device specific datasheet) .. 85
4-4 SVSH,L and SVMH,L Performance When SVSHACE = SVSLACE = 0... 86
4-5 SVSH,L and SVMH,L Performance When SVSHACE = SVSLACE = 1... 86
4-6 PMM Registers ... 87
5-1 Description of Status Register Bits ... 101
5-2 Values of Constant Generators CG1, CG2.. 102
5-3 Source/Destination Addressing ... 105
5-4 MSP430 Double Operand Instructions... 123
5-5 MSP430 Single Operand Instructions.. 124
5-6 Conditional Jump Instructions... 125
5-7 Emulated Instructions .. 125
5-8 Interrupt, Return, and Reset Cycles and Length ... 126
5-9 MSP430 Format-II Instruction Cycles and Length.. 126
5-10 MSP430 Format-I Instructions Cycles and Length ... 127
5-11 Description of the Extension Word Bits for Register Mode.. 128
5-12 Description of the Extension Word Bits for Non-Register Modes .. 128
5-13 Extended Double Operand Instructions.. 130
5-14 Extended Single-Operand Instructions... 132
5-15 Extended Emulated Instructions .. 134
5-16 Address Instructions, Operate on 20-Bit Register Data ... 135
5-17 MSP430X Format II Instruction Cycles and Length .. 136
5-18 MSP430X Format-I Instruction Cycles and Length... 137
5-19 Address Instruction Cycles and Length .. 138
5-20 Instruction Map of MSP430X.. 139
6-1 Erase Modes .. 255
6-2 Write Modes ... 259
6-3 Flash Access While the Flash is busy (BUSY = 1)... 266
6-4 Flash Controller Registers ... 269
7-1 I/O Configuration.. 275
7-2 Digital I/O Registers .. 279
8-1 RAMCTL Module Register... 287
9-1 DMA Transfer Modes... 293
9-2 DMA Trigger Operation .. 299
9-3 Maximum Single-Transfer DMA Cycle Time .. 300
9-4 DMA Registers .. 303
10-1 Result Availability (MPYFRAC = 0, MPYSAT = 0) ... 314
10-2 OP1 Registers... 315
10-3 OP2 Registers... 315

SLAU208–June 2008 List of Tables 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

10-4 SUMEXT Contents and MPYC Contents .. 316
10-5 Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0) .. 319
10-6 Result Availability in Saturation Mode (MPYSAT = 1) ... 319
10-7 32-Bit Hardware Multiplier Registers ... 326
10-8 Alternative Registers ... 327
11-1 CRC Module Registers... 333
12-1 Timer Modes .. 338
12-2 Output Modes ... 344
12-3 Timer_A7 Registers .. 349
13-1 Timer Modes .. 359
13-2 TBCLx Load Events .. 364
13-3 Compare Latch Operating Modes .. 364
13-4 Output Modes ... 365
13-5 Timer_B Registers .. 370
14-1 Real-Time Clock Registers .. 383
14-2 Word Access to Registers in Counter Mode .. 384
15-1 Receive Error Conditions .. 405
15-2 BITCLK Modulation Pattern ... 407
15-3 BITCLK16 Modulation Pattern .. 408
15-4 Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 ... 412
15-5 Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 ... 413
15-6 USCI_Ax Registers ... 416
15-7 Word Access to USCI_Ax Registers ... 416
16-1 UCxSTE Operation ... 429
16-2 USCI_xx Registers ... 434
16-3 Word Access to USCI_xx Registers.. 434
17-1 I2C State Change Interrupt Flags ... 456
17-2 USCI_Bx Registers ... 458
17-3 Word Access to USCI_Bx Registers ... 458
18-1 Conversion Mode Summary... 472
18-2 ADC12_A Registers .. 481
19-1 5xx EEM Configurations ... 494

14 List of Tables SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Preface
SLAU208–June 2008

Read This First

About This Manual
This manual describes the modules and peripherals of the MSP430x5xx family of devices. Each
description presents the module or peripheral in a general sense. Not all features and functions of all
modules or peripherals may be present on all devices. In addition, modules or peripherals may differ in
their exact implementation between device families, or may not be fully implemented on an individual
device or device family.

Pin functions, internal signal connections and operational parameters differ from device to device. The
user should consult the device-specific data sheet for these details.

Related Documentation From Texas Instruments
For related documentation see the web site http://www.ti.com/msp430.

FCC Warning
This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required
to take whatever measures may be required to correct this interference.

Notational Conventions
Program examples, are shown in a special typeface.

Glossary

ACLK Auxiliary Clock
ADC Analog-to-Digital Converter
BOR Brown-Out Reset; see System Resets, Interrupts, and Operating Modes
BSL Bootstrap Loader; see www.ti.com/msp430 for application reports
CPU Central Processing Unit See RISC 16-Bit CPU
DAC Digital-to-Analog Converter
DCO Digitally Controlled Oscillator; see FLL+ Module
dst Destination; see RISC 16-Bit CPU
FLL Frequency Locked Loop; see FLL+ Module
GIE Modes General Interrupt Enable; see System Resets Interrupts and Operating
INT(N/2) Integer portion of N/2
I/O Input/Output; see Digital I/O
ISR Interrupt Service Routine
LSB Least-Significant Bit

SLAU208–June 2008 Read This First 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com

LSD Least-Significant Digit
LPM Low-Power Mode; see System Resets Interrupts and Operating Modes; also named PM for Power Mode
MAB Memory Address Bus
MCLK Master Clock
MDB Memory Data Bus
MSB Most-Significant Bit
MSD Most-Significant Digit
NMI (Non)-Maskable Interrupt; see System Resets Interrupts and Operating Modes; also split to UNMI and SNMI
PC Program Counter; see RISC 16-Bit CPU
PM Power Mode See; system Resets Interrupts and Operating Modes
POR Power-On Reset; see System Resets Interrupts and Operating Modes
PUC Power-Up Clear; see System Resets Interrupts and Operating Modes
RAM Random Access Memory
SCG System Clock Generator; see System Resets Interrupts and Operating Modes
SFR Special Function Register; see System Resets, Interrupts, and Operating Modes
SMCLK Sub-System Master Clock
SNMI System NMI; see System Resets, Interrupts, and Operating Modes
SP Stack Pointer; see RISC 16-Bit CPU
SR Status Register; see RISC 16-Bit CPU
src Source; see RISC 16-Bit CPU
TOS Top of stack; see RISC 16-Bit CPU
UNMI User NMI; see System Resets, Interrupts, and Operating Modes
WDT Watchdog Timer; see Watchdog Timer

Register Bit Conventions
Each register is shown with a key indicating the accessibility of the each individual bit, and the initial
condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility
rw Read/write
r Read only
r0 Read as 0
r1 Read as 1
w Write only

w0 Write as 0
w1 Write as 1
(w) No register bit implemented; writing a 1 results in a pulse. The register bit is always read as 0.
h0 Cleared by hardware
h1 Set by hardware

-0,-1 Condition after PUC
-(0),-(1) Condition after POR
-[0],-[1] Condition after BOR
-{0},-{1} Condition after Brownout

Read This First16 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 1
SLAU208–June 2008

System Resets, Interrupts, and Operating Modes, System
Control Module (SYS)

The System Control Module (SYS) is integrated into various devices with different feature sets. It provides
public services like Device-ID and TI-private services.

The following list shows the basic feature set of SYS.
• Power on reset (BOR/POR) handling
• Power up clear (PUC) handling
• NMI (SNMI/UNMI) event source selection and management
• Address decoding
• Providing an user data exchange mechanism via the JTAG Mailbox (JMB)
• Boot strap loader (BSL) entry mechanism
• Configuration management (device descriptors)
• Providing interrupt vector generators for Reset and NMIs
• Watch dog timer (WDT_A)

Topic .. Page

1.1 System Control Module Introduction .. 18
1.2 Principle of Operation.. 18
1.3 Memory Map–Uses and Abilities ... 20
1.4 Interrupts ... 22
1.5 Operating Modes... 26
1.6 Principles for Low-Power Applications .. 30
1.7 Connection of Unused Pins.. 30
1.8 Reset and Subtypes .. 30
1.9 Interrupt Vectors ... 31
1.10 Special Function Registers .. 33
1.11 SYS Registers... 37

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.1 System Control Module Introduction

1.2 Principle of Operation

1.2.1 Device Descriptor Table

1.2.1.1 Identifying the Device type

1.2.1.2 MSP430 Calibration Descriptors

1.2.2 Boot Code

1.2.3 Boot Strap Loader (BSL)

System Control Module Introduction www.ti.com

The SYS module is responsible for interaction between various modules throughout the system. The
functions SYS provides for are not inherent to the modules themselves. Address decoding, bus arbitration,
interrupt event collection/prioritization, and reset generation are some of the many functions that SYS
provides.

The SYS module provides a series of services that can be used by the application program. Some of
these services however can be locked to fulfill code protection requirements. Some bit fields used for
common functions are defined as reserved when not implemented on a particular device; this allows a
maximum of compatibility among the devices within the MSP430 microcontroller family with SYS modules.

Each MSP430 provides a data structure in memory that allows an unambiguous identification of the
device. Device adaptive SW-tools and libraries need a more detailed description of the available modules
on a given device. The SYS module provides this information and can be used by device adaptive SW
tools and libraries to clearly identify a particular device and all modules/capabilities contained within it. The
validity of the device descriptor can be verified by CRC (cyclic redundancy check).

The value read at address location 00FF0h identifies the family branch of the device. All values starting
with 80h indicate a hierarchical structure consisting of the info block and a TLV (tag-length-value) structure
containing the various descriptors. The info block contains the device ID, die revisions, SW revisions of
boot code, and other manufacturer and tool related information. The descriptors contains information
about the available peripherals, their subtypes and addresses. This allows to build adaptive HW drivers for
operating systems.

Any other value than 80h read at address location 00FF0h indicates the device is of an older family and
contains a flat descriptor beginning at location 0FF0h.

The MSP430 features a common data structure for calibration data. This structure starts with a predefined
header of constant length that simplifies extracting some basic information like Chip_ID, hardware
revisions, etc., and is followed by a flexible TLV list containing various calibration information required by
the device.

The boot code will always be executed after a BOR. The boot performs calibration of the oscillator and
reference voltages. In addition, it checks for existing signatures (predefined data pattern) that indicate the
presence of a customer definable boot strap loader (BSL).

The MSP430 bootstrap loader (BSL) is software that is executed after startup when a certain bootstrap
loader entry condition is applied. A BSL enables the user to communicate with embedded memory in the
MSP430 microcontroller during the prototyping phase, final production, and in service. All memory
mapped resources, the programmable memory (flash memory), the data memory (RAM) and the
peripherals, can be modified by the BSL as required. The user can define its own BSL-Code for flash
based devices and protect it against erasure and unintentional or unauthorized access.

A basic BSL program is provided by TI. This supports the commonly used UART protocol with RS232

18 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.2.4 JTAG Mailbox System (JMB)

www.ti.com Principle of Operation

interfacing, allowing flexible use of both hardware and software. To use the bootstrap loader, a specific
BSL entry sequence has to be applied to specific device pins. An added sequence of commands initiates
the desired function. A boot loading session can be exited by continuing operation at a defined user
program address, or by the reset condition. Access to the MSP430 memory via the bootstrap loader is
protected against misuse by a user-defined password.

The SYS module provides the capability to exchange user data via the regular JTAG test/debug interface.
The idea behind the JTAG mailbox system is to have a direct interface to the CPU during debugging,
programming and test that is identical for all ‘430 devices of this family and uses only few or no user
application resources. The JTAG interface was chosen because it is available on all ‘430 devices and is a
dedicated resource for debugging, programming and test.

Applications of the JTAG Mailbox System are:
• Fast flash programming
• Providing entry password for software security fuse
• Run-time data exchange (RTDX)

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.3 Memory Map–Uses and Abilities

1.3.1 Vacant Memory Space

1.3.2 JTAG Lock Mechanism

Memory Map–Uses and Abilities www.ti.com

This memory map represents the MSP430F5438 device. Though the address ranges differs from device
to device, overall behavior remains the same.

Can Generates NMI on read/write/fetch

Generates PUC on fetch access

Protectable for read/write accesses

Always able to access PMM registers from (1); Mass erase by user able from

Mass erase by user able from

Block erase by user able from

Segment erase by user able from

Address Name/Purpose Properties

00000h-00FFFh Peripherals with gaps

00000h-000FFh Reserved for system-extension

00100h-00FEFh Peripherals x

00FF0h-00FF3h Descriptor type x

00FF4h-00FF7h start address of descriptor structure x

01000h-011FFh BSL_Seg_0 x x

01200h-013FFh BSL_Seg_1 x x

01400h-015FFh BSL_Seg_2 x x

01600h-017FFh BSL_Seg_3 x x x

017FCh-017FFh BSL Signature Location

01800h-0187Fh User_Info_D x

01880h-018FFh User_Info_C x

01900h-0197Fh User_Info_B x

01980h-019FFh User_Info_A x

01A00h-01A7Fh Calibration x x

01A80h-01AFFh Info-Bock, Device ID, Descriptor

01C00h-05BFFh RAM 16k

05B80-05BFFh Alternate Interrupt Vectors

05C00h-0FFFFh x x (1) xProgram_lo (64-x5)k

0FF7Ch-0FF7Fh Application Signature Location

0FF80h-0FFFFh Interrupt Vectors

10000h-45BFFh x x xProgram_hi (192+x5)k

45C00h-FFFFFh Vacant x (2)

(1) Access rights are separately programmable for SYS and PMM.
(2) On vacant memory space, the value 03FFFh will be driven on the data bus.

Accesses to vacant memory space will generate a NMI interrupt. Reads from vacant memory results in the
value 3FFFh. In the case of a fetch, this is taken as JMP $. Fetch accesses from vacant peripheral space
will result in a PUC. After the Boot code is executed, it behaves like vacant memory space and causes a
NMI on access.

After a BOR the memory location 01BFEh will be taken as the reset-vector to start the boot code. The
Boot code evaluates the signatures of an optional boot strap loader (BSL) and the application is able to
lock or unlock JTAG for debugging, all that depending on the signatures.

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)20 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.3.3 SYS Interrupt Vector Generators

1.3.3.1 SYSSNIV Software Example

www.ti.com Memory Map–Uses and Abilities

The SYS module collects all user NMI (UNMI) sources, system NMI (SNMI) sources, and BOR/POR/PUC
sources of all the other modules. They are combined into three interrupt vectors. The interrupt vector
registers SYSRSTIV, SYSSNIV, SYSUNIV are used to determine which flags requested an interrupt or a
BOR/POR/PUC reset. The interrupt with the highest priority of a group, when enabled, generates a
number in the corresponding SYSRSTIV, SYSSNIV, SYSUNIV register. This number can be directly
added to the program counter, causing a branch to the appropriate portion of the interrupt service routine.
Disabled interrupts do not affect the SYSRSTIV, SYSSNIV, SYSUNIV values. A read access, read to the
SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets the highest pending interrupt flag of that
register. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial
interrupt. A write access to the SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets all pending
interrupt flags of the group.

The following software example shows the recommended use of SYSSNIV. The SYSSNIV value is added
to the PC to automatically jump to the appropriate routine. For SYSRSTIV and SYSUNIV a similar SW
approach can be chosen. The following is an example for a generic MSP430x5xx device. Vectors can
change in priority for a given device. The device specific data sheet should be referenced for the vector
locations. All vectors should be coded symbolically to allow for easy portability of code.

SNI_ISR: ADD &SYSSNIV,PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP SVML_ISR ; Vector 2: SVMLIFG
JMP SVMH_ISR ; Vector 4: SVMHIFG
JMP DLYL_ISR ; Vector 6: DLYLIFG
JMP DLYH_ISR ; Vector 8: DLYHIFG
JMP VMA_ISR ; Vector 10: VMAIFG
JMP JMBI_ISR ; Vector 12: JMBINIFG

JMBO_ISR: ; Vector 14: JMBOUTIFG
... ; Task_E starts here
RETI ; Return

SVML_ISR: ; Vector 2
... ; Task_2 starts here
RETI ; Return

SVMH_ISR: ; Vector 4
... ; Task_4 starts here
RETI ; Return

DELL_ISR: ; Vector 6
... ; Task_6 starts here
RETI ; Return

DELH_ISR: ; Vector 8
... ; Task_8 starts here
RETI ; Return

VMA_ISR: ; Vector A
... ; Task_A starts here

RETI ; Return
JMBI_ISR: ; Vector C

... ; Task_C starts here
RETI ; Return

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.4 Interrupts

POR/PUC
circuit

Interrupt
daisy chain
and vectors

CPU
PUC

INT

NMI

RST/NMI

KEYV

.
.

.

MAB - 6LSBs

Module_A_int

Module_B_int

WDT_int

Module_C_int

Module_D_int

high priority

low priority

GIE
System NMI

User NMI

.
.

.
.

1.4.1 (Non)-Maskable Interrupts (NMI)

Interrupts www.ti.com

Interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as
shown in Figure 1-1. Interrupt priorities determine what interrupt is taken when more than one interrupt is
pending simultaneously.

There are three types of interrupts:
• System reset
• (Non)-maskable NMI
• Maskable

Figure 1-1. Interrupt Priority

The MSP430x5xx family supports two levels of NMI interrupts, system NMI (SNMI) and user NMI (UNMI).
In general, (Non)-maskable NMI interrupts are not masked by the general interrupt enable bit (GIE). The
user NMI sources are enabled by individual interrupt enable bits (NMIIE, ACCVIE, OFIE). When a user
NMI interrupt is accepted, other NMIs of that level are automatically disabled to prevent nesting of
consecutive NMIs of the same level. Program execution begins at the address stored in the
(non)-maskable interrupt vector as shown in Table 1-2. To allow software backward compatibility to users
of earlier MSP430 families, the software may, but does not need to re-enable user NMI sources. The block
diagram for NMI sources is shown in Figure 1-2.

A (non)-maskable user NMI interrupt can be generated by following sources:
• An edge on the RST/NMI pin when configured in NMI mode
• An oscillator fault occurs
• An access violation to the flash memory

A (non)-maskable system NMI interrupt can be generated by following sources:
• Power Management Module (PMM) SVML/SVMH supply voltage fault
• PMM time out
• Vacant memory access
• JTAG mailbox event

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)22 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.4.2 SNMI Timing

ACCV ACCVIFG

IE1.5 (ACCVIE)

NMI IFG1.4 (NMIIFG)

IE1.4 (NMIIE)

...IFG

...IE

OSC Fault IFG1.1 (OFIFG)

IE1.1 (OFIE)

User NMI

S

R

…
.

.
User NMI

_IRQA

SVML PMMSVMLIFG

PMMSVMLIE

SVMH PMMSVMHIFG

PMMSVMHIE

...IFG

...IE

JMB event SYSJMBIFG

SYSJMBIE

S

R

PUC

RETI

…
.

.

System NMI

_IRQA

System NMI

PUC

RETI

Del. FF

www.ti.com Interrupts

Consecutive system NMIs that are fired in a higher rate than they can be handled (interrupt storm) allow
the main program to execute one instruction after the system NMI handler is finished with an RETI
instruction, before the system NMI handler is executed again. Consecutive system NMIs are not
interrupted by user NMIs in this case. This avoids a blocking behavior on high SNMI rates.

Figure 1-2. NMI Interrupts With Reentrance Protection

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.4.3 Maskable Interrupts

Interrupt Processing

1.4.4.1 Interrupt Acceptance

Before

Interrupt

After

Interrupt

SP TOS

SP TOS

Item1

Item2

Item1

Item2

PC

SR

Interrupts www.ti.com

Maskable interrupts are caused by peripherals with interrupt capability. Each maskable interrupt source
can be disabled individually by an interrupt enable bit, or all maskable interrupts can be disabled by the
general interrupt enable (GIE) bit in the status register (SR).

Each individual peripheral interrupt is discussed in its respective module chapter of this manual.

When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are
set, the interrupt service routine is requested. Only the individual enable bit must be set for
(non)-maskable interrupts to be requested.

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt request, and lasting until the
start of execution of the first instruction of the interrupt-service routine, as shown in Figure 1-3. The
interrupt logic executes the following:
1. Any currently executing instruction is completed.
2. The PC, which points to the next instruction, is pushed onto the stack.
3. The SR is pushed onto the stack.
4. The interrupt with the highest priority is selected if multiple interrupts occurred during the last

instruction and are pending for service.
5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set

for servicing by software.
6. The SR is cleared. This terminates any low-power mode. Because the GIE bit is cleared, further

interrupts are disabled.
7. The content of the interrupt vector is loaded into the PC: the program continues with the interrupt

service routine at that address.

Figure 1-3. Interrupt Processing

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)24 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.4.4.2 Return From Interrupt

Item1

Item2

SP TOS

Item1

Item2SP TOS

PC

SR

Before After

PC

SR

Return From Interrupt

1.4.4.3 Interrupt Nesting

www.ti.com Interrupts

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions and is illustrated in Figure 1-4.
1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, etc. are

now in effect, regardless of the settings used during the interrupt service routine.
2. The PC pops from the stack and begins execution at the point where it was interrupted.

Figure 1-4. Return From Interrupt

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting
is enabled, any interrupt occurring during an interrupt service routine will interrupt the routine, regardless
of the interrupt priorities.

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.5 Operating Modes
Operating Modes www.ti.com

The MSP430 family is designed for ultralow-power applications and uses different operating modes shown
in Figure 1-5.

The operating modes take into account three different needs:
• Ultralow-power
• Speed and data throughput
• Minimization of individual peripheral current consumption

The low-power modes LPM0 through LPM4 are configured with the CPUOFF, OSCOFF, SCG0, and
SCG1 bits in the status register. The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1
mode-control bits in the status register is that the present operating mode is saved onto the stack during
an interrupt service routine. Program flow returns to the previous operating mode if the saved SR value is
not altered during the interrupt service routine. Program flow can be returned to a different operating mode
by manipulating the saved SR value on the stack inside of the interrupt service routine. The mode-control
bits and the stack can be accessed with any instruction. When setting any of the mode-control bits, the
selected operating mode takes effect immediately. Peripherals operating with any disabled clock are
disabled until the clock becomes active. The peripherals may also be disabled with their individual control
register settings. All I/O port pins and RAM/registers are unchanged. Wake-up is possible through all
enabled interrupts.

When LPM5 is entered, the voltage regulator of the Power Management Module (PMM) is disabled. All
RAM and register contents are lost, as well as, I/O configuration. Wake-up is possible via a power
sequence or an RST/NMI event. On some devices, wake-up from I/O is also possible. Please refer to the
device specific datasheet.

26 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

BOR

POR

PUC

Security
violation

DoBOR
event

WDT Active
Time expired, Overflow

WDT Active
Security Key Violation

FLL unlock fault

Flash key violation

RST/NMI
(Reset wakeup)

Port wakeup

Peripheral area fetch

SVSH fault

SVSL fault

DoPOR event

Load calibration data

Active Mode: CPU is Active
Various Modules are active

LPM0:
CPU/MCLK = off

FLL = on
ACLK = on
V = onCORE

LPM1:
CPU/MCLK = off

FLL = off
ACLK = on

= onVCORE

LPM2:
CPU/MCLK = off

FLL = off
ACLK = on

= onVCORE

LPM3:
CPU/MCLK = off

FLL = off
ACLK = on

= onVCORE

LPM4:
CPU/MCLK = off

FLL = off
ACLK = off

= onVCORE

LPM5:
= off

(all modules off)
VCORE

CPUOFF=1
OSCOFF=0

SCG0=0
SCG1=0

CPUOFF=1
OSCOFF=0

SCG0=1
SCG1=0 CPUOFF=1

OSCOFF=0
SCG0=0
SCG1=1

CPUOFF=1
OSCOFF=0

SCG0=1
SCG1=1

CPUOFF=1
OSCOFF=1

SCG0=1
SCG1=1

PMMREGOFF = 1

PMM key violation

†

†

†
†

†

to LPM5

SVMH OVP-fault

SVML OVP-fault

Brownout
fault

From active mode

Events

Operating modes/Reset phases

Arbitrary transitions
† Any enabled interrupt and NMI performs this transition
‡ An enabled reset always restarts the device

RST/NMI
(Reset event)

‡

www.ti.com Operating Modes

Figure 1-5. Operation Modes

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.5.1 Entering and Exiting Low-Power Modes

Operating Modes www.ti.com

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 0 0 Active CPU, MCLK are active.

ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
0 0 0 1 LPM0 CPU, MCLK are disabled.

ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
DCO enabled if sources ACLK, MCLK, or SMCLK (SMCLKOFF =
0).
FLL enabled if DCO enabled.

0 1 0 1 LPM1 CPU, MCLK are disabled.
ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
DCO enabled if sources ACLK or SMCLK (SMCLKOFF = 0).
FLL disabled.

1 0 0 1 LPM2 CPU, MCLK are disabled.
ACLK is active. SMCLK is disabled.
DCO enabled if sources ACLK.
FLL disabled.

1 1 0 1 LPM3 CPU, MCLK are disabled.
ACLK is active. SMCLK is disabled.
DCO enabled if sources ACLK.
FLL disabled.

1 1 1 1 LPM4 CPU and all clocks disabled
1 1 1 1 LPM5 When PMMREGOFF = 1, regulator disabled. No memory

retention.

An enabled interrupt event wakes the MSP430 from low-power operating modes LPM0 through LPM4.
LPM5 exit is only possible via a power cycle or a RST/NMI event or wakeup from I/O on when available
on some devices. The program flow entering and exiting LPM0 through LPM4 is:
• Enter interrupt service routine:

– The PC and SR are stored on the stack
– The CPUOFF, SCG1, and OSCOFF bits are automatically reset

• Options for returning from the interrupt service routine:
– The original SR is popped from the stack, restoring the previous operating mode.
– The SR bits stored on the stack can be modified within the interrupt service routine returning to a

different operating mode when the RETI instruction is executed.

; Enter LPM0 Example
BIS #GIE+CPUOFF,SR ; Enter LPM0

; ... ; Program stops here
;
; Exit LPM0 Interrupt Service Routine

BIC #CPUOFF,0(SP) ; Exit LPM0 on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3

; ... ; Program stops here
;
; Exit LPM3 Interrupt Service Routine

BIC #CPUOFF+SCG1+SCG0,0(SP) ; Exit LPM3 on RETI
RETI

28 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.5.1.1 Extended Time in Low-Power Modes

www.ti.com Operating Modes

; Enter LPM4 Example
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4

; ... ; Program stops here
;
; Exit LPM4 Interrupt Service Routine

BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SP) ; Exit LPM4 on RETI
RETI

The following code example shows how to enter LPM5 mode. Exit from LPM5 is only possible with a
RST/NMI event, a power on cycle, or if available on some devices via specific I/O. Upon exit from the
device, a complete reset sequence is performed. Please refer to the Power Management Module Chapter
for further details.
; Enter LPM5 Example

BIS #PMMREGOFF, &PMMCTL0 ;
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ;Enter LPM5 when PMMREGOFF is set.

The temperature coefficient of the DCO should be considered when the DCO is disabled for extended
low-power mode periods. If the temperature changes significantly, the DCO frequency at wake-up may be
significantly different from when the low-power mode was entered and may be out of the specified
operating range. To avoid this, the DCO can be set to it lowest value before entering the low-power mode
for extended periods of time where temperature can change.

; Enter LPM4 Example with lowest DCO Setting

BIC #SCG0, SR ; Disable FLL
MOV #0100h, &UCSCTL0 ; Set DCO tap to first tap, clear

modulation.
BIC #DCORSEL2+DCORSEL1+DCORSEL0,&UCSCTL1 ; Lowest DCORSEL
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4

; ... ; Program stops
;

; Interrupt Service Routine
BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SR) ; Exit LPM4 on RETI
RETI

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.6 Principles for Low-Power Applications

1.7 Connection of Unused Pins

1.8 Reset and Subtypes

Principles for Low-Power Applications www.ti.com

Often, the most important factor for reducing power consumption is using the MSP430's clock system to
maximize the time in LPM3 or LPM4 modes whenever possible.
• Use interrupts to wake the processor and control program flow.
• Peripherals should be switched on only when needed.
• Use low-power integrated peripheral modules in place of software driven functions. For example

Timer_A and Timer_B can automatically generate PWM and capture external timing, with no CPU
resources.

• Calculated branching and fast table look-ups should be used in place of flag polling and long software
calculations.

• Avoid frequent subroutine and function calls due to overhead.
• For longer software routines, single-cycle CPU registers should be used.

The correct termination of all unused pins is listed in Table 1-1.

Table 1-1. Connection of Unused Pins
Pin Potential Comment
AVCC DVCC

AVSS DVSS

Px.0 to Px.7 Open Switched to port function, output direction
47-kΩ pullup or internal pullup selected with 10-nFRST/NMI DVCC or VCC pulldown

TDO/TDI/TMS/TCK Open
TEST Open

BOR, POR, and PUC can be seen as a special type of a non-maskable interrupt with restart behavior of
the complete system. BOR (brownout reset), POR (power on reset) and PUC (power up clear) are
subtypes of it. Figure 1-6 shows their dependencies; A BOR reset represents the highest impacts to HW
and causes a reload of device dependent HW while a PUC only resets the CPU and starts over with
program execution.

30 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

BORshaddow

brownout circuit

PMMRSTIFG

RST/NMI

SYSNMI

s

s

PMMBORIFG

DoBor event

s

BOR Delay

t BOR BOR

PMMSVSHIFG

PMMPORIFG

DoPor event

s

from SVSH

s

PMMSVSHIE

PMMVLRHIFG

from SVMH

s

PMMVLRHPE

PMMSVSLIFG

from SVSL

s

PMMSVSLIE

PMMVLRLIFG

from SVML

s

PMMVLRLPE

POR Delay

POR POR

WDTPWVIFG

WDT_PWV

s

EN

from port

wakeup logic

s

OPTIONAL

PUC Logic

Module

PUCs

…
.

MCLK

notRST

Brownout Delay

t Brownout

clr

clr

clr

1.9 Interrupt Vectors

www.ti.com Interrupt Vectors

Figure 1-6. BOR/POR/PUC Reset Circuit

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to
0FF80h, for a maximum of 64 interrupt sources. A vector is programmed by the user this vector points to
the start of the corresponding interrupt service routine. See the device-specific data sheet for the complete
interrupt vector list.

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Interrupt Vectors www.ti.com

Table 1-2. Interrupt Sources, Flags, and Vectors
SystemInterrupt Source Interrupt Flag Word Address PriorityInterrupt

Reset:
Power up, external WDTIFG Reset 0FFFEh highest
reset, watchdog, KEYV
flash password
System NMI: (non)-maskable 0FFFCh …

PSS
User NMI:

NMI, oscillator fault, NMIIFG (non)-maskable 0FFFAh …
flash memory access OFIFG (non)-maskable

violation ACCIFG (non)-maskable
device specific 0FFF8h …

...
Watchdog timer WDTIFG maskable

...
device specific … …

reserved (maskable) … lowest

Some interrupt enable bits, and interrupt flags and control bits for the RST/NMI pin are located in the
Special Function Registers (SFRs). The SFRs are located in the peripheral address range and are byte
and word accessible. See the device-specific data sheet for the SFR configuration.

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)32 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.10 Special Function Registers
www.ti.com Special Function Registers

The special function registers, SFR, are listed in Table 1-4. The base address for the SFR registers is
listed in Table 1-3.

Table 1-3. SFR Base Address
Module Base address

SFR 00100h

Table 1-4. Special Function Registers
Register Register AddressRegister Short Form Initial StateType Access Offset

SFRIE1 read/write word 00h 0000h
Interrupt enable register SFRIE1_L (IE1) read/write byte 00h 00h

SFRIE1_H (IE2) read/write byte 01h 00h
SFRIFG1 read/write word 02h 0082h

Interrupt flag register SFRIFG1_L (IFG1) read/write byte 02h 82h
SFRIFG1_H (IFG2) read/write byte 03h 00h
SFRRPCR read/write word 04h 0000h

Reset pin control register SFRRPCR_L read/write byte 04h 00h
SFRRPCR_H read/write byte 05h 00h

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Special Function Registers www.ti.com

SFRIFG1, SFRIFG1_L, SFRIFG1_H, Interrupt Flag Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

JMBOUTIFG JMBINIFG Reserved NMIIFG VMAIFG Reserved OFIFG WDTIFG
rw-(1) rw-(0) rw-0 rw-0 rw-0 r0 rw-(1) rw-0

Reserved Bit 15–8 Reserved. Reads back 0
JMBOUTIFG Bit 7 JTAG mailbox output interrupt flag

0 no interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when
JMBO0 has been written by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared
automatically when both JMBO0 and JMBO1 have been written by the CPU. This bit is also
cleared when the associated vector in SYSUNIV has been read.

1 interrupt pending, JMBO registers are ready for new messages. In 16-bit mode (JMBMODE=0)
JMBO0 has been received by JTAG. In 32-bit mode (JMBMODE=1) , JMBO0 and JMBO1 have
been received by JTAG.

JMBINIFG Bit 6 JTAG mailbox input interrupt flag
0 no interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when

JMBI0 is read by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared automatically
when both JMBI0 and JMBI1 have been read by the CPU. This bit is also cleared when the
associated vector in SYSUNIV has been read

1 interrupt pending, a message is waiting in the JMBIN registers. In 16-bit mode (JMBMODE = 0)
when JMBI0 has been written by JTAG. In 32 bit mode (JMBMODE = 1) when JMBI0 and JMBI1
have been written by JTAG.

Reserved Bit 5 Reserved. Reads back 0
NMIIFG Bit 4 NMI pin interrupt flag

0 no interrupt pending
1 interrupt pending

VMAIFG Bit 3 Vacant memory access interrupt flag
0 no interrupt pending
1 interrupt pending

Reserved Bit 2 Reserved. Reads back 0
OFIFG Bit 1 Oscillator fault interrupt flag

0 no interrupt pending
1 interrupt pending

WDTIFG Bit 0 Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until reset by software. In
interval mode, WDTIFG is reset automatically by servicing the interrupt, or can be reset by software.
Because other bits in ~IFG1 may be used for other modules, it is recommended to clear WDTIFG by
using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 no interrupt pending
1 interrupt pending

34 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Special Function Registers

SFRIE1, SFRIE1_L, SFRIE1_H, Interrupt Enable Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

JMBOUTIE JMBINIE ACCVIE NMIIE VMAIE Reserved OFIE WDTIE
rw-0 rw-0 rw-0 rw-0 rw-0 r0 rw-0 rw-0

Reserved Bit 15-8 Reserved. Reads back 0.
JMBOUTIE Bit 7 JTAG mailbox output interrupt enable flag

0 interrupts disabled
1 interrupts enabled

JMBINIE Bit 6 JTAG mailbox input interrupt enable flag
0 interrupts disabled
1 interrupts enabled

ACCVIE Bit 5 Flash controller access violation interrupt enable flag
0 interrupts disabled
1 interrupts enabled

NMIIE Bit 4 NMI pin interrupt enable flag
0 interrupts disabled
1 interrupts enabled

VMAIE Bit 3 Vacant memory access interrupt enable flag
0 interrupts disabled
1 interrupts enabled

Reserved Bit 2 Reserved. Reads back 0.
OFIE Bit 1 Oscillator fault interrupt enable flag

0 interrupts disabled
1 interrupts enabled

WDTIE Bit 0 Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for interval timer mode. It is not
necessary to set this bit for watchdog mode. Because other bits in ~IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instruction
0 interrupts disabled
1 interrupts enabled

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Special Function Registers www.ti.com

SFRRPCR, SFRRPCR_H, SFRRPCR_L, Reset Pin Control Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved SYSRSTRE SYSRSTUP SYSNMIIES SYSNMI
r0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0

Reserved Bit 15-5 Reserved. Reads back 0.
SYSRSTRE Bit 3 Reset pin resistor Enable.

0 Pullup/pulldown resistor at the RST/NMI pin is disabled.
1 Pullup/pulldown resistor at the RST/NMI pin is enabled.

SYSRSTUP Bit 2 Reset resistor pin pullup/pulldown.
0 Pulldown is selected.
1 Pullup is selected.

SYSNMIIES Bit 1 NMI edge select. This bit selects the interrupt edge for the NMI interrupt when SYSNMI = 1. Modifying
this bit can trigger an NMI. Modify this bit when SYSNMI = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge

SYSNMI Bit 0 NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function

36 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

1.11 SYS Registers
www.ti.com SYS Registers

The SYS registers are listed in Table 1-8 and Table 6. A detailed description of each register and its bits is
also provided. Each register starts at a word boundary. Both, word or byte data can be written to the SYS
registers.

Table 1-8. SYS Base Address
Module Base address

SYS 00180h

Table 1-9. SYS Configuration Registers
RegisterRegister Short Form Register Type Address Offset Initial StateAccess

System Control Register SYSCTL read/write word 00h 0000h
SYSCTL_L read/write byte 00h 00h
SYSCTL_H read/write byte 01h 00h

Boot strap loader SYSBSLC read/write word 02h 0003h
configuration register SYSBSLC_L read/write byte 02h 03h

SYSBSLC_H read/write byte 03h 00h
Arbitration configuration SYSARB read/write word 04h 0000h
Register SYSARB_L read/write byte 04h 00h

SYSARB_H read/write byte 05h 00h
JTAG Mailbox Control SYSJMBC read/write word 06h 0000h
Register SYSJMBC_L read/write byte 06h 0Ch

SYSJMB_H read/write byte 07h 00h
JTAG Mailbox Input SYSJMBI0 read/write word 08h 0000h
Register #0 SYSJMBI0_L read/write byte 08h 00h

SYSJMBI0_H read/write byte 09h 00h
JTAG Mailbox Input SYSJMBI1 read/write word 0Ah 0000h
Register #1 SYSJMBI1_L read/write byte 0Ah 00h

SYSJMBI1_H read/write byte 0Bh 00h
JTAG Mailbox Output SYSJMBO0 read/write word 0Ch 0000h
Register #0 SYSJMBO0_L read/write byte 0Ch 00h

SYSJMBO0_H read/write byte 0Dh 00h
JTAG Mailbox Output SYSJMBO1 read/write word 0Eh 0000h
Register #1 SYSJMBO1_L read/write byte 0Eh 00h

SYSJMBO1_H read/write byte 0Fh 00h
reserved for future use 10h

.....
17h

Bus error vector SYSBERRIV read only word 18h 0000hgenerator
User NMI vector SYSUNIV read only word 1Ah 0000hgenerator
System NMI vector gen. SYSSNIV read only word 1Ch 0000h
Reset vector generator SYSRSTIV read only word 1Eh 0002h

Access to some SYS registers is allowed only if the SYSLOCK bit is reset.

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

SYS Registers www.ti.com

SYSCTL, SYSCTL_L, SYSCTL_H, SYS Control Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved Reserved SYSJTAGPIN SYSBSLIND Reserved SYSPMMPE Reserved SYSRIVECT
r0 r0 rw-(0) r-0 r0 rw-(0) r0 rw-(0)

Reserved Bits 15-8 Reserved. Reads back 0.
SYSJTAGPIN Bit 5 Dedicated JTAG pins enable. Setting this bit disables the shared functionality of the JTAG pins and

permanently enables the JTAG function. This bit can only be set once. Once it is set it will remain set
until a BOR occurs.
0 shared JTAG pins (JTAG mode selectable via SBW sequence)
1 Dedicated JTAG pins (explicit 4 wire JTAG mode selection)

SYSBSLIND Bit 4 TCK/RST entry BSL indication detected to allow writing a backward compatible BSL to early ‘430
families. See BSL entry in Spy-Bi –Wire
0 No BSL indication
1 BSL entry detected

Reserved Bit 3 Reserved. Reads back 0.
SYSPMMPE Bit 2 PMM access protect. The control register of the PMM module can be accessed by a program running

… (If this bit is set to one it only can be cleared again by a BOR)
0 … anywhere in memory
1 … only from boot code area (01B00h-01BFFh) and the protected BSL segments.

Reserved Bit 1 Reserved. Reads back 0.
SYSRIVECT Bit 0 RAM based Interrupt Vectors

0 Interrupt Vectors generated with end address: TOP of lower 64k Flash FFFFh
1 Interrupt Vectors generated with end address TOP of RAM

38 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com SYS Registers

SYSBSLC, SYSBSLC_L, SYSBSLC_H, BSL Configuration Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

SYSBSLPE SYSBSLOFF Reserved Reserved Reserved Reserved Reserved Reserved
rw-(0) rw-(0) r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved SYSBSLR SYSBSLSIZE
r0 r0 r0 r0 r0 rw-(0) rw-(1) rw-(1)

SYSBSLPE Bit 15-7 Boot strap loader (BSL) memory protection enable for the size covered in SYSBSLSIZE
0 area not protected read, program and erase of memory is possible
1 area protected

SYSBSLOFF Bit 14-6 Boot strap loader (BSL) memory disable for the size covered in SYSBSLSIZE
0 BSL memory is addressed when this area is read
1 BSL memory behaves like vacant memory

Reserved Bit 13-3 Reserved. Reads back 0.
SYSBSLR Bit 2 RAM assigned to BSL

0 no RAM assigned to BSL area
1 lowest 16 bytes of RAM assigned to BSL

SYSBSLSIZE Bit 1-0 BOOT Strap Loader Size
This defines the space and size of Flash that is reserved for the Boot Strap Loader.
00 Size: 512B BSL_SEG_3
01 Size: 1024B BSL_SEG_2,3
10 Size: 1536B BSL_SEG_1,2,3
11 Size: 2048B BSL_SEG_0,1,2,3 (value after BOR!)

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

SYS Registers www.ti.com

SYSJMBC, SYSJMBC_L, SYSBMBC_H, JTAG Mailbox Control Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
r0 r0 r0 r0r r0 r0 r0 r0

7 6 5 4 3 2 1 0

JMBCLR10FF JMBCLR0OFF Reserved JMBM0DE JMBOUT1FG JMBOUT0FG JMBIN1FG JMBIN0FG
rw-(0) rw-(0) r0 rw-0 r-(1) r-(1) rw-(0) rw-(0)

Reserved Bit 15-8 Reserved. Reads back 0.
JMBCLR1OFF Bit 7 Incoming JTAG Mailbox 1 flag auto-clear disable.

0 JMBIN1FG cleared on read of JMB1IN register
1 JMBIN1FG cleared by SW

JMBCLR0OFF Bit 6 Incoming JTAG Mailbox 0 flag auto-clear disable
0 JMBIN0FG cleared on read of JMB0IN register
1 JMBIN0FG cleared by SW

Reserved Bit 5 Reserved. Reads back 0.
JMBMODE Bit 4 This bit defined the operation mode of JMB for JMBI0/1 and JMBO0/1. Before switching this bit pad

and flush out any partial content to avoid data drops.
0 16 bit transfers using JMBO0 and JMBI0 only
1 32 bit transfers using JMBO0/1 and JMBI0/1

JMBOUT1FG Bit 3 Outgoing JTAG Mailbox 1 flag. This bit is cleared automatically when a message is written to the
upper byte of JMBO1 or as word access (by the CPU, DMA,…) and is set after the message was
read via JTAG.
0 JMBO1 is not ready to receive new data
1 JMBO1 is ready to receive new data

JMBOUT0FG Bit 2 Outgoing JTAG Mailbox 0 flag. This bit is cleared automatically when a message is written to the
upper byte of JMBO0 or as word access (by the CPU, DMA,…) and is set after the message was
read via JTAG.
0 JMBO0 is not ready to receive new data
1 JMBO0 is ready to receive new data

JMBIN1FG Bit 1 Incoming JTAG Mailbox 1 flag. This bit is set when a new message (provided via JTAG) is available
in JMBI1. This flag is cleared automatically on read of JMBI1 when JMBCLR1OFF=0 (auto clear
mode). On JMBCLR1OFF=1 JMBIN1FG needs to be cleared by SW.
0 JMBI1 has no new data
1 JMBI1 has new data available

JMBIN0FG Bit 0 Incoming JTAG Mailbox 0 flag. This bit is set when a new message (provided via JTAG) is available
in JMBI0. This flag is cleared automatically on read of JMBI0 when JMBCLR0OFF=0 (auto clear
mode). On JMBCLR0OFF=1 JMBIN0FG needs to be cleared by SW.
0 JMBI1 has no new data
1 JMBI1 has new data available

40 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com SYS Registers

SYSJMBI0, SYSJMBI0_L, SYSJMBI0_H, JTAG Mailbox Input 0 Register
SYSJMBI1, SYSJMBI1_L, SYSJMBI1_H, JTAG Mailbox Input 1 Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

MSGHI
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

7 6 5 4 3 2 1 0

MSGL0
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

MSGHI Bit 15-8 JTAG mailbox incoming message high byte
MSGLO Bit 7-0 JTAG mailbox incoming message low byte

SYSJMBO0, SYSJMBO0_L, SYSJMBO0_H, JTAG Mailbox Out 0
Register SYSJMBO1, SYSJMBO1_L, SYSJMBO1_H, JTAG Mailbox Out 1 Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

MSGHI
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

MSGL0
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

MSGHI Bit 15-8 JTAG Mailbox outgoing message high byte
MSGLO Bit 7-0 JTAG Mailbox outgoing message low byte

SYSUNIV, SYSUNIV_H, SYSUNIV_L, User NMI Interrupt Vector Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSUNVEC 0
r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSUNIV Bit 15-0 User NMI interrupt vector. It generates an value that can be used as address offset for fast interrupt
service routine handling. Writing to this register clears all pending user NMI interrupt flags.

Value Interrupt Type
0000h No interrupt pending
0002h NMIIFG interrupt pending (highest priority)
0004h OFIFG interrupt pending
0006h ACCVIFG interrupt pending
0008h reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device.

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

SYS Registers www.ti.com

SYSSNIV, SYSSNIV_H, SYSSNIV_L, SYS NMI Interrupt Vector Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSSNVEC 0
r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSSNIV Bit 15-0 System NMI interrupt vector. It generates an value that can be used as address offset for fast
interrupt service routine handling. Writing to this register clears all pending system NMI interrupt
flags.

Value Interrupt Type
0000h No interrupt pending
0002h SVMLIFG interrupt pending (highest priority)
0004h SVMHIFG interrupt pending
0006h DLYLIFG interrupt pending
0008h DLYHIFG interrupt pending
000Ah VMAIFG interrupt pending
000Ch JMBINIFG interrupt pending
000Eh JMBOUTIFG interrupt pending
0010h VLRLIFG interrupt pending
0012h VLRHIFG interrupt pending
0014h Reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device.

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)42 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com SYS Registers

SYSRSTIV, SYSRSTIV_H, SYSRSTIV_L, SYS Reset Interrupt Vector Register

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSRSTVEC 0
r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSRSTIV Bit 15-0 Reset interrupt vector. It generates an value that can be used as address offset for fast interrupt
service routine handling to identify the last cause of an Reset (BOR, POR, PUC) . Writing to this
register clears all pending reset source flags.

Value Interrupt Type
0000h No interrupt pending
0002h Brownout (BOR) (highest priority)
0004h RST/NMI (POR) (also RST wakes up)
0006h DoBOR (BOR)
0008h Port wakeup (BOR)
000Ah Security violation (BOR)
000Ch SVSL (POR)
000Eh SVSH (POR)
0010h SVML_OVP (POR)
0012h SVMH_OVP (POR)
0014h DoPOR (POR)
0016h WDT time out (PUC)
0018h WDT keyviol (PUC)
001Ah KEYV flash keyviol (PUC)
001Ch PLL unlock (PUC)
001Eh PERF peripheral/configuration area fetch (PUC)
0020h PMM key violation (PUC)
0022h Reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device

SLAU208–June 2008 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)44 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 2
SLAU208–June 2008

Watchdog Timer (WDT_A)

The watchdog timer is a 32-bit timer that can be used as a watchdog or as an interval timer. This chapter
describes the watchdog timer. The enhanced watchdog timer, WDT_A, is implemented in all MSP430x5xx
devices.

Topic .. Page

2.1 Watchdog Timer Introduction ... 46
2.2 Watchdog Timer Block Diagram.. 48
2.3 Watchdog Timer Registers ... 50

SLAU208–June 2008 Watchdog Timer (WDT_A) 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

2.1 Watchdog Timer Introduction

Watchdog Timer Introduction www.ti.com

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart
after a software problem occurs. If the selected time interval expires, a system reset is generated. If the
watchdog function is not needed in an application, the module can be configured as an interval timer and
can generate interrupts at selected time intervals.

Features of the watchdog timer module include:
• Eight software-selectable time intervals
• Watchdog mode
• Interval mode
• Access to WDT control register is password protected
• Selectable clock source
• Can be stopped to conserve power
• Clock fail-safe feature

The WDT block diagram is shown in Figure 2-1.

Note: Watchdog Timer Powers Up Active
After a PUC, the WDT_A module is automatically configured in the watchdog mode with an
initial ~32-ms reset interval using the SMCLK. The user must setup or halt the WDT_A prior
to the expiration of the initial reset interval.

46 Watchdog Timer (WDT_A) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

WDTQn

Q6 16-bit

Counter

CLK

01

00

PUC

SMCLK

ACLK

Clear

Password

Compare

0

0

0

0

1

1

1

1

WDTCNTCL

WDTTMSEL

WDTSSEL0

WDTSSEL1

WDTIS1

WDTIS2

WDTIS0

WDTHOLD

EQU

EQU

Write Enable

Low Byte
R / W

MDB

LSB

MSB

WDTCTL

(Asyn)

Int.

Flag

Pulse

Generator

VLOCLK

Clock

Request
Logic

X_CLK request

SMCLK request

ACLK request

VLOCLK request

10

11

Q9

Q13

Q15

Q19

Q23

Q27

Q31

X_CLK

11

10

01

00

11

10

01

00

0

1

16-bit

Counter

CLK

32Bit WDT extension

www.ti.com Watchdog Timer Introduction

Figure 2-1. Watchdog Timer Block Diagram

SLAU208–June 2008 Watchdog Timer (WDT_A) 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

2.2 Watchdog Timer Block Diagram

2.2.1 Watchdog Timer Counter

2.2.2 Watchdog Mode

2.2.3 Interval Timer Mode

2.2.4 Watchdog Timer Interrupts

Watchdog Timer Block Diagram www.ti.com

The WDT module can be configured as either a watchdog or interval timer with the WDTCTL register.
WDTCTL is a 16-bit, password-protected, read/write register. Any read or write access must use word
instructions and write accesses must include the write password 05Ah in the upper byte. Any write to
WDTCTL with any value other than 05Ah in the upper byte is a security key violation and triggers a PUC
system reset regardless of timer mode. Any read of WDTCTL reads 069h in the upper byte. Byte reads on
WDTCTL high or low part will result the value of the low byte. Writing byte wide to upper or lower part of
WDTCTL results into a PUC.

The watchdog timer counter (WDTCNT) is a 32-bit up-counter that is not directly accessible by software.
The WDTCNT is controlled and its time intervals selected through the watchdog timer control register
WDTCTL. The WDTCNT can be sourced from SMCLK, ACLK, VLOCLK and X_CLK on some devices.
The clock source is selected with the WDTSSEL bits.

After a PUC condition, the WDT module is configured in the watchdog mode with an initial ~32-ms reset
interval using the SMCLK. The user must setup, halt, or clear the WDT prior to the expiration of the initial
reset interval or another PUC will be generated. When the WDT is configured to operate in watchdog
mode, either writing to WDTCTL with an incorrect password, or expiration of the selected time interval
triggers a PUC. A PUC resets the WDT to its default condition.

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide
periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time
interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG
interrupt flag is automatically reset when its interrupt request is serviced, or may be reset by software. The
interrupt vector address in interval timer mode is different from that in watchdog mode.

Note: Modifying the Watchdog Timer
The WDT interval should be changed together with WDTCNTCL = 1 in a single instruction to
avoid an unexpected immediate PUC or interrupt. The WDT should be halted before
changing the clock source to avoid a possible incorrect interval.

The WDT uses two bits in the SFRs for interrupt control
• The WDT interrupt flag, WDTIFG, located in SFRIFG1.0
• The WDT interrupt enable, WDTIE, located in SFRIE1.0

When using the WDT in the watchdog mode, the WDTIFG flag sources a reset vector interrupt. The
WDTIFG can be used by the reset interrupt service routine to determine if the watchdog caused the
device to reset. If the flag is set, then the watchdog timer initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by a different source.

When using the WDT in interval timer mode, the WDTIFG flag is set after the selected time interval and
requests a WDT interval timer interrupt if the WDTIE and the GIE bits are set. The interval timer interrupt
vector is different from the reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag
is reset automatically when the interrupt is serviced, or can be reset with software.

Watchdog Timer (WDT_A)48 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

2.2.5 Clock Fail-Safe Feature

2.2.6 Operation in Low-Power Modes

2.2.7 Software Examples

www.ti.com Watchdog Timer Block Diagram

The WDT_A provides a fail-safe clocking feature assuring the clock to the WDT_A cannot be disabled
while in watchdog mode. This means the low-power modes may be affected by the choice for the WDT_A
clock.

If SMCLK or ACLK fails as WDT_A clock source then VLOCLK is automatically selected as WDT_A clock
source.

When the WDT_A module is used in interval timer mode, there is no fail-safe feature within WDT_A for
the clock source.

The MSP430 devices have several low-power modes. Different clock signals are available in different
low-power modes. The requirements of the user’s application and the type of clocking used determine
how the WDT_A should be configured. For example, the WDT_A should not be configured in watchdog
mode with a clock source that is originally sourced from DCO, XT1 in high frequency mode, or XT2 via
SMCLK or ACLK if the user wants to use low power mode 3. In this case, SMCLK or ACLK would remain
enabled increasing the current consumption of LPM3. When the watchdog timer is not required, the
WDTHOLD bit can be used to hold the WDTCNT, reducing power consumption.

Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte:
; Periodically clear an active watchdog
MOV #WDTPW+WDTCNTCL,&WDTCTL
;
; Change watchdog timer interval
MOV #WDTPW+WDTCNTCL+SSEL,&WDTCTL
;
; Stop the watchdog
MOV #WDTPW+WDTHOLD,&WDTCTL
;
; Change WDT to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS2+WDTIS0,&WDTCTL

SLAU208–June 2008 Watchdog Timer (WDT_A) 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

2.3 Watchdog Timer Registers
Watchdog Timer Registers www.ti.com

The watchdog timer module registers are listed in Table 2-2. The base register or the watchdog timer
module registers and special function registers (SFR) can be found in the device specific data sheet. The
address offset is given in Table 2-1.

Table 2-1. Watchdog Timer Base Register
Module Base address
WDT_A 00150h

Table 2-2. Watchdog Timer Registers
Register Short Form Register Type REG Access Address Initial State
Watchdog timer control register WDTCTL read/write word 0Ch 6904h

50 Watchdog Timer (WDT_A) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Watchdog Timer Registers

WDTCTL, Watchdog Timer Register

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Read as 069h
WDTPW, must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD WDTSSELx WDTTMSEL WDTCNTCL WDTISx
rw-0 rw-0 rw-0 rw-0 r0(w) rw-1 rw-0 rw-0

WDTPW Bits 15-8 Watchdog timer password. Always read as 069h. Must be written as 05Ah, or a PUC will be generated.
WDTHOLD Bit 7 Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1 when the WDT is not in use

conserves power
0 Watchdog timer is not stopped
1 Watchdog timer is stopped

WDTSSEL Bit 6-5 Watchdog timer clock source select
00 SMCLK
01 ACLK
10 VLOCLK
11 X_CLK , same as VLOCLK if not defined differently in data sheet

WDTTMSEL Bit 4 Watchdog timer mode select
0 Watchdog mode
1 Interval timer mode

WDTCNTL Bit 3 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is
automatically reset.
0 No action
1 WDTCNT = 0000h

WDTISx Bit 2-0 Watchdog timer interval select. These bits select the watchdog timer interval to set the WDTIFG flag and/or
generate a PUC.
000 Watchdog clock source /2G (18:12:16 at 32 kHz)
001 Watchdog clock source /128M (01:08:16 at 32 kHz
010 Watchdog clock source /8192k (00:04:16 at 32 kHz)
011 Watchdog clock source /512k (00:00:16 at 32 kHz)
100 Watchdog clock source /32k (1 s at 32 kHz)
101 Watchdog clock source /8192 (250 ms at 32 kHz)
110 Watchdog clock source /512 (15,6 ms at 32 kHz)
111 Watchdog clock source /64 (1.95 ms at 32 kHz)

SLAU208–June 2008 Watchdog Timer (WDT_A) 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Watchdog Timer (WDT_A)52 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 3
SLAU208–June 2008

Unified Clock System (UCS)

The Unified Clock System module provides the clocks for MSP430x5xx devices. This chapter describes
the operation of the Unified Clock System module. The Unified Clock System module is implemented in all
MSP430x5xx devices.

Topic .. Page

3.1 Unified Clock System Introduction .. 54
3.2 Unified Clock System Module Operation...................................... 56
3.3 MODOSC Module Oscillator ... 65
3.4 Unified Clock System Module Registers 66

SLAU208–June 2008 Unified Clock System (UCS) 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.1 Unified Clock System Introduction

Unified Clock System Introduction www.ti.com

The Unified Clock System (UCS) module supports low system cost and ultra-low power consumption.
Using three internal clock signals, the user can select the best balance of performance and low power
consumption. The Unified Clock System module can be configured to operate without any external
components, with one or two external crystals, or with resonators, under full software control.

The Unified Clock System module includes up to five clock sources:
• XT1CLK: Low-frequency/high-frequency oscillator that can be used either with low-frequency 32768-Hz

watch crystals, standard crystals, resonators, or external clock sources in the 4-MHz to 32-MHz range.
• VLOCLK: Internal very low power, low frequency oscillator with 12 kHz typical frequency.
• REFOCLK: Internal, trimmed, low frequency oscillator with 32768 Hz typical frequency, with the ability

to be used as a clock reference into the FLL.
• DCOCLK: Internal digitally controlled oscillator (DCO) that can be stabilized by the FLL.
• XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or

external clock sources in the 4-MHz to 40-MHz range.

Three clock signals are available from the Unified Clock System module:
• ACLK: Auxiliary clock. The ACLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK,

DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4,
8, 16, or 32 within the FLL block. ACLK is software selectable for individual peripheral modules. ACLK
is divided by 1, 2, 4, 8, 16 or 32. ACLK/n is ACLK divided by 1, 2, 4, 8, 16, or 32 and is available
externally at a pin.

• MCLK: Master clock. MCLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK,
DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4,
8, 16, or 32 within the FLL block. MCLK is divided by 1, 2, 4, 8. 16, or 32 MCLK is used by the CPU
and system.

• SMCLK: Sub-system master clock. SMCLK is software selectable as XT1CLK, REFOCLK, VLOCLK,
DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided
by 1, 2, 4, 8, 16, or 32 within the FLL block. SMCLK is divided by 1, 2, 4, 8, 16, or 32. SMCLK is
software selectable for individual peripheral modules.

A peripheral module may request its clock sources automatically if required for its proper operation. The
block diagram of the Unified Clock System module is shown in Figure 3-1.

54 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

XT20FF

XT2IN

XT2OUT XT2 Oscillator

2
XT2DRIVE

0

1

XT2BYPASSXT2 (Optional)

XT2 Fault
Detection

XIN

XOUT

XCAP

XT1

LF HF

0 V

0 V

XTS

VLOCLK

XT1CLK

2 2

XT1DRIVE

REFOCLK

OSC

XT2CLK

0

1

XT1BYPASS

REFO

VLO

10-bit
Frequency
Integrator

DCO
+

Modulator

DC
Generator

DCORSELSCG1

off

SCG0

off

PUC

Reset

FLLD

10

+

−Divider
/(N+1)

Prescaler

3

DCO,
MOD

FLLREFDIV

3

FLLN
10

3

DISMOD

FLL

Divider

/1/2/4/8/12/16

MODOSC

MODOSC_REQEN

MODOSC_REQ

MODCLK

Unconditonal MODOSC
requests.

EN

XT1 Fault
Detection

1

0

3

000

001

010

011

100

101

110

111

SELREF

FLLREFCLK

DCOCLK

DCOCLKDIV
EN

ACLK Enable Logic

OSCOFF

6

ACLK_REQEN

ACLK_REQ

3

000

001

010

011

100

101

110

111

SELM,
SELS SELA

3

ACLK/n

ACLK

3

Divider

DIVPA

1

0

3

Divider

DIVA

EN

MCLK Enable Logic

CPUOFF

3

MCLK_REQEN

MCLK_REQ

3

000

001

010

011

100

101

110

111

SELM

MCLK

1

0

3

Divider

DIVM

EN

SMCLK Enable Logic

SMCLKOFF

3

SMCLK_REQEN

SMCLK_REQ

3

000

001

010

011

100

101

110

111

SELS

SMCLK

1

0

3

Divider

DIVS

EN

/1/2/4/8/16/32

/1/2/4/8/16/32

/1/2/4/8/16/32

/1/2/4/8/16/32

/1/2/4/8/16/32

www.ti.com Unified Clock System Introduction

Figure 3-1. Unified Clock System Block Diagram

SLAU208–June 2008 Unified Clock System (UCS) 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.2 Unified Clock System Module Operation

3.2.1 Unified Clock System Module Features for Low-Power Applications

3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

Unified Clock System Module Operation www.ti.com

After a PUC, the Unified Clock System module's default configuration is as follows:
• XT1 in LF mode is selected as the oscillator source for XT1CLK. XT1CLK selected for ACLK.
• DCOCLKDIV selected for MCLK.
• DCOCLKDIV selected for SMCLK.
• FLL operation is enabled. XT1CLK is selected as FLL reference clock, FLLREFCLK.
• XIN and XOUT pins set to general purpose I/O, XT1 remains disabled until I/O ports are configured for

XT1 operation.
• When available, XT2IN and XT2OUT pins set to general purpose I/O, XT2 disabled.

As shown above, FLL operation with XT1 is enabled by default. On MSP430x5xx devices, the crystal pins
(XIN, XOUT) are shared with general-purpose I/O. To enable XT1, the PSEL bits associated with the
crystal pins must be set. When a 32,768 Hz crystal is used for XT1CLK, the fault control logic will
immediately cause ACLK to be sourced by the REFOCLK since XT1 will not be stable immediately. See
Section 3.2.12 for further details. Once the crystal startup is obtained and settled, the FLL stabilizes MCLK
and SMCLK to 1.048576 MHz and fDCO = 2.097152 MHz.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure the MSP430 operating modes
and enable or disable portions of the Unified Clock System module. See Chapter System Resets,
Interrupts and Operating Modes. The UCSCTL0, UCSCTL1, UCSCTL2, UCSCTL3, UCSCTL4, UCSCTL5,
UCSCTL6, UCSCTL7, and UCSCTL8 registers configure the Unified Clock System module.

The Unified Clock System module can be configured or reconfigured by software at any time during
program execution.

Conflicting requirements typically exist in battery-powered MSP430x5xx applications:
• Low clock frequency for energy conservation and time keeping
• High clock frequency for fast response times and fast burst processing capabilities
• Clock stability over operating temperature and supply voltage
• Low cost applications with less constrained clock accuracy requirements

The Unified Clock System module addresses the above conflicting requirements by allowing the user to
select from the three available clock signals: ACLK, MCLK, and SMCLK.

All three available clock signals can be sourced via any of the available clock sources, (XT1CLK,
VLOCLK, REFOCLK, or XT2CLK) giving complete flexibility in the system clock configuration.

For optimal low-power performance, ACLK can be sourced from a low-power 32,786-Hz watch crystal,
providing a stable time base for the system and low power stand-by operation, or from the internal
low-frequency oscillator when crystal accurate time keeping is not required. A flexible clock distribution
and divider system is provided to fine tune the individual clock requirements. ACLK can be sourced via
any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or XT2CLK) .

MCLK can be configured to operate from the on-chip DCO, optionally stabilized by the FLL, that can be
activated when requested by interrupt-driven events. A flexible clock distribution and divider system is
provided to fine tune the individual clock requirements. MCLK can be sourced via any of the available
clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or XT2CLK).

SMCLK can be configured to operate from a crystal or the DCO, depending on peripheral requirements. A
flexible clock distribution and divider system is provided to fine tune the individual clock requirements.
SMCLK can be sourced via any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or
XT2CLK).

The internal VLO provides a typical frequency of 12 kHz (see device-specific data sheet for parameters)
without requiring a crystal. The VLO provides for a low-cost ultra-low power clock source for applications
that do not require an accurate time base.

56 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.2.3 Internal Trimmed Low-Frequency Reference Oscillator(REFO)

3.2.4 XT1 Oscillator

3.2.5 XT2 Oscillator

www.ti.com Unified Clock System Module Operation

The VLO is selected when it is used to source ACLK, MCLK, or SMCLK (SELA = 1 or SELM = 1 or
SELS = 1).

The internal trimmed reference oscillator (REFO) can be used for cost sensitive applications where a
crystal is not required or desired. The reference oscillator is internally trimmed to 32.768 kHz typical and
provides for a stable reference frequency that can be used as FLLREFCLK. The REFOCL , combined with
the FLL, provides for a flexible range of system clock settings without the need for a crystal. The REFO
consumes no power when not being used.

The REFO is selected when it is used to source ACLK, MCLK, or SMCLK (SELA = 2 or SELM = 2 or
SELS = 2) or sources the FLL (SELREF = 2). The REFO oscillator can be disabled with software by
setting OSCOFF, if the REFO oscillator is not used to source MCLK, SMCLK. or FLLREFCLK. The
OSCOFF bit disables REFO for LPM4.

The XT1 oscillator supports ultra low-current consumption using a 32,768-Hz watch crystal in LF mode
(XTS = 0). A watch crystal connects to XIN and XOUT without any other external components. The
software-selectable XCAP bits configure the internally provided load capacitance for the XT1 crystal in LF
mode. This capacitance can be selected as 2 pF, 6 pF, 9 pF, or 12 pF (typical). Additional external
capacitors can be added if necessary.

The XT1 oscillator also supports high-speed crystals or resonators when in HF mode (XTS = 1). The
high-speed crystal or resonator connects to XIN and XOUT and requires external capacitors on both
terminals. These capacitors should be sized according to the crystal or resonator specifications.

The drive settings of XT1 in LF mode can be increased with the XT1DRIVE bits. At power up, the XT1
starts with the highest drive settings for fast, reliable startup. If needed, user software can reduce the drive
strength to further reduce power. In HF mode, different crystal or resonator ranges are supported by
choosing the proper XT1DRIVE settings.

XT1 may be used with an external clock signal on the XIN pin in either LF or HF mode by setting
XT1BYPASS. When used with an external signal, the external frequency must meet the datasheet
parameters for the chosen mode. XT1 is powered down when used in bypass mode.

The XT1 pins are shared with general-purpose I/O ports. At power up, the default operation is XT1, LF
mode of operation. However, XT1 will remain disabled until the ports shared with XT1 are configured for
XT1 operation. The configuration of the shared I/O is determined by the PSEL bit associated with XIN and
the XT1BYPASS bit. Setting the PSEL bit will cause the XIN and XOUT ports to be configured for XT1
operation. If XT1BYPASS is also set, XT1 is configured for bypass mode of operation. In bypass mode of
operation, XIN can accept an external clock input signal and XOUT is configured as general-purpose I/O.
The PSEL bit associated with XOUT is a do not care.

If the PSEL bit associated with XIN is cleared, both XIN and XOUT ports are configured as
general-purpose I/O and XT1 will be disabled.

XT1 is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA = 0 or SELM = 0 or SELS = 0)
or FLLREFCLK (SELREF = 0) and (XT1OFF = 1) in all power modes AM through LPM3, otherwise it is
disabled. Setting OSCOFF (LPM4) while (XT1OFF = 1), will disable XT1. If an application wishes to have
XT1 enabled regardless of the OSCOFF setting, clearing XT1OFF will enable XT1 continuously. This will
cause XT1 to be enabled in power modes AM through LPM4.

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK and its characteristics are
identical to XT1 in HF mode. The XT2DRIVE bits select the frequency range of operation of XT2.

XT2 may be used with external clock signals on the XT2IN pin by setting XT2BYPASS. When used with
an external signal, the external frequency must meet the datasheet parameters for XT2. XT2 is powered
down when used in bypass mode.

SLAU208–June 2008 Unified Clock System (UCS) 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.2.6 Digitally-Controlled Oscillator (DCO)

3.2.7 Frequency Locked Loop (FLL)

Adjusting the DCO Frequency www.ti.com

The XT2 pins are shared with general-purpose I/O ports. At power up, the default operation is XT2.
However, XT2 will remain disabled until the ports shared with XT2 are configured for XT2 operation.The
configuration of the shared I/O is determined by the PSEL bit associated with XT2IN and the XT2BYPASS
bit. Setting the PSEL bit will cause the XT2IN and XT2OUT ports to be configured for XT2 operation. If
XT2BYPASS is also set, XT2 is configured for bypass mode of operation. In bypass mode of operation,
XT2IN can accept an external clock input signal and XT2OUT is configured as general-purpose I/O. The
PSEL bit associated with XT2OUT is a do not care.

If the PSEL bit associated with XT2IN is cleared, both XT2IN and XT2OUT ports are configured as
general-purpose I/O and XT2 will be disabled.

XT2 is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA = 5 or SELM = 5 or SELS = 5)
or FLLREFCLK (SELREF = 5) and (XT2OFF = 1) in all power modes AM through LPM3, otherwise it is
disabled. Setting OSCOFF (LPM4) while (XT2OFF = 1), will disable XT2. If an application wishes to have
XT2 enabled regardless of the OSCOFF setting, clearing XT2OFF will enable XT2 continuously. This will
cause XT2 to be enabled in power modes AM through LPM4.

The DCO is an integrated digitally controlled oscillator. The DCO frequency can be adjusted by software
using the DCORSEL, DCO, and MOD bits. The DCO frequency can be optionally stabilized by the FLL to
a multiple frequency of FLLREFCLK / n . The FLL can accept different reference sources selectable via
the SELREF bits. Reference sources include XT1CLK, REFOCLK, or XT2CLK (if available) The value of n
is defined by the FLLREFDIVx (n = 1, 2, 4, 8, 12, or 16). The default is n = 1.

The FLLD bits configure the FLL prescaler divider value D to 1, 2, 4, 8, 16, or 32. By default, D = 2, MCLK
and SMCLK are sourced from DCOCLKDIV, providing a clock frequency DCOCLK/2.

The divider (N + 1) and the divider value D define the DCOCLK and DCOCLKDIV frequencies, where
N > 0. Writing N = 0 causes the divider to be set to 2.

fDCOCLK = D × (N + 1) × (fFLLREFCLK ÷ n)
fDCOCLKDIV = (N + 1) × (fFLLREFCLK ÷ n)

Adjusting the DCO Frequency
By default, FLL operation is enabled. FLL operation can be disabled by setting SCG0. Once disabled, the
DCO will continue to operate at the current settings defined in UCSCTL0 and UCSCTL1. The DCO
frequency can be adjusted manually if desired. Otherwise, the DCO frequency will be stabilized by the FLL
operation.

After a PUC, DCORSELx = 2 and DCOx = 0. MCLK and SMCLK are sourced from DCOCLKDIV. Because
the CPU executes code from MCLK, which is sourced from the fast-starting DCO, code execution begins
from PUC in less than 5 µs.

The frequency of DCOCLK is set by the following functions:
• The three DCORSELx bits select one of eight nominal frequency ranges for the DCO. These ranges

are defined for an individual device in the device-specific data sheet.
• The five DCOx bits divide the DCO range selected by the DCORSELx bits into 32 frequency steps,

separated by approximately 8%.
• The five MODx bits, switch between the frequency selected by the DCOx bits and the next higher

frequency set by DCOx + 1. When DCOx = 31, the MODx bits have no effect, because the DCO is
already at the highest setting for the selected DCORSELx range.

The FLL continuously counts up or down a frequency integrator. The output of the frequency integrator
that drives the DCO can be read in UCSCTL0, UCSCTL1 (bits MODx and DCOx). The count is adjusted
+1 with the frequency fFLLREFCLK/n (n = 1, 2, 4, 8, 12, or 16) or –1 with the frequency fDCOCLK/(D × (N+1)).

58 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.2.8 DCO Modulator

MODx

Lower DCO Tap Frequency fDCO

31

24

16

15

5

4

3

2

1

0

Upper DCO Tap Frequency fDCO+1

www.ti.com Adjusting the DCO Frequency

Note: Reading MODx and DCOx

The integrator is updated via the DCOCLK which may differ in frequency of operation of
MCLK. It is possible that immediate reads of a previously written value are not visible to the
user since the update to the integrator has not occurred. This is normal. Once the integrator
is updated at the next successive DCOCLK, the correct value can be read.

In addition, since the MCLK can be asynchronous to the integrator updates, reading the
values may be cause a corrupted value to be read under this condition. In this case, a
majority vote method should be performed.

Five of the integrator bits, UCSCTL0 bits 12 to 8, set the DCO frequency tap. Thirty-two taps are
implemented for the DCO, and each is approximately 8% higher than the previous. The modulator mixes
two adjacent DCO frequencies to produce fractional taps.

For a given DCO bias range setting, time must be allowed for the DCO to settle on the proper tap for
normal operation. (n × 32) fFLLREFCLK cycles are required between taps requiring a worst case of
(n × 32 × 32) fFLLREFCLK cycles for the DCO to settle. The value n is defined by the FLLREFDIVx bits (n =
1, 2, 4, 8, 12, or 16).

The modulator mixes two DCO frequencies, fDCO and fDCO+1 to produce an intermediate effective
frequency between fDCO and fDCO+1 and spread the clock energy, reducing electromagnetic interference
(EMI). The modulator mixes fDCO and fDCO+1 for 32 DCOCLK clock cycles and is configured with the
MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:
t = (32 – MODx) × tDCO + MODx × tDCO+1

Figure 3-2 illustrates the modulator operation.

When FLL operation is enabled, the modulator settings and DCO are controlled by the FLL hardware. If
FLL operation is not desired, the modulator settings and DCO control can be configured with software.

Figure 3-2. Modulator Patterns

SLAU208–June 2008 Unified Clock System (UCS) 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.2.9 Disabling the FLL Hardware and Modulator

3.2.10 FLL Operation from Low-Power Modes

3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules

Adjusting the DCO Frequency www.ti.com

The FLL is disabled when the status register bits SCG0 or SCG1 are set. When the FLL is disabled, the
DCO runs at the previously selected tap and DCOCLK is not automatically stabilized.

The DCO modulator is disabled when DISMOD is set. When the DCO modulator is disabled, the DCOCLK
is adjusted to the DCO tap selected by the DCOx bits.

Note: DCO Operation without FLL

When FLL operation is disabled, the DCO will continue to operate at the current settings.
Since it is not stabilized by the FLL, temperature and voltage variations will influence the
frequency of operation. Please refer to the device specific data sheet for voltage and
temperature coefficients to ensure reliable operation.

An interrupt service request clears SCG1, CPUOFF and OSCOFF if set but does not clear SCG0. This
means that FLL operation from within an interrupt service routine entered from LPM1, 2, 3 or 4, the FLL
remains disabled and the DCO operates at the previous setting as defined in UCSCTL0 and UCSCTL1.
SCG0 can be cleared by user software if FLL operation is required.

Peripheral modules can request a clock from the Unified Clock System module if their state of operation
still requires an operational clock as shown in Figure 3-3.

A peripheral module asserts one of three possible clock request signals, ACLK_REQ, MCLK_REQ, or
SMCLK_REQ. If the requested source is not active, the software NMI handler must take care of the
required actions.

The watchdog, due to its security requirement, actively selects the VLOCLK source if the originally
selected clock source is not available.

Any clock request from a peripheral module will cause its respective clock off signal to be overridden, but
does not change the setting of clock off control bit. For example, a peripheral module may require the
MCLK source which is currently disabled by the CPUOFF bit. The module can request the MCLK source
by setting the MCLK_REQ bit. This causes the CPUOFF bit to have no effect, thereby allowing the MCLK
to be sourced to the requesting peripheral module.

60 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ACLK_REQ

MCLK_REQ

SMCLK_REQ

Watch Dog Timer Module

UCS
Module n-1 Module n

WDTACLKON WDTSMCLKON

..ACLKON
..MCLKON

..SMCLKON

..ACLKON
..MCLKON

..SMCLKON

ACLK

MCLK

SMCLK

Direct clock request
in Watchdog mode

Module n-2

..ACLKON
..MCLKON

..SMCLKON

0

0

0

0

3.2.12 Unified Clock System Module Fail-Safe Operation

www.ti.com Adjusting the DCO Frequency

Figure 3-3. Module Request Clock System

The Unified Clock System module incorporates an oscillator-fault fail-safe feature. This feature detects an
oscillator fault for XT1, DCO and XT2 as shown in Figure 3-4. The available fault conditions are:
• Low-frequency oscillator fault (XT1LFOFFG) for XT1 in LF mode
• High-frequency oscillator fault (XT1HFOFFG) for XT1 in HF mode
• High-frequency oscillator fault (XT2OFFG) for XT2
• DCO fault flag (DCOFFG) for the DCO

The crystal oscillator fault bits XT1LFOFFG, XT1HFOFFG and XT2OFFG are set if the corresponding
crystal oscillator is turned on and not operating properly. Once set, the fault bits remain set regardless if
the fault condition no longer exists. If the user clears the fault bits, and the fault condition still exists, the
fault bits will automatically be set, otherwise they remain cleared.

When using XT1 operation in LF mode as the reference source into the FLL (SELREFx = 0), a crystal fault
will automatically cause the FLL reference source, FLLREFCLK, to be sourced by REFO. XT1LFOFFG
will be set. When using XT1 operation in HF mode as the reference source into the FLL, a crystal fault
causes no FLLREFCLK signal to be generated and the FLL continues to count down to zero in an attempt
to lock FLLREFCLK and DCOCLK/(D×[N+1]). The DCO tap moves to the lowest position (DCOx are
cleared) and the DCOFFG is set. DCOFFG is also set if the N-multiplier value is set too high for the
selected DCO frequency range resulting the DCO tap to move to the highest position (UCSCTL0.12 to
UCSCTL0.8 are set). The DCOFFG will remain set until cleared by the user. If the user clears the
DCOFFG and the fault condition remains, it will automatically be set, otherwise it remains cleared.
XT1HFOFFG will be set.

When using XT2 as the reference source into the FLL, a crystal fault causes no FLLREFCLK signal to be
generated and the FLL continues to count down to zero in an attempt to lock FLLREFCLK and
DCOCLK/(D×[N+1]). The DCO tap moves to the lowest position (DCOx are cleared) and the DCOFFG is
set. DCOFFG is also set if the N-multiplier value is set too high for the selected DCO frequency range
resulting the DCO tap to move to the highest position (UCSCTL0.12 to UCSCTL0.8 are set). The
DCOFFG will remain set until cleared by the user. If the user clears the DCOFFG and the fault condition
remains, it will automatically be set, otherwise it will remain cleared. XT2OFFG will be set.

SLAU208–June 2008 Unified Clock System (UCS) 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Adjusting the DCO Frequency www.ti.com

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault
(XT1LFOFFG, XT1HFOFFG, XT2OFFG, or DCOFFG) is detected. When OFIFG is set, and OFIE is set,
the OFIFG requests an NMI interrupt. When the interrupt is granted, the OFIE is not reset automatically as
in previous MSP430 families. It is no longer required to reset the OFIE. NMI entry/exit circuitry removes
this requirement. The OFIFG flag must be cleared by software. The source of the fault can be identified by
checking the individual fault bits.

If a fault is detected for the oscillator sourcing MCLK, MCLK is automatically switched to the DCO for its
clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If MCLK is sourced from XT1 in LF
mode, an oscillator fault will cause MCLK to be automatically switched to the REFO for its clock source
(REFOCLK). This does not change the SELMx bit settings. This condition must be handled by user
software.

If a fault is detected for the oscillator sourcing SMCLK, SMCLK is automatically switched to the DCO for
its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If SMCLK is sourced from XT1
in LF mode, an oscillator fault will cause SMCLK to be automatically switched to the REFO for its clock
source (REFOCLK). This does not change the SELSx bit settings. This condition must be handled by user
software.

If a fault is detected for the oscillator sourcing ACLK, ACLK is automatically switched to the DCO for its
clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If ACLK is sourced from XT1 in LF
mode, an oscillator fault will cause ACLK to be automatically switched to the REFO for its clock source
(REFOCLK). This does not change the SELAx bit settings. This condition must be handled by user
software.

Note: DCO Active During Oscillator Fault

DCOCLKDIV is active even at the lowest DCO tap. The clock signal is available for the CPU
to execute code and service an NMI during an oscillator fault.

62 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Set

Reset

Q
Set

Reset

Q

Set
Q

XT1LFOFFG

Q

Set

Reset
PUC

NMI_IRQA

OFIFG

OFIE

NMIRS

XT1_LFOF

Set

Reset

Q
Set

Reset

Q

XT1HFOFFG

Set

Reset

Q
Set

Reset

Q

XT2OFFG

Set

Reset

Q
Set

Reset

Q

DCOFFG

XT1_HFOF

XT2_OF

DCO _OF

POR

DCO _Fault

XT1_LF_OscFault

XT1_HF_OscFault

XT2_OscFault

OscFault_Clr

OscFault_Set

Q

Q

www.ti.com Adjusting the DCO Frequency

Figure 3-4. Oscillator Fault Logic

SLAU208–June 2008 Unified Clock System (UCS) 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.2.13 Synchronization of Clock Signals

DCOCLK

ACLK

MCLK

ACLKDCOCLK

Select

ACLK

Wait for

ACLK

Adjusting the DCO Frequency www.ti.com

Note: Fault Conditions

DCO_Fault: DCOFFG is set if DCOx bits in UCSCTL0 register value equals 0 or 31.

XT1_LF_OscFault: This signal is set after the XT1 (LF mode) oscillator has stopped
operation and cleared after operation resumes. The fault condition will cause XT1LFOFFG to
be set and will remain set. If the user clears XT1LFOFFG and the fault condition still exists,
XT1LFOFFG will remain set.

XT1_HF_OscFault: This signal is set after the XT1 (HF mode) oscillator has stopped
operation and cleared after operation resumes. The fault condition will cause XT1HFOFFG to
be set and will remain set. If the user clears XT1HFOFFG and the fault condition still exists,
XT1HFOFFG will remain set.

XT2_OscFault: This signal is set after the XT2 oscillator has stopped operation and cleared
after operation resumes. The fault condition will cause XT2OFFG to be set and will remain
set. If the user clears XT2OFFG and the fault condition still exists, XT2OFFG will remain set.

Note: Fault Logic

Please note that as long as a fault condition still exists, the OFIFG will remain set. The
application must take special care when clearing the OFIFG signal. If no fault condition
remains when the OFIFG signal is cleared, the clock logic will switch back to the original
user settings prior to the fault condition.

When switching MCLK or SMCLK from one clock source to the another, the switch is synchronized to
avoid critical race conditions as shown in Figure 3-5:
• The current clock cycle continues until the next rising edge.
• The clock remains high until the next rising edge of the new clock.
• The new clock source is selected and continues with a full high period.

Figure 3-5. Switch MCLK from DCOCLK to ACLK

Unified Clock System (UCS)64 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.3 MODOSC Module Oscillator

3.3.1 MODOSC Operation

www.ti.com MODOSC Module Oscillator

The Unified Clock System module also supports an internal oscillator, MODOSC that is used by the Flash
Memory Controller module, and optionally, by other modules in the system. The MODOSC sources
MODCLK.

To conserve power, MODOSC is powered down when not needed and enabled only when required. When
the MODOSC source is required, the respective module requests it. The MODOSC is enabled based on
unconditional and conditional requests. Setting MODOSCREQEN will enable conditional requests.
Unconditional requests are always enabled. It is not necessary to set the MODOSCREQEN for modules
that utilize unconditional requests e.g. Flash controller, ADC12_A.

The Flash Memory Controller only requires MODCLK when performing write or erase operations. When
performing such operations, the Flash Memory Controller issues an unconditional request for the
MODOSC source. Upon doing so, the MODOSC source will be enabled, if not already enabled from other
modules' previous requests.

The ADC12_A may optionally use the MODOSC as a clock source for its conversion clock. The user
chooses the ADC12OSC as the conversion clock source. During a conversion, the ADC12_A module
issues an unconditional request for the ADC12OSC clock source. Upon doing so, the MODOSC source
will be enabled, if not already enabled form other modules' previous requests.

SLAU208–June 2008 Unified Clock System (UCS) 65
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

3.4 Unified Clock System Module Registers
Unified Clock System Module Registers www.ti.com

The Unified Clock System module registers are listed in Table 3-1. The base address can be found in the
device specific datasheet. The address offset is listed in Table 3-1.

Table 3-1. Unified Clock System Registers
Register Register AddressRegister Short Form Initial StateType Access Offset

UCS Control register 0 UCSCTL0 Read/write Word 00h 0000h
UCSCTL0_L Read/write Byte 00h 00h
UCSCTL0_H Read/write Byte 01h 00h

UCS Control register 1 UCSCTL1 Read/write Word 02h 0020h
UCSCTL1_L Read/write Byte 02h 20h
UCSCTL1_H Read/write Byte 03h 00h

UCS Control register 2 UCSCTL2 Read/write Word 04h 101Fh
UCSCTL2_L Read/write Byte 04h 1Fh
UCSCTL2_H Read/write Byte 05h 10h

UCS Control register 3 UCSCTL3 Read/write Word 06h 0000h
UCSCTL3_L Read/write Byte 06h 00h
UCSCTL3_H Read/write Byte 07h 00h

UCS Control register 4 UCSCTL4 Read/write Word 08h 0044h
UCSCTL4_L Read/write Byte 08h 44h
UCSCTL4_H Read/write Byte 09h 00h

UCS Control register 5 UCSCTL5 Read/write Word 0Ah 0000h
UCSCTL5_L Read/write Byte 0Ah 00h
UCSCTL5_H Read/write Byte 0Bh 00h

UCS Control register 6 UCSCTL6 Read/write Word 0Ch C1CDh
UCSCTL6_L Read/write Byte 0Ch CDh
UCSCTL6_H Read/write Byte 0Dh C1h

UCS Control register 7 UCSCTL7 Read/write Word 0Eh 0703h
UCSCTL7_L Read/write Byte 0Eh 03h
UCSCTL7_H Read/write Byte 0Fh 07h

UCS Control register 8 UCSCTL8 Read/write Word 10h 0307h
UCSCTL8_L Read/write Byte 10h 07h
UCSCTL8_H Read/write Byte 11h 03h

66 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Unified Clock System Module Registers

UCSCTL0, UCSCTL0_H, UCSCTL0_L, Unified Clock System Control Register 0

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved DCO
r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

MOD Reserved
rw-0 rw-0 rw-0 rw-0 rw-0 r0 r0 r0

Reserved
 Reserved. Reads back as 0.
UCSCTL0 Bits 15-13
UCSCTL0_H Bits 7-5
DCO
 DCO tap selection. These bits select the DCO tap and are modified automatically during FLL operation.
UCSCTL0 Bits 12-8
UCSCTL0_H Bits 4-0
MOD
 Modulation bit counter. These bits select the modulation pattern. All MOD bits are modified automatically
UCSCTL0 Bits 7-3 during FLL operation. The DCO register value is incremented when the modulation bit counter rolls over
UCSCTL0_L Bits 7-3 from 31 to 0. If the modulation bit counter decrements from 0 to the maximum count, the DCO register

value is also decremented.
Reserved
 Reserved. Reads back as 0.
UCSCTL0 Bits 2-0
UCSCTL0_L Bits 2-0

UCSCTL1, UCSCTL1_H, UCSCTL1_L, Unified Clock System Control Register 1

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DCORSEL Reserved Reserved DISMOD
r0 rw-0 rw-1 rw-0 r0 r0 rw-0 rw-0

Reserved
 Reserved. Reads back as 0.
UCSCTL1 Bits 15-8
UCSCTL1_H Bits 7-0
Reserved
 Reserved. Reads back as 0.
UCSCTL1 Bit 7
UCSCTL1_L Bit 7
DCORSEL
 DCO frequency range select. These bits select the DCO frequency range of operation.
UCSCTL1 Bits 6-4
UCSCTL1_L Bits 6-4
Reserved
 Reserved. Reads back as 0.
UCSCTL1 Bits 3-2
UCSCTL1_L Bits 3-2
Reserved
 Reserved. Reads back as 0.
UCSCTL1 Bit 1
UCSCTL1_L Bit 1
DISMOD
 Modulation. This bit enables/disables the modulation.
UCSCTL1 Bit 0 0 Modulation enabledUCSCTL1_L Bit 0

1 Modulation disabled

SLAU208–June 2008 Unified Clock System (UCS) 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers www.ti.com

UCSCTL2, UCSCTL2_H, UCSCTL2_L, Unified Clock System Control Register 2

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved FLLD Reserved FLLN
r0 rw-0 rw-0 rw-1 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

FLLN
rw-0 rw-0 rw-0 rw-1 rw-1 rw-1 rw-1 rw-1

Reserved
 Reserved. Reads back as 0.
UCSCTL2 Bit 15
UCSCTL2_H Bit 7
FLLD
 FLL loop divider. These bits select the DCO frequency range of operation.
UCSCTL2 Bits 14-12 000 fDCOCLK/1UCSCTL2_H Bits 6-4

001 fDCOCLK/2
010 fDCOCLK/4
011 fDCOCLK/8
100 fDCOCLK/16
101 fDCOCLK/32
110 Reserved for future use. Defaults to fDCOCLK/32.
111 Reserved for future use. Defaults to fDCOCLK/32.

Reserved
 Reserved. Reads back as 0.
UCSCTL2 Bits 11-10
UCSCTL2_H Bits 3-2
FLLN
 Multiplier bits. These bits set the multiplier value N of the DCO. N must be greater than zero. Writing zero
UCSCTL2 Bits 9-0 to FLLN causes N to be set to one.
UCSCTL2_H Bits 1-0
UCSCTL2_L Bits 7-0

68 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Unified Clock System Module Registers

UCSCTL3, UCSCTL3_H, UCSCTL3_L, Unified Clock System Control Register 3

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved SELREF Reserved FLLREFDIV
r0 rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0

Reserved
 Reserved. Reads back as 0.
UCSCTL3 Bits 15-8
UCSCTL3_H Bits 7-0
Reserved
 Reserved. Reads back as 0.
UCSCTL3 Bit 7
UCSCTL3_L Bit 7
SELREF
 FLL reference select. These bits select the FLL reference clock source.
UCSCTL3 Bits 6-4 000 XT1CLKUCSCTL3_L Bits 6-4

001 Reserved for future use. Defaults to XT1CLK.
010 REFOCLK
011 Reserved for future use. Defaults to REFOCLK.
100 Reserved for future use. Defaults to REFOCLK.
101 XT2CLK when available, otherwise REFOCLK.
110 Reserved for future use. XT2CLK when available, otherwise REFOCLK.
111 Reserved for future use. XT2CLK when available, otherwise REFOCLK.

Reserved
 Reserved. Reads back as 0.
UCSCTL3 Bit 3
UCSCTL3_L Bit 3
FLLREFDIV
 FLL reference divider. These bits define the divide factor for fFLLREFCLK. The divided frequency is used as
UCSCTL3 Bits 2-0 the FLL reference frequency.
UCSCTL3_L Bits 2-0 000 fFLLREFCLK/1

001 fFLLREFCLK/2
010 fFLLREFCLK/4
011 fFLLREFCLK/8
100 fFLLREFCLK/12
101 fFLLREFCLK/16
110 Reserved for future use. Defaults to fFLLREFCLK/16.
111 Reserved for future use. Defaults to fFLLREFCLK/16.

SLAU208–June 2008 Unified Clock System (UCS) 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers www.ti.com

UCSCTL4, UCSCTL4_H, UCSCTL4_L, Unified Clock System Control Register 4

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved SELA
r0 r0 r0 r0 r0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved SELS Reserved SELM
r0 rw-1 rw-0 rw-0 r0 rw-1 rw-0 rw-0

Reserved
 Reserved. Reads back as 0.
UCSCTL4 Bits 15-11
UCSCTL4_H Bits 7-3
SELA
 Selects the ACLK source
UCSCTL4 Bits 10-8 000 XT1CLKUCSCTL4_H Bits 2-0

001 VLOCLK
010 REFOCLK
011 DCOCLK
100 DCOCLKDIV
101 XT2CLK when available, otherwise DCOCLKDIV
110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

Reserved
 Reserved. Reads back as 0.
UCSCTL4 Bit 7
UCSCTL4_L Bit 7
SELS
 Selects the SMCLK source
UCSCTL4 Bits 6-4 000 XT1CLKUCSCTL4_L Bits 6-4

001 VLOCLK
010 REFOCLK
011 DCOCLK
100 DCOCLKDIV
101 XT2CLK when available, otherwise DCOCLKDIV
110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

Reserved
 Reserved. Reads back as 0.
UCSCTL4 Bit 3
UCSCTL4_L Bit 3
SELM
 Selects the MCLK source
UCSCTL4 Bits 2-0 000 XT1CLKUCSCTL4_L Bits 2-0

001 VLOCLK
010 REFOCLK
011 DCOCLK
100 DCOCLKDIV
101 XT2CLK when available, otherwise DCOCLKDIV
110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.
111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

70 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Unified Clock System Module Registers

UCSCTL5, UCSCTL5_H, UCSCTL5_L, Unified Clock System Control Register 5

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved DIVPA Reserved DIVA
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved DIVS Reserved DIVM
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Reserved
 Reserved. Reads back as 0.
UCSCTL5 Bit 15
UCSCTL5_H Bit 7
DIVPA
 ACLK source divider available at external pin
UCSCTL5 Bits 14-12 000 fACLK/1UCSCTL5_H Bits 6-4

001 fACLK/2
010 fACLK/4
011 fACLK/8
100 fACLK/16
101 fACLK/32
110 Reserved for future use. Defaults to fACLK/32.
111 Reserved for future use. Defaults to fACLK/32.

Reserved
 Reserved. Reads back as 0.
UCSCTL5 Bit 11
UCSCTL5_H Bit 3
DIVA
 ACLK source divider
UCSCTL5 Bits 10-8 000 fACLK/1UCSCTL5_H Bits 2-0

001 fACLK/2
010 fACLK/4
011 fACLK/8
100 fACLK/16
101 fACLK/32
110 Reserved for future use. Defaults to fACLK/32.
111 Reserved for future use. Defaults to fACLK/32.

Reserved
 Reserved. Reads back as 0.
UCSCTL5 Bit 7
UCSCTL5_L Bit 7
DIVS
 SMCLK source divider
UCSCTL5 Bits 6-4 000 fACLK/1UCSCTL5_L Bits 6-4

001 fACLK/2
010 fACLK/4
011 fACLK/8
100 fACLK/16
101 fACLK/32
110 Reserved for future use. Defaults to fACLK/32.
111 Reserved for future use. Defaults to fACLK/32.

SLAU208–June 2008 Unified Clock System (UCS) 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers www.ti.com

Reserved
 Reserved. Reads back as 0.
UCSCTL5 Bit 3
UCSCTL5_L Bit 3
DIVM
 MCLK source divider
UCSCTL5 Bits 2-0 000 fACLK/1UCSCTL5_L Bits 2-0

001 fACLK/2
010 fACLK/4
011 fACLK/8
100 fACLK/16
101 fACLK/32
110 Reserved for future use. Defaults to fACLK/32.
111 Reserved for future use. Defaults to fACLK/32.

72 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Unified Clock System Module Registers

UCSCTL6, UCSCTL6_H, UCSCTL6_L, Unified Clock System Control Register 6

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

XT2DRIVE Reserved XT2BYPASS Reserved XT2OFF
rw-1 rw-1 r0 rw-0 r0 r0 r0 rw-1

7 6 5 4 3 2 1 0

XT1DRIVE XTS XT1BYPASS XCAP SMCLKOFF XT1OFF
rw-1 rw-1 rw-0 rw-0 rw-1 rw-1 rw-0 rw-1

XT2DRIVE
 The XT2 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply
UCSCTL6 Bits 15-14 current for reliable and quick startup. If needed, user software can reduce the drive strength.
UCSCTL6_H Bits 7-6 00 Lowest current consumption. XT2 oscillator operating range is 4 MHz to 8 MHz.

01 Increased drive strength XT2 oscillator. XT2 oscillator operating range is 8 MHz to 16 MHz.
10 Increased drive capability XT2 oscillator. XT2 oscillator operating range is 16 MHz to 24 MHz.
11 Maximum drive capability and maximum current consumption for both XT2 oscillator. XT2 oscillator

operating range is 24 MHz to 32 MHz.
Reserved
 Reserved. Reads back as 0.
UCSCTL6 Bit 13
UCSCTL6_H Bit 5
XT2BYPASS
 XT2 bypass select
UCSCTL6 Bit 12 0 XT2 sourced internallyUCSCTL6_H Bit 4

1 XT2 sourced externally from pin
Reserved
 Reserved. Reads back as 0.
UCSCTL6 Bits 11-9
UCSCTL6_H Bits 3-1
XT2OFF
 Turns off the XT2 oscillator.
UCSCTL6 Bit 8 0 XT2 is on if XT2 is selected via the port selection and XT2 is not in bypass mode of operation.UCSCTL6_H Bit 0

1 XT2 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference
source required for FLL operation.

XT1DRIVE
 The XT1 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply
UCSCTL6 Bits 7-6 current for reliable and quick startup. If needed, user software can reduce the drive strength.
UCSCTL6_L Bits 7-6 00 Lowest current consumption for XT1 LF mode. XT1 oscillator operating range in HF mode is 4 MHz

to 8 MHz.
01 Increased drive strength for XT1 LF mode. XT1 oscillator operating range in HF mode is 8 MHz to

16 MHz.
10 Increased drive capability for XT1 LF mode. XT1 oscillator operating range in HF mode is 16 MHz to

24 MHz.
11 Maximum drive capability and maximum current consumption for XT1 LF mode. XT1 oscillator

operating range in HF mode is 24 MHz to 32 MHz.
XTS
 XT1 mode select
UCSCTL6 Bit 5 0 Low frequency mode. XCAP bits define the capacitance at the XIN and XOUT pins.UCSCTL6_L Bit 5

1 High frequency mode. XCAP bits are not used.
XTS
 XT1 bypass select
UCSCTL6 Bit 4 0 XT1 sourced internallyUCSCTL6_L Bit 4

1 XT1 sourced externally from pin
XCAP
 Oscillator capacitor selection. These bits select the capacitors applied to the LF crystal or resonator in the
UCSCTL6 Bits 3-2 low-frequency mode (XTS = 0). The effective capacitance (seen by the crystal) is Ceff ≈ (CXIN + 2 pF)/2. It is
UCSCTL6_L Bits 3-2 assumed, that CXIN = CXOUT and that a parasitic capacitance of 2 pF is added by the package and the

printed circuit board. For details about the typical internal and the effective capacitors refer to the device
specific datasheet.

SLAU208–June 2008 Unified Clock System (UCS) 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers www.ti.com

SMCLKOFF
 SMCLK off. This bit turns off the SMCLK.
UCSCTL6 Bit 1 0 SMCLK offUCSCTL6_L Bit 1

1 SMCLK on
XT1OFF
 XT1 off. This bit turns off the XT1.
UCSCTL6 Bit 0 0 XT1 is on if XT1 is selected via the port selection and XT1 is not in bypass mode of operation.UCSCTL6_L Bit 0

1 XT1 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference
source required for FLL operation.

74 Unified Clock System (UCS) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Unified Clock System Module Registers

UCSCTL7, UCSCTL7_H, UCSCTL7_L, Unified Clock System Control Register 7

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved FLLWARNEN FLLULIE FLLUNLOCKHIS FLLUNLOCK
r0 r0 rw-0 rw-(0) rw-(1) rw-(1) r-1 r-1

7 6 5 4 3 2 1 0

Reserved FLLULIFG XT2OFFG XT1HFOFFG XT1LFOFFG DCOFFG
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(1) rw-(1)

Reserved
 Reserved. Reads back as 0.
UCSCTL7 Bit 15
UCSCTL7_H Bit 7
FLLWARNEN
 Warning enable. If this bit is set then an interrupt is generated based on the FLLUNLOCKHIS bits. If
UCSCTL7 Bit 13 FLLUNLOCKHIS is not equal to 00 then an OFIFG is generated.
UCSCTL7_H Bit 5 0 The FLLUNLOCKHIS status cannot set OFIFG.

1 The FLLUNLOCKHIS status can set OFIFG.
FLLULIE
 FLL unlock interrupt enable. If the FLLUIE bit is set a reset (PUC) is triggered if the FLLULIFG is set.
UCSCTL7 Bit 12 The FLLULIFG indicates when FLLUNLOCK bits equal to 10. The FLLULIE is automatically cleared
UCSCTL7_H Bit 4 upon servicing the event. If FLLUIE is cleared (0), no PUC can be triggered by the FLLULIFG.
FLLUNLOCKHIS
 Unlock history bits. These bits indicate the FLL unlock condition history. As soon as any unlock
UCSCTL7 Bits 11-10 condition happens the respective bits are set and remain set until cleared by software by writing 0 to it
UCSCTL7_H Bits 3-2 or by a POR.

00 FLL is locked. No unlock situation has been detected since the last reset of these bits.
01 DCOCLK has been too low since the bits were cleared.
10 DCOCLK has been too fast since the bits were cleared.
11 DCOCLK has been both too fast and too slow since the bits were cleared.

FLLUNLOCK
 Unlock. These bits indicate the current FLL unlock condition. These bits are both set as long as the
UCSCTL7 Bits 9-8 DCOFFG flag is set.
UCSCTL7_H Bits 1-0 00 FLL is locked. No unlock condition currently active.

01 DCOCLK is currently too low.
10 DCOCLK is currently too fast.
11 DCOERROR. DCO out of range.

Reserved
 Reserved. Reads back as 0.
UCSCTL7 Bits 7-5
UCSCTL7_L Bits 7-5
FLLULIFG
 FLL unlock interrupt flag. This flag is set when the FLLUNLOCK bits equal 10b (DCO too fast) If the
UCSCTL7 Bit 4 FLLUIFE is also set, a PUC will be triggered when FLLUIFG is set.
UCSCTL7_L Bit 4 0 FLLUNLOCK bits not equal to 10b

1 FLLUNLOCK bits equal to 10b
XT2OFFG
 XT2 oscillator fault flag. If this bit is set, the OFIFG flag is also set. XT2OFFG is set if a XT2 fault
UCSCTL7 Bit 3 condition exists. The XT2OFFG can be cleared via software. If the XT2 fault condition still remains, the
UCSCTL7_L Bit 3 XT2OFFG is set.

0 No fault condition occurred after the last reset.
1 XT2 fault. An XT2 fault occurred after the last reset.

XT1HFOFFG
 XT1 oscillator fault flag (HF mode). If this bit is set, the OFIFG flag is also set. XT1HFOFFG is set if a
UCSCTL7 Bit 2 XT1 fault condition exists. The XT1HFOFFG can be cleared via software. If the XT1 fault condition still
UCSCTL7_L Bit 2 remains, the XT1HFOFFG is set.

0 No fault condition occurred after the last reset.
1 XT1 fault. An XT1 fault occurred after the last reset.

SLAU208–June 2008 Unified Clock System (UCS) 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Unified Clock System Module Registers www.ti.com

XT1LFOFFG
 XT1 oscillator fault flag (LF mode). If this bit is set, the OFIFG flag is also set. XT1LFOFFG is set if a
UCSCTL7 Bit 1 XT1 fault condition exists. The XT1LFOFFG can be cleared via software. If the XT1 fault condition still
UCSCTL7_L Bit 1 remains, the XT1LFOFFG is set.

0 No fault condition occurred after the last reset.
1 XT1 fault (LF mode). A XT1 fault occurred after the last reset.

DCOFFG
 DCO fault flag. If this bit is set, the OFIFG flag is also set. The DCOFFG bit is set if DCOx = 0 or
UCSCTL7 Bit 0 DCOx = 31. The DCOOFFG can be cleared via software. If the DCO fault condition still remains, the
UCSCTL7_L Bit 0 DCOOFFG is set. As long as DCOFFG is set, FLLUNLOCK shows the DCOERROR condition.

0 No fault condition occurred after the last reset.
1 DCO fault. A DCO fault occurred after the last reset.

Note: The FLLWAREN, FLLUIE, FLLUNLOCKHIS, and FLLUNLOCK bits and features are
currently under evaluation and may not be present in the final product.

UCSCTL8, UCSCTL8_H, UCSCTL8_L, Unified Clock System Control Register 8

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved Reserved Reserved
r0 r0 r0 r0 r0 r0 rw-(1) rw-(1)

7 6 5 4 3 2 1 0

MODOSCREQReserved Reserved Reserved Reserved ReservedEN
r0 r0 r0 rw-(1) rw-(0) rw-(1) rw-(1) rw-(1)

Reserved
 Reserved. Reads back as 0.
UCSCTL8 Bits 15-10
UCSCTL8_H Bits 7-2
Reserved
 Reserved. Must always be written as 1.
UCSCTL8 Bit 9
UCSCTL8_H Bit 1
Reserved
 Reserved. Must always be written as 1.
UCSCTL8 Bit 8
UCSCTL8_H Bit 0
Reserved
 Reserved. Reads back as 0.
UCSCTL8 Bits 7-5
UCSCTL8_L Bits 7-5
Reserved
 Reserved. Must always be written as 1.
UCSCTL8 Bit 4
UCSCTL8_L Bit 4
MODOSCREQEN
 MODOSC clock request enable. Setting this enables module requests for the MODOSC.
UCSCTL8 Bit 3 0 MODOSC requests are disabled.UCSCTL8_L Bit 3

1 MODOSC requests are enabled.
Reserved
 Reserved. Must always be written as 1.
UCSCTL8 Bit 2
UCSCTL8_L Bit 2
Reserved
 Reserved. Must always be written as 1.
UCSCTL8 Bit 1
UCSCTL8_L Bit 1
Reserved
 Reserved. Must always be written as 1.
UCSCTL8 Bit 0
UCSCTL8_L Bit 0

Unified Clock System (UCS)76 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 4
SLAU208–June 2008

Power Management Module and Supply Voltage
Supervisor

This chapter describes the operation of the Power Management Module (PMM) and the Supply Voltage
Supervisors (SVS) of the MSP430x5xx devices.

Topic .. Page

4.1 PMM Introduction.. 78
4.2 PMM Operation ... 80
4.3 PMM Registers.. 87

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

4.1 PMM Introduction

D
V

>
 1

.8
 V

C
C

25

12

f in MHzSYS

[00]

16

20

PMMCOREV[1:0][01] [10] [11]

D
V

0
 V

C
C

>
2
.

D
V

>
 2

.2
 V

C
C

D
V

>
 2

.4
 V

C
C

PMM Introduction www.ti.com

The PMM features include:
• Wide supply voltage (DVCC) range: 1.8 V to 3.6 V
• Core voltage (VCORE) generation: 1.4 V, 1.6 V, 1.8 V, and 1.9 V (typical)
• Brown-out-reset (BOR)
• Supply voltage supervisor for DVCC and VCORE
• Supply voltage monitor for DVCC and VCORE with eight programmable levels
• Software accessible power-fail conditions
• Software selectable power-on-reset at power-fail condition
• I/O protection at power-fail condition
• Software selectable supervisor or monitor state output (optional)

The main digital logic of the MSP430 device requires a voltage that is lower than the range allowed by
DVCC. For this reason, the PMM incorporates an integrated low-dropout voltage regulator (LDO) that
generates a secondary core voltage rail, VCORE. The core voltage is programmable in four steps to allow
power consumption optimization. The required minimum voltage for the core depends on the selected
MCLK rate, as shown inFigure 4-1

Figure 4-1. System Frequency and Supply/Core Voltages

DVCC and VCORE can be supervised and monitored. Both supervision and monitoring detect when a
voltage has fallen under a specific threshold. Generally speaking, supervision results in a power-on reset
(POR) event, while monitoring results in the generation of an interrupt flag, which software can then
handle. As such, DVCC (the high-side of the LDO) is supervised and monitored by the high-side supervisor
(SVSH) and high-side monitor (SVMH), respectively. VCORE (the low-side of the LDO) is supervised and
monitored by the low-side supervisor (SVSL) and low-side monitor SVML), respectively. The block diagram
of the PMM is shown in Figure 4-2.

78 Power Management Module and Supply Voltage Supervisor SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

SVS

SVM
H

H

Regulator

SVS

SVM
L

L

DVCC

Reference

VCORE

OR

To reset logic

NORPorts ON

BOR

Control bits PMMCOREV

To reset logic

www.ti.com PMM Introduction

Figure 4-2. PMM Block Diagram

The I/Os and all analog modules including the oscillators are supplied by DVCC. Memories (Flash and
RAM) and the digital modules are supplied by the core voltage (VCORE).

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

4.2 PMM Operation

DVCC

Voltage

VCORE

SVSH_IT+

SVSL_IT+

Time
POR

Reset from SVSH

Reset from SVSL

PMM Operation www.ti.com

The PMM can be configured for four possible levels of core voltage, correlating with four system speed
levels. For a given core voltage, there is an associated set of thresholds.

The PMM regulator supports two different load settings. The low current mode can be used if the system
consumes less than I(VCORE) ≤ 30 µA (see device specific datasheet). Higher system currents are
supported by the full-performance mode. The full-performance mode is required if:
• any internal high frequency clock (>32 kHz) is used by any module
• an interrupt is executed
• JTAG is active
• in active mode, LPM0, or LPM1

The PMM supports four system speed levels by adjusting the core voltage.

The selected core voltage level remains unchanged when entering a low-power mode. During the system
start-up the SVSH and SVSL functions are enabled. The typical values of are shown in Table 4-1 for DVCC
(high voltage) domain and Table 4-2 for the VCORE (low voltage) domain. Figure 4-3 shows how the
system behaves during power-up. If both the high side and the low side voltage supervisors levels are met
the system reset is released.

Figure 4-3. Powering Up the System

Once the system is up and running, both voltage domains are supervised and monitored as long as the
respective modules are enabled. The PMM supply voltage supervisor levels selected after reset are 1.74
V (typical) for the high side and 1.34 V (typical) for the low side. Once both levels are exceeded the
system starts operation. The device specific values can be found in the device specific data sheet.

A power-fail at the high or low side voltage domains may cause system failures. Both high and low side
voltage levels are monitored by the supply voltage monitors. If DVCC falls below the supply voltage monitor
level for the high side, the supply voltage monitor interrupt flag for the high side, SVMHIFG, is set.
SimiIary, if VCORE falls below the supply voltage monitor level of the low side, the supply voltage monitor
interrupt flag for the low side, SVMLIFG, is set.

When DVCC rises above the supply voltage monitor level of the high side, the supply voltage reached
interrupt flag SVMHVLRIFG is set. Similary, if VCORE rises above the supply voltage monitor level of the
low side, the supply voltage reached interrupt flag SVMLVLRIFG is set. When both the high side and low
side levels have been reached, the system can continue to operate normally.

80 Power Management Module and Supply Voltage Supervisor SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

DVCC

Voltage

VCORE

SVM ,SVSL _IT+L

SVSL_IT-

SVM ,SVSH H_IT+

SVSH_IT-

Time

Set SVMHIFG

Set SVSHIFG

POR

Set SVMLIFG

Set SVSLIFG

Set SVMHVLRIFG

Set SVMLVLRIFG

www.ti.com PMM Operation

Supply voltages below the supply voltage supervisor levels cause a system reset (POR) if enabled.
Setting SVSHPE will cause a POR when SVSHIFG is set. Similarly, setting SVSLPE will cause a POR
when SVSLIFG is set.

Both the supply voltage supervisor and monitor interrupt flags remain set unless cleared by a BOR or by
software to allow the application software to determine the latest reset condition.

Figure 4-4 explains the high and low side power fails with respect to the supply voltage supervisor and
monitor levels and the respective interrupt flags.

Figure 4-4. High-Side and Low-Side Voltage Failure

Table 4-1. High-Side Supply Voltage Supervisor and Monitor Levels (see the
device-specific datasheet)

Parameter High Side (DVCC) Voltage
DVCC(min) in V ≥1.8 (1) ≥2.0 ≥2.2 ≥2.4

SVMH – V(SVMH_IT+,typ) in V 1.74 (1) 1.94 2.14 2.26
SVMH – V(SVMH_IT-,typ) in V 1.74 (1) 1.94 2.14 2.26

SVSH – V(SVSH_IT+,max) in V 1.79 (1) 1.99 2.19 2.31
SVSH – V(SVSH_IT+,min) in V 1.69 (1) 1.89 2.09 2.21
SVSH – V(SVSH_IT-,max) in V 1.69 (1) 1.89 2.09 2.21
SVSH – V(SVSH_IT-,min) in V 1.59 (1) 1.79 1.99 2.11

(1) Default value after reset

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

4.2.1 Supply Voltage Supervisor and Monitor – High Side

SVSHFP
SVSH

SVSHRVL
SVSHPE

Set POR

Set SVSHIFG

Delay

LPM or SVSMHCTL
change

SVSHE

SVMH

SVSMHRRVL

SVMHFP

SVMHE

SVMHOVPE

SVMHVLRPE

Set POR

SVMHVLRIFG

SVMHVLRIE
SVM Reached InterruptH

SVMHIE

SVMHIFG

SVSMHDLYIE

SVSMHDLYIFG

IFG

Set

IFG

Set

IFG

Set

High Side Delay Interrupt

SVSHMD

High power mode

1

0

ONON

ON

SVSMHEVM

SVM InterruptH

PMM Operation www.ti.com

Table 4-2. Low-Side Supply Voltage Supervisor and Monitor Levels (see the
device specific datasheet)

Parameter Low Side (VCORE) Voltage
PMMCOREV 0 (1) 1 2 3

VCORE(typ) in V 1.40 (1) 1.60 1.80 1.92
SVML – V(SVML_IT+,typ) in V 1.34 (1) 1.54 1.74 1.84
SVML – V(SVML_IT-,typ) in V 1.34 (1) 1.54 1.74 1.84

SVSL – V(SVSL_IT+,max) in V 1.39 (1) 1.59 1.79 1.89
SVSL – V(SVSL_IT+,min) in V 1.29 (1) 1.49 1.69 1.79
SVSL – V(SVSL_IT-,max) in V 1.32 (1) 1.52 1.72 1.82
SVSL – V(SVSL_IT-,min) in V 1.22 (1) 1.42 1.62 1.72

(1) Default value after reset

The high side supply voltage supervisor/monitor operates in active mode and in the low-power modes. To
save power the operation speed can be reduced (default: SVMHFP=0, SVSHFP=0). The blockdiagram is
shown in Figure 4-5.

Figure 4-5. High-Side Supply Voltage Supervisor and Monitor

The SVMH module is enabled by setting SVMHE=1. Its power consumption can be reduced by setting
SVMHFP=0. The voltage reset release level is defined by SVSMHRRVL. A rising DVCC level crossing the
SVMH level sets the SVMHVLRIFG interrupt flag. An interrupt is also triggered if SVMHVLRIE = 1. A

82 Power Management Module and Supply Voltage Supervisor SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

4.2.2 Supply Voltage Supervisor and Monitor – Low Side

SVSLFP
SVSL

SVSLRVL
SVSLPE

Set POR

Set SVSLIFG

Delay

LPM or SVSMLCTL
change

SVSLE

SVML

SVSMLRRVL

SVMLFP

SVMLE

SVMLOVPE

SVMLVLRPE

Set POR

SVMLVLRIFG

SVMLVLRIE
SVM Reached InterruptL

SVMLIE

SVMLIFG

SVSMLDLYIE

SVSMLDLYIFG

IFG

Set

IFG

Set

IFG

Set

Low Side Delay Interrupt

SVSLMD

High power mode

1

0

ONON

ON

SVSMLEVM

SVM InterruptL

www.ti.com PMM Operation

falling DVCC level crossing the SVMH level sets the SVMHIFG interrupt flag. An interrupt is also triggered
if SVMHIE = 1. When DVCC remains lower than the SVMH level and SVMHIFG is cleared by software,
then it is immediately set again by hardware. If desired, a POR can also be generated if SVMHVLRPE =1
and SVMHOVPE = 0. The SVMH module also contains overvoltage detection. If DVCC exceeds safe
device operation, a POR will be generated when SVMHOVPE = 1 and SVMHVLRPE = 1.

The SVSH module is enabled by setting SVSHE=1. Its power consumption can be reduced by setting
SVSHFP=0. The voltage reset release level is defined by SVSHRVL. A falling DVCC level crossing the
SVSH level sets the SVSHIFG interrupt flag, as well as causes a POR if SVSHPE = 1. When DVCC
remains lower than the SVSH level and SVSHIFG is cleared by software, then it is immediately set again
by hardware. The SVSH is disabled in low-power modes 2, 3, and 4 unless the SVSHMD forces the SVSH
circuit on.

If the power mode of the SVMH or SVSH or a voltage level is altered, a delay element masks the interrupts
and POR sources until the SVMH and SVSH circuits have settled. SVSMHDLYIFG is set indicating when
the delay has completed. An interrupt can also be generated if SVSMHDLYIE = 1.

The low side supply voltage supervisor/monitor operates in active mode and in the low-power modes. To
save power the operation speed can be reduced (default: SVMLFP=0, SVSLFP=0). The blockdiagram is
shown in Figure 4-6.

Figure 4-6. Low Side Supply Voltage Supervisor and Monitor

The SVML module is enabled by setting SVMLE=1. Its power consumption can be reduced by setting
SVMLFP=0. The voltage reset release level is defined by SVSMLRRVL. A rising VCORE level crossing the
SVML level sets the SVMLVLRIFG interrupt flag. An interrupt is also triggered if SVMLVLRIE = 1. A falling

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

4.2.3 Supply Voltage Monitor Output (SVMOUT, Optional)

4.2.4 Performance Optimization

PMM Operation www.ti.com

VCORE level crossing the SVML level sets the SVMLIFG interrupt flag. An interrupt is also triggered if
SVMLIE = 1. When VCORE remains lower than the SVML level and SVMLIFG is cleared by software, then it
is immediately set again by hardware. If desired, a POR can also be generated if SVMLVLRPE =1 and
SVMLOVPE = 0. The SVML module also contains overvoltage detection. If VCORE exceeds safe device
operation, a POR will be generated when SVMLOVPE = 1 and SVMLVLRPE = 1.

The SVSL module is enabled by setting SVSLE=1. Its power consumption can be reduced by setting
SVSLFP=0. The voltage reset release level is defined by SVSLRVL. A falling VCORE level crossing the
SVSL level sets the SVSLIFG interrupt flag, as well as, causes a POR if SVSLPE = 1. When
VCOREremains lower than the SVSL level and SVSLIFG is cleared by software then it is immediately set
again by hardware. The SVSL is disabled in low-power modes 2, 3, and 4 unless the SVSLMD forces the
SVSL circuit on.

If the power mode of the SVML or SVSL or a voltage level is altered a delay element masks the interrupts
and POR sources until the SVML and SVSL circuits have settled. SVSMLDLYIFG is set indicating when
the delay has completed. An interrupt can also be generated if SVSMLDLYIE = 1.

The state of the SVMLIFG, SVMLVLRIFG, SVMHIFG and SVMLVLRIFG can be monitored on the external
SVMOUT pin. Each of these interrupt flags can be enabled (SVMLOE, SVMLVLROE, SVMHOE,
SVMLVLROE) to generate an output signal. The polarity of the output is selected by the SVMOUTPOL bit.
If SVMOUTPOL is set then the output is set to 1 if an enabled interrupt flag is set.

The CPU and the digital modules are supplied by the regulated core voltage (VCORE). If the CPU has to
run at full speed the core voltage has to be programmed to the highest level (see Figure 4-1). If the full
CPU performance is not required the core voltage can be reduced to the desired level to save
considerable power. During reset the core voltage defaults to the lowest voltage of 1.4 V (typical). The
SVML and SVSL levels are selected accordingly during reset. Figure 4-7 shows how the core voltage can
be programmed from one level to another using the built-in supply voltage monitor and supervisor for safe
operation.

Steps 1 to 4 show the sequence how the core voltage is increased while Steps 5 and 6 show how the
core voltage is decreased.

Step 1: Program the SVML to the new level and wait for (SVSMLDLYIFG) to be set.
Step 2: Program PMMCOREV to the new VCORE level.
Step 3: Wait for the voltage level reached (SVMLVLRIFG) interrupt.
Step 4: Program the SVSL to the new level.

The desired core voltage level is reached and both the supply voltage monitor and the supply voltage
supervisor levels are programmed accordingly. The system speed can now be increased.

Decreasing the core voltage level:
Step 5: Decrease the system speed to the target speed. Program the SVSL and SVML level to the
target values.
Step 6: Program VCORE to the new level.

The delay element shown in Figure 4-6 is triggered if the configuration registers for the high- or low-side
SVS or SVM is changed or if the power-mode (active mode, LPMx) is changed.

84 Power Management Module and Supply Voltage Supervisor SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Voltage

VCORE

Time

SVML

SVSL

1

2

3
4 5

6

4.2.5 Voltage Reference

4.2.6 Brown-Out Reset (BOR)

4.2.7 Manual Control of the Power Management Module

4.2.7.1 Manual Control of the Voltage Regulator

4.2.7.2 Controlling the SVSH,L and SVMH,L Performance

www.ti.com PMM Operation

Figure 4-7. Changing VCORE and the SVML and SVSL Levels

The voltage reference supplies the voltage regulator, the supply voltage supervisors and the supply
voltage monitors. In low-power modes 2, 3, and 4 the reference is clocked by a PWM signal (switched
mode) to save power. In LPM5 the reference is switched off. In the other modes the reference is in static
mode. In the static mode the reference is more accurate than in switched mode. In switched mode the
power consumption and the accuracy of the reference can be further reduced by setting the
(PMMREFACC) bit.

The BOR circuit generates a brown-out reset signal which initializes the system at power-up and starts the
supply voltage supervisors. The brown-out reset always triggers a POR followed by a PUC.

PMM operation requires minimal software involvement. The core voltage and the supply voltage
supervisor and monitor of DVCC and VCORE are selected by the user, while the hardware manages proper
operation. If the application allows, the user can manually switch off or degrade functionality to save
power.

The regulator current mode (full performance or low current) is selected by the hardware. The application
software can also manually select the current mode by setting voltage regulator current mode bits
(PMMCMD).

Table 4-3. Power Mode Overwrite (see also device specific datasheet)
PMMCMD

I(VCORE) Description
[1] [0]
0 0 or 1 0 to 25 mA Hardware controlled performance mode
1 0 ≤30 µA Manually selected low-current mode
1 1 ≤25 mA Manually selected full-performance mode

The supply voltage supervisors and supply voltage monitors are detecting supply voltage changes. If the
application allows, the power consumption of the SVMH,L and SVSH,L can be reduced by lowering their
reaction speed (low power mode). SVMH,L and SVSH,L can be disabled separately by clearing the

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

4.2.7.3 Disabling the Core Voltage Regulator – LPM5

4.2.8 I/O-Port Control

4.2.9 PMM Interrupts

PMM Operation www.ti.com

respective enable bits. A predefined performance selection can be enabled by setting SVSHACE=1
(SVSLACE=1) for the supply voltage supervisor and the supply voltage monitor of the high (low) voltage
side. If the SVSHACE (SVSLACE) bit is not set, the SVSH and SVMH (SVSL and SVML) operation mode is
controlled only by SVSHFP (SVSLFP) and can be disabled by clearing the enable bits SVSHE and
SVMHE (SVSLE and SVMLE).

Table 4-4. SVSH,L and SVMH,L Performance When SVSHACE = SVSLACE = 0
Active mode, LPM2, LPM3,Control Bit Setting LPM5LPM0, LPM1 LPM4

0 Slow Slow OffSVSHFP, SVMHFP, SVSLFP,
SVMLFP 1 Fast Fast Off

Table 4-5. SVSH,L and SVMH,L Performance When SVSHACE = SVSLACE = 1
Active mode, LPM2, LPM3,Control Bit Setting LPM5LPM0, LPM1 LPM4

0 Slow Off OffSVSHFP, SVMHFP, SVSLFP,
SVMLFP 1 Fast Slow Off

The voltage regulator is disabled by setting the PMMREGOFF bit to 1 and entering LPM4. The current
consumption is reduced below ~100 nA (see device specific datasheet). Device wake-up is done through
the RST/NMI pin or any other wake-up capable enabled I/O-pin (see device specific datasheet).
; Code Sequence to enter LPM5.

MOV #PMMPW+REGOFF,&PMMCTL0 ; Set REGOFF
BIS #LPM4,SR ; Enter LPM4

The voltage regulator is turned off when LPM4 is entered while the REGOFF bit is set. An active clock
request prevents turning off the voltage regulator. Once the clock request is deasserted the device turns
off the voltage regulator and enters LPM5. If an interrupt request clears the REGOFF bit before the
voltage regulator is turned off the device enters active mode immediately.

As long as the system is not powered up completely or during a low-voltage condition, the digital input
path of the digital I/O is disabled by locking the latest logical level. The data-in registers keep their values
and the interrupts associated with digital inputs are not detected. Digital outputs stop driving and weak
pullup/pulldown resistors are disabled.

The PMM module generates reset signals and interrupt requests. The reset signals and the interrupt flags
are routed to the system control module (SYS) and are together with other reset and interrupt sources
making up the reset vector word and the system NMI vector word. For the priorities and the details of
these vector words, see the System Control Module chapter.

Power Management Module and Supply Voltage Supervisor86 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

4.3 PMM Registers
www.ti.com PMM Registers

The PMM registers are listed in Table 4-6. The base address of the PMM module can be found in the
devices specific datasheet. The address offset of each PMM register is given in Table 4-6. The password
defined in the PMMCTL0 register controls access to all PMM, SVS, and SVM registers. Once the correct
password is written the write access is enabled. The write access is disabled by writing a wrong password
in byte mode to the PMMCTL0 upper byte. Word accesses to PMMCTL0 with a wrong password triggers a
PUC. A write access to a register other than PMMCTL0 while write access is not enabled causes a PUC.

Table 4-6. PMM Registers
Register Short Form Register Type Address Initial State
PMM control register 0 PMMCTL0 Read/write 00h 0000h
PMM control register 1 PMMCTL1 Read/write 02h 0000h
SVS and SVM high side control register SVSMHCTL Read/write 04h 4400h
SVS and SVM low side control register SVSMLCTL Read/write 06h 4400h
SVSIN ans SVMOUT control register SVSMIO Read/write 08h 0020h(optional)
PMM interrupt flag register PMMIFG Read/write 0Ch 0000h
PMM interrupt enable register PMMRIE Read/write 0Eh 0000h

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

PMM Registers www.ti.com

PMMCTL0, Power Management System Control Register 0

15 14 13 12 11 10 9 8
PMMKEY, Read as 96h, Must be written as A5h

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

PMMHPMRE Reserved PMMREGOFF PMMSWPOR PMMSWBOR PMMCOREV
rw-0 r-0 r-0 rw-0 rw-0 rw-0 rw-[0] rw-[0]

PMMKEY Bits 15-8 PMM password. Always read as 096h. Must be written with 0A5h or a PUC will be generated.
PMMHPMRE Bit 7 Global High Power Module Request Enable. If the PMMHPMRE bit is set any module is able to request

the PMM high power mode.
Reserved Bits 6-5 Reserved. Always read 0.
PMMREGOFF Bit 4 Regulator off. See chapter "Disabling the Core Voltage Regulator - LPM5"
PMMSWPOR Bit 3 Software POR. Setting this bit to 1 triggers a POR. This bit is self-clearing.
PMMSWBOR Bit 2 Software BOR. Setting this bit to 1 triggers a BOR. This bit is self-clearing.
PMMCOREV Bits 1-0 Core voltage. For details please refer to the devices specific datasheet.

00 VCORE is typical at 1.4 V.
01 VCORE is typical at 1.6 V.
10 VCORE is typical at 1.8 V.
11 VCORE is typical at 1.9 V.

PMMCTL1, Power Management System Control Register 1

15 14 13 12 11 10 9 8

Reserved
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

7 6 5 4 3 2 1 0

Reserved PMMCMD Reserved PMMREFACC PMMREFMD
r-0 r-0 rw-[0] rw-[0] r-0 r-0 rw-0 rw-0

Reserved Bits 15-6 Reserved. Always read 0.
PMMCMD Bits 5-4 Voltage regulator current mode

00 The voltage regulator current range is defined by the low-power mode
01 The voltage regulator current range is defined by the low-power mode.
10 The voltage regulator is forced into low-current mode.
11 The voltage regulator is forced into full-performance mode.

Reserved Bits 3-2 Reserved. Always read 0.
PMMREFACC Bit 1 PMM reference accuracy. If PMMREFACC is set to 1 the power consumption of the voltage reference is

reduced. The accuracy of the voltage reference decreases especially at higher temperatures.
PMMREFMD Bit 0 PMM reference mode. If the voltage regulator is in full performance mode the voltage reference operates

in continuous (static) mode. If PMMREFMD is set and the voltage regulator is in full-performance mode
the voltage reference current consumption is reduced. The accuracy of the voltage reference decreases.

88 Power Management Module and Supply Voltage Supervisor SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com PMM Registers

SVSMHCTL, High Side Supply Voltage Supervisor and Monitor Control Register

15 14 13 12 11 10 9 8

SVMHFP SVMHE Reserved SVMHOVPE SVSHFP SVSHE SVSHRVL
rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 rw-[0] rw-[0]

7 6 5 4 3 2 1 0

SVSMHACE SVSMHEVM Reserved SVSHMD SVSMHDLYST SVSMHRRVL
rw-[0] rw-0 r-0 rw-0 rw-0 rw-[0] rw-[0] rw-[0]

SVMHFP Bit 15 SVM high side full-performance mode. If this bit is set the SVMH operates in full-performance mode.
0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.

SVMHE Bit 14 SVM high side enable. If this bit is set the SVMH is enabled.
Reserved Bit 13 Reserved. Always read 0.
SVMHOVPE Bit 12 SVM high side over-voltage enable. If this bit is set the SVMH overvoltage detection is enabled.
SVSHFP Bit 11 SVS high side full-performance mode. If this bit is set the SVSH operates in full-performance mode.

0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.

SVSHE Bit 10 SVS high side enable. If this bit is set the SVSH is enabled.
SVSHRVL Bits 9-8 SVS high side reset voltage level. If DVCC falls short of the SVSH voltage level selected by SVSHRVL a

reset is triggered (if SVSL is enabled). The voltage levels are defined in the device specific datasheet.
SVSMHACE Bit 7 SVS and SVM high side automatic control enable. If this bit is set the low-power mode of the SVSH and

SVMH circuits is under hardware control.
SVSMHEVM Bit 6 SVS and SVM high side event mask. If this bit is set the SVSH and SVMH events are masked.

0 No events are masked
1 All events are masked.

Reserved Bit 5 Reserved. Always read 0.
SVSHMD Bit 4 SVS high side mode. If this bit is set the SVSH interrupt flag is set in LPM2, LPM3, and LPM4 in case of

power fail conditions. If this bit is not set the SVSH interrupt is not set in LPM2, LPM3, and LPM4.
SVSMHDLYST Bit 3 SVS and SVM high side delay status. If this bit is set the SVSH and SVMH events are masked for some

delay time. The delay time depends on the power-mode of the SVSH and SVMH. If SVMHFP = 1 and
SVSHFP = 1 it is ~2 µs in all other cases it is ~150 µs. See the device-specific data sheet for details.
The bit is cleared by hardware if the delay has expired.

SVSMHRRVL Bits 2-0 SVS and SVM high side reset release voltage level. These bits define the reset release voltage level of
the SVSH. It is also used for the SVMH to define the voltage reached level. The voltage levels are defined
in the device specific datasheet.

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

PMM Registers www.ti.com

SVSMLCTL, Low Side Supply Voltage Supervisor and Monitor Control Register

15 14 13 12 11 10 9 8
SVMLFP SVMLE Reserved SVMLOVPE SVSLFP SVSLE SVSLRVL

rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 rw-[0] rw-[0]

7 6 5 4 3 2 1 0

SVSMLACE SVSMLEVM Reserved SVSLMD SVSMLDLYST SVSMLRRVL
rw-[0] rw-0 r-0 rw-0 rw-0 rw-[0] rw-[0] rw-[0]

SVMLFP Bit 15 SVM low side full-performance mode. If this bit is set the SVML operates in full-performance mode.
0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.

SVMLE Bit 14 SVM low side enable. If this bit is set the SVML is enabled.
Reserved Bit 13 Reserved. Always read 0.
SVMLOVPE Bit 12 SVM low side over-voltage enable. If this bit is set the SVML overvoltage detection is enabled.
SVSLFP Bit 11 SVS low side full-performance mode. If this bit is set the SVSL operates in full-performance mode.

0 Normal mode. The propagation delay is typical 150us. See device specific datasheet.
1 Full performance mode. The propagation delay is typical 1us. See device specific datasheet.

SVSLE Bit 10 SVS low side enable. If this bit is set the SVSL is enabled.
SVSLRVL Bits 9-8 SVS low side reset voltage level. If DVCC falls short of the SVSL voltage level selected by SVSHRVL a

reset is triggered (if SVSL is enabled). The voltage levels are defined in the device specific datasheet.
SVSMLACE Bit 7 SVS and SVM low side automatic control enable. If this bit is set the low-power mode of the SVSL and

SVML circuits is under hardware control.
SVSMLEVM Bit 6 SVS and SVM low side event mask. If this bit is set the SVSL and SVML events are masked.

0 No events are masked.
1 All events are masked.

Reserved Bit 5 Reserved. Always read 0.
SVSLMD Bit 4 SVS low side mode. If this bit is set the SVSL interrupt flag is set in LPM2, LPM3 and LPM4 in case of a

power fail conditions. If this bit is not set the SVSL interrupt is not set in LPM2, LPM3, and LPM4.
SVSMLDLYST Bit 3 SVS and SVM low side delay status. If this bit is set the SVSL and SVML events are masked for some

delay time. The delay time depends on the power-mode of the SVSL and SVML. If SVMLFP = 1 and
SVSLFP = 1 it is ~2 µs in all other cases it is ~150 µs. The bit is cleared by hardware if the delay has
expired.

SVSMLRRVL Bits 2-0 SVS and SVM low side reset release voltage level. These bits define the reset release voltage level of
the SVSL. It is also used for the SVML to define the voltage reached level. The voltage levels are defined
in the device specific datasheet.

90 Power Management Module and Supply Voltage Supervisor SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com PMM Registers

SVSMIO, SVSIN, and SVMOUT Control Register

15 14 13 12 11 10 9 8
Reserved SVMLVLROE SVMHOE Reserved

r-0 r-0 r-0 rw-[0] rw-[0] r-0 r-0 r-0

7 6 5 4 3 2 1 0

Reserved SVMOUTPOL SVMLVLROE SVMLOE Reserved
r-0 r-0 rw-[1] rw-[0] rw-[0] r-0 r-0 r-0

Reserved Bits 15-13 Reserved. Always read 0.
SVMLVLROE Bit 12 SVM high side voltage level reached output enable. If this bit is set the SVMLVLRIFG bit is output to the

device SVMOUT pin. The device specific port logic has to be configured accordingly.
SVMHOE Bit 11 SVM high side output enable. If this bit is set the SVMHIFG bit is output to the device SVMOUT pin. The

device specific port logic has to be configured accordingly.
Reserved Bits 10-6 Reserved. Always read 0.
SVMOUTPOL Bit 5 SVMOUT pin polarity. If this bit is set SVMOUT is active high. An error condition is signaled by a 1 at

SVMOUT. If SVMOUTPOL is cleared the error condition is signaled by a 0 at the SVMOUT pin.
SVMLVLROE Bit 4 SVM low side voltage level reached output enable. If this bit is set the SVMLVLRIFG bit is output to the

device SVMOUT pin. The device specific port logic has to be configured accordingly.
SVMLOE Bit 3 SVM low side output enable. If this bit is set the SVMLIFG bit is output to the device SVMOUT pin. The

device specific port logic has to be configured accordingly.
Reserved Bits 2-0 Reserved. Always read 0.

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

PMM Registers www.ti.com

PMMIFG, Power Management System and Supply Voltage Supervisor and Monitor Interrupt Flag Register

15 14 13 12 11 10 9 8
PMMRSTLPM5 Reserved SVSLIFG1 SVSHIFG1 Reserved PMMPORIFG PMMRSTIFG PMMBORIFG

IF1G
rw-[0] r-0 rw-[0] rw-[0] r-0 rw-[0] rw-[0] rw-[0]

7 6 5 4 3 2 1 0

SVSMHDLYIFReserved SVMHVLRIFG1 SVMHIFG Reserved SVMLVLRIFG1 SVMLIFG SVSMLDLYIFGG
r-0 rw-[0] rw-[0] rw-0 r-0 rw-[0] rw-[0] rw-0

1 After power up the reset value depends
on the power sequence.
PMMRSTLPM5IFG Bit 15 LPM5 Flag. This bit is set if the system was in LPM5 before. The bit is cleared by software or by reading

the reset vector word. A power-failure on the DVCC domain clears the bit.
0 No interrupt pending
1 Interrupt pending

Reserved Bit 14 Reserved. Always read 0.
SVSLIFG Bit 13 SVS low side interrupt flag. The bit is cleared by software or by reading the reset vector word.

0 No interrupt pending
1 Interrupt pending

SVSHIFG Bit 12 SVS high side interrupt flag. The bit is cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending

Reserved Bit 11 Reserved. Always read 0.
PMMPORIFG Bit 10 PMM software POR interrupt flag. This interrupt flag is set if a software POR is triggered. The bit is

cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending

PMMRSTIFG Bit 9 PMM RST pin interrupt flag. This interrupt flag is set if the RST/NMI pin is the reset source. The bit is
cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending

PMMBORIFG Bit 8 PMM software BOR interrupt flag. This interrupt flag is set if a software BOR (PMMSWBOR) is triggered.
The bit is cleared by software or by reading the reset vector word.
0 No interrupt pending
1 Interrupt pending

Reserved Bit 7 Reserved. Always read 0.
SVMHVLRIFG Bit 6 SVM high side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset

vector (SVSHPE = 1) word or by reading the interrupt vector (SVSHPE = 0) word.
0 No interrupt pending
1 Interrupt pending

SVMHIFG Bit 5 SVM high side interrupt flag. The bit is cleared by software.
0 No interrupt pending
1 Interrupt pending

SVSMHDLYIFG Bit 4 SVS and SVM high side delay expired interrupt flag. This interrupt flag is set if the delay element expired.
The bit is cleared by software or by reading the interrupt vector word.
0 No interrupt pending
1 Interrupt pending

Reserved Bit 3 Reserved. Always read 0.
SVMLVLRIFG Bit 2 SVM low side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset

vector (SVSLPE = 1) word or by reading the interrupt vector (SVSLPE = 0) word.
0 No interrupt pending
1 Interrupt pending

92 Power Management Module and Supply Voltage Supervisor SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com PMM Registers

SVMLIFG Bit 1 SVM low side interrupt flag. The bit is cleared by software.
0 No interrupt pending
1 Interrupt pending

SVSMLDLYIFG Bit 0 SVS and SVM low side delay expired interrupt flag. This interrupt flag is set if the delay element expired.
The bit is cleared by software or by reading the interrupt vector word.
0 No interrupt pending
1 Interrupt pending

PMMRIE, Power Management System Reset Enable and Interrupt Enable Register

15 14 13 12 11 10 9 8
Reserved SVMHVLRPE SVSHPE Reserved SVMLVLRPE SVSLPE

r-0 r-0 rw-[0] rw-[0] r-0 r-0 rw-[0] rw-[0]

7 6 5 4 3 2 1 0

Reserved SVMHVLRIE SVMHIE SVSMHDLYIE Reserved SVMLVLRIE SVMLIE SVSMLDLYIE
r-0 rw-0 rw-0 rw-0 r-0 rw-0 rw-0 rw-0

Reserved Bits 15-14 Reserved. Always read 0.
SVMHVLRPE Bit 13 SVM high side voltage level reached POR enable. If this bit is set, exceeding the SVMH voltage level

triggers a POR.
SVSHPE Bit 12 SVS high side POR enable. If this bit is set, falling below the SVSH voltage level triggers a POR.
Reserved Bits 11-10 Reserved. Always read 0.
SVMLVLRPE Bit 9 SVM low side voltage level reached por enable. If this bit is set, exceeding the SVML voltage level

triggers a POR.
SVSLPE Bit 8 SVS low side POR enable. If this bit is set, falling below the SVSL voltage level triggers a POR.
Reserved Bit 7 Reserved. Always read 0.
SVMHVLRIE Bit 6 SVM high side reset voltage level interrupt enable
SVMHIE Bit 5 SVM high side interrupt enable. This bit is cleared by software or if the interrupt vector word is read.
SVSMHDLYIE Bit 4 SVS and SVM high side delay expired interrupt enable
Reserved Bit 3 Reserved. Always read 0.
SVMLVLRIE Bit 2 SVM low side reset voltage level interrupt enable
SVMLIE Bit 1 SVM low side interrupt enable. This bit is cleared by software or if the interrupt vector word is read.
SVSMLDLYIE Bit 0 SVS and SVM low side delay expired interrupt enable

SLAU208–June 2008 Power Management Module and Supply Voltage Supervisor 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Power Management Module and Supply Voltage Supervisor94 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 5
SLAU208–June 2008

CPUX

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB memory access, its
addressing modes, and instruction set. The MSP430X CPU is implemented in the MSP430F5xx devices.

Note: The MSP430X CPU implemented on MSP430F5xx devices has, in some cases, slightly
different cycle counts from the MSP430X CPU implemented on the 2xx and 4xx families.

Topic .. Page

5.1 CPU Introduction .. 96
5.2 Interrupts ... 98
5.3 CPU Registers .. 99
5.4 Addressing Modes... 105
5.5 MSP430 and MSP430X Instructions ... 123
5.6 Instruction Set Description ... 139

SLAU208–June 2008 CPUX 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.1 CPU Introduction

CPU Introduction www.ti.com

The MSP430X CPU incorporates features specifically designed for modern programming techniques such
as calculated branching, table processing and the use of high-level languages such as C. The MSP430X
CPU can address a 1-MB address range without paging. The MSP430X CPU is completely backwards
compatible with the MSP430 CPU.

The MSP430X CPU features include:
• RISC architecture
• Orthogonal architecture
• Full register access including program counter, status register and stack pointer
• Single-cycle register operations
• Large register file reduces fetches to memory.
• 20-bit address bus allows direct access and branching throughout the entire memory range without

paging.
• 16-bit data bus allows direct manipulation of word-wide arguments.
• Constant generator provides the six most often used immediate values and reduces code size.
• Direct memory-to-memory transfers without intermediate register holding.
• Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 5-1.

96 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

R6

R5

R4

R3/CG2 Constant Generator

R7

R8

R9

R10

R11

R12

R13

R14

R15

0

0

R0/PC Program Counter

19

R1/SP Pointer Stack

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

Memory Address Bus - MABMDB - Memor y Data Bus

16
20

16/20-bit ALU

srcdstZero, Z
Carry, C

Overflow,V

Negative,N

MCLK

016 15

R2/SR Status Register

www.ti.com CPU Introduction

Figure 5-1. MSP430X CPU Block Diagram

SLAU208–June 2008 CPUX 97
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.2 Interrupts

Item n-1

PC.19:16

PC.15:0

SP
old

SP SR.11:0

Interrupts www.ti.com

The MSP430X has the following interrupt structure:
• Vectored interrupts with no polling necessary
• Interrupt vectors are located downward from address 0FFFEh.

The interrupt vectors contain 16-bit addresses that point into the lower 64-KB memory. This means all
interrupt handlers must start in the lower 64-KB memory.

During an interrupt, the program counter and the status register are pushed onto the stack as shown in
Figure 5-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by appending the
PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction is executed,
the full 20-bit PC is restored making return from interrupt to any address in the memory range possible.

Figure 5-2. Program Counter Storage on the Stack for Interrupts

CPUX98 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.3 CPU Registers

5.3.1 Program Counter (PC)

0Program Counter Bits 19 to 1

19 15 1 016

Item n

PC.19:16

PC.15:0

SP
old

SP

www.ti.com CPU Registers

The CPU incorporates sixteen registers R0 to R15. Registers R0, R1, R2, and R3 have dedicated
functions. R4 to R15 are working registers for general use.

The 20-bit program counter (PC/R0) points to the next instruction to be executed. Each instruction uses an
even number of bytes (two, four, six, or eight bytes), and the PC is incremented accordingly. Instruction
accesses are performed on word boundaries, and the PC is aligned to even addresses. Figure 5-3 shows
the program counter.

Figure 5-3. Program Counter

The PC can be addressed with all instructions and addressing modes. A few examples:

MOV.W #LABEL,PC ; Branch to address LABEL (lower 64 KB)

MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64 KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64 KB)

ADDA #4,PC ; Skip two words (1 MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64-KB
address range can be reached with the BR or CALL instruction. When branching or calling, addresses
beyond the lower 64-KB range can only be reached using the BRA or CALLA instructions. Also, any
instruction to directly modify the PC does so according to the used addressing mode. For example,
MOV.W #value,PC will clear the upper four bits of the PC because it is a .W instruction.

The program counter is automatically stored on the stack with CALL, or CALLA instructions, and during an
interrupt service routine. Figure 5-4 shows the storage of the program counter with the return address
after a CALLA instruction. A CALL instruction stores only bits 15:0 of the PC.

Figure 5-4. Program Counter Storage on the Stack for CALLA

The RETA instruction restores bits 19:0 of the program counter and adds 4 to the stack pointer. The RET
instruction restores bits 15:0 to the program counter and adds 2 to the stack pointer.

SLAU208–June 2008 CPUX 99
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.3.2 Stack Pointer (SP)

0Stack Pointer Bits 19 to 1

19 1 0

MOV.W 2(SP),R6 ; Copy Item I2 to R6

MOV.W R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h on stack

POP R8 ; R8 = 0123h

I3

I1

I2

I3

0xxxh

0xxxh - 2

0xxxh - 4

0xxxh - 6

0xxxh - 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

Item n-1

Item.19:16

Item.15:0

SP
old

SP

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction.The POP SP instruction places SP1 into the
stack pointer SP (SP2 = SP1)

CPU Registers www.ti.com

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and
interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be used by software
with all instructions and addressing modes. Figure 5-5 shows the SP. The SP is initialized into RAM by the
user, and is always aligned to even addresses.

Figure 5-6 shows the stack usage. Figure 5-7 shows the stack usage when 20-bit address-words are
pushed.

Figure 5-5. Stack Pointer

Figure 5-6. Stack Usage

Figure 5-7. PUSHX.A Format on the Stack

The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Figure 5-8.

Figure 5-8. PUSH SP, POP SP Sequence

100 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.3.3 Status Register (SR)

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU

OFF

OSC

OFF
SCG1V

8 79

www.ti.com CPU Registers

The 16-bit status register (SR/R2), used as a source or destination register, can only be used in register
mode addressed with word instructions. The remaining combinations of addressing modes are used to
support the constant generator. Figure 5-9 shows the SR bits. Do not write 20-bit values to the SR.
Unpredictable operation can result.

Figure 5-9. Status Register Bits

Table 5-1 describes the status register bits.

Table 5-1. Description of Status Register Bits
Bit Description
Reserved Reserved
V Overflow bit. This bit is set when the result of an arithmetic operation overflows the signed-variable range.

Set when:ADD(.B), ADDX(.B,.A),
positive + positive = negativeADDC(.B), ADDCX(.B.A), ADDA
negative + negative = positive
otherwise reset
Set when:SUB(.B), SUBX(.B,.A),
positive – negative = negativeSUBC(.B),SUBCX(.B,.A), SUBA,
negative – positive = positiveCMP(.B), CMPX(.B,.A), CMPA
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc generator, if DCOCLK is not used for MCLK or
SMCLK.

SCG0 System clock generator 0. This bit, when set, turns off the FLL+ loop control.
OSCOFF Oscillator off. This bit, when set, turns off the LFXT1 crystal oscillator, when LFXT1CLK is not used for MCLK or

SMCLK.
CPUOFF CPU off. This bit, when set, turns off the CPU.
GIE General interrupt enable. This bit, when set, enables maskable interrupts. When reset, all maskable interrupts are

disabled.
N Negative bit. This bit is set when the result of an operation is negative and cleared when the result is positive.
Z Zero bit. This bit is set when the result of an operation is zero and cleared when the result is not zero.
C Carry bit. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.

SLAU208–June 2008 CPUX 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.3.4 Constant Generator Registers (CG1 and CG2)
Constant Generator – Expanded Instruction Set www.ti.com

Six commonly used constants are generated with the constant generator registers R2 (CG1) and R3
(CG2), without requiring an additional 16-bit word of program code. The constants are selected with the
source register addressing modes (As), as described in Table 5-2.

Table 5-2. Values of Constant Generators CG1, CG2
Register As Constant Remarks
R2 00 – Register mode
R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing
R2 11 00008h +8, bit processing
R3 00 00000h 0, word processing
R3 01 00001h +1
R3 10 00002h +2, bit processing
R3 11 FFh, FFFFh, FFFFFh –1, word processing

The constant generator advantages are:
• No special instructions required
• No additional code word for the six constants
• No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an
immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.

Constant Generator – Expanded Instruction Set
The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional, emulated instructions. For example, the single-operand
instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
INC dst

is replaced by:
ADD 0(R3),dst

CPUX102 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.3.5 General Purpose Registers R4 to R15

Unused

High Byte Low Byte

Register-Byte Operation

High Byte Low Byte

Byte-Register Operation

Register

Memory Register

Memory

Operation

Memory

Operation

0 Register

Unused
Un-

used

0

19 16 15 0

19 16 15 0

8 7

8 7

Un-
used

High Byte Low Byte

Register-Word Operation

Register

Memory

Operation

Memory

Un-
used

19 16 15 08 7

www.ti.com Constant Generator – Expanded Instruction Set

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU
register clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT
instruction. The SXT instruction extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data. Note the reset of the
leading MSBs, if a register is the destination of a byte or word instruction.

Figure 5-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a
destination memory byte and for a source memory byte and a destination register.

Figure 5-10. Register-Byte/Byte-Register Operation

Figure 5-11 and Figure 5-12 show 16-bit word handling (.W suffix). The handling is shown for a source
register and a destination memory word and for a source memory word and a destination register.

Figure 5-11. Register-Word Operation

SLAU208–June 2008 CPUX 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

High Byte Low Byte

Word-Register Operation

Register

Memory

Operation

0 Register

Un-

used

19 16 15 08 7

High Byte Low Byte

Register - Ad dress-Word Operation

Register

Memory

Operation

Memory

Unused

0

Memory +2

Memory +2

19 16 15 08 7

Constant Generator – Expanded Instruction Set www.ti.com

Figure 5-12. Word-Register Operation

Figure 5-13 and Figure 5-14 show 20-bit address-word handling (.A suffix). The handling is shown for a
source register and a destination memory address-word and for a source memory address-word and a
destination register.

Figure 5-13. Register – Address-Word Operation

104 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

High Byte Low Byte

Address-Word - Register Operation

Register

Memory

Operation

Register

UnusedMemory +2

19 16 15 08 7

5.4 Addressing Modes

www.ti.com Addressing Modes

Figure 5-14. Address-Word – Register Operation

Seven addressing modes for the source operand and four addressing modes for the destination operand
use 16-bit or 20-bit addresses (see Table 5-3). The MSP430 and MSP430X instructions are usable
throughout the entire 1-MB memory range.

Table 5-3. Source/Destination Addressing
As/Ad Addressing Mode Syntax Description
00/0 Register mode Rn Register contents are operand.
01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X is stored in the next word, or stored in

combination of the preceding extension word and the next word.
01/1 Symbolic mode ADDR (PC + X) points to the operand. X is stored in the next word, or stored in

combination of the preceding extension word and the next word. Indexed mode
X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction contains the absolute address. X is stored in
the next word, or stored in combination of the preceding extension word and the
next word. Indexed mode X(SR) is used.

10/– Indirect register mode @Rn Rn is used as a pointer to the operand.
11/– Indirect autoincrement @Rn+ Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B

instructions. by 2 for .W instructions, and by 4 for .A instructions.
11/– Immediate mode #N N is stored in the next word, or stored in combination of the preceding extension

word and the next word. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels. They have no special meaning.

SLAU208–June 2008 CPUX 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.4.1 Register Mode

xxxxh

Address

Space

D506h PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

xxxxh

Address

Space

D506h

PC21036h

21034h

AA550h

0B551h

R5

R6

Register
After:

A550h.or.1111h = B551h

xxxxh

Address

Space

D546h

PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

Address

Space

PC AA550h

BB551h

R5

R6

Register
After:

AA550h.or.11111h = BB551h

1800h21032h

xxxxh

D546h

21036h

21034h

1800h21032h

Addressing Modes www.ti.com

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU register.
Length: One, two, or three words
Comment: Valid for source and destination
Byte operation: Byte operation reads only the 8 LSBs of the source register Rsrc and writes the

result to the 8 LSBs of the destination register Rdst. The bits Rdst.19:8 are cleared.
The register Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc and writes the result
to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared.
The register Rsrc is not modified.

Address-word Address-word operation reads the 20 bits of the source register Rsrc and writes the
operation: result to the 20 bits of the destination register Rdst. The register Rsrc is not

modified
SXT exception: The SXT instruction is the only exception for register operation. The sign of the low

byte in bit 7 is extended to the bits Rdst.19:8.
Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Example: BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.
The extension word contains the A/L-bit for 20-bit data. The instruction word uses
byte mode with bits A/L:B/W = 01. The result of the instruction is:

106 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.4.2 Indexed Mode

16-bit signed index

CPU Register Rn

16-bit signed add

0 Memory address

FFFFF

00000

L
o

w
e

r
6

4
K

B

0FFFF

10000

Rn.19:0

Lower 64 KB

Rn.19:16 = 0

16-bit byte index

0

19 16 15 0

S

www.ti.com Indexed Mode in Lower 64-KB Memory

The Indexed mode calculates the address of the operand by adding the signed index to a CPU register.
The Indexed mode has three addressing possibilities:
• Indexed mode in lower 64-KB memory
• MSP430 instruction with Indexed mode addressing memory above the lower 64-KB memory
• MSP430X instruction with Indexed mode

Indexed Mode in Lower 64-KB Memory
If the CPU register Rn points to an address in the lower 64 KB of the memory range, the calculated
memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit
index. This means, the calculated memory address is always located in the lower 64 KB and does not
overflow or underflow out of the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without modifications as shown in Figure 5-15.

Figure 5-15. Indexed Mode in Lower 64 KB

Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the instruction and is added to

the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit
memory address, which points to an operand address in the range 00000h to 0FFFFh.
The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the register index and inserts
it.

Example: ADD.B 1000h(R5),0F000h(R6);

This instruction adds the 8-bit data contained in source byte 1000h(R5) and the
destination byte 0F000h(R6) and places the result into the destination byte. Source and
destination bytes are both located in the lower 64 KB due to the cleared bits 19:16 of
registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after
truncation to a 16-bit address.

Destination: The byte pointed to by R6 + F000h results in address 01778h + F000h = 00778h after
truncation to a 16-bit address.

SLAU208–June 2008 CPUX 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address

Space

F000h

1000h

PC

1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

01778h

+F000h

00778h

Register
Before:

Address

Space

Register
After:

55D6h11034h

xxxxh

F000h

1000h

PC1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

55D6h11034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

0479Ch

+1000h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

16-bit signed index
(sign extended to 20 bits)

CPU Register Rn

20-bit signed add

Memory address

FFFFF

00000

L
o

w
e

r
6

4
 K

B

0FFFF

10000

Upper Memory

Rn.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

Rn ± 32 KB

S

Rn.19:0

MSP430 Instruction With Indexed Mode in Upper Memory www.ti.com

MSP430 Instruction With Indexed Mode in Upper Memory
If the CPU register Rn points to an address above the lower 64-KB memory, the Rn bits 19:16 are used
for the address calculation of the operand. The operand may be located in memory in the range Rn +32
KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow
or underflow into the lower 64-KB memory space (see Figure 5-16 and Figure 5-17).

Figure 5-16. Indexed Mode in Upper Memory

108 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

FFFFF

0000C

L
o

w
e

r
6

4
 K

B

0,FFFF

10000

Rn.19:0

Rn.19:0

Rn.19:0

±
3

2
 K

B

Rn.19:0

±
3

2
 K

B

www.ti.com MSP430 Instruction With Indexed Mode in Upper Memory

Figure 5-17. Overflow and Underflow for the Indexed Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an
address in the range 0 to FFFFFh. The operand is the content of the addressed
memory location.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the destination
addresses and places the 16-bit result into the destination. Source and destination
operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index 8346h is sign-extended,
which results in address 23456h + F8346h = 1B79Ch.

Destination: The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h.

SLAU208–June 2008 CPUX 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address

Space

2100h

8346h

PC

1103Ah

11038h

11036h

23456h

15678h

R5

R6

15678h

+02100h

17778h

Register
Before:

Address

Space

Register
After:

5596h11034h

xxxxh

2100h

8346h

PC1103Ah

11038h

11036h

23456h

15678h

R5

R6

5596h11034h

xxxxh

2345h

1777Ah

17778h

xxxxh

7777h

1777Ah

17778h

05432h

+02345h

07777h

src

dst

Sum

23456h

+F8346h

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

MSP430X Instruction With Indexed Mode www.ti.com

Figure 5-18. Example for the Indexed Mode

MSP430X Instruction With Indexed Mode
When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the
range of Rn + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit CPU register content and the 20-bit

index. The four MSBs of the index are contained in the extension word, the 16
LSBs are contained in the word following the instruction. The CPU register is not
modified

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in address 23456h + 12346h =
3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in address 45678h + 32100h =
77778h.

CPUX110 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

2100h

Address

Space

2346h

55D6h

PC

21038h

21036h

21034h

23456h

45678h

R5

R6

45678h

+32100h

77778h

Register
Before:

Address

Space

Register
After:

PC 23456h

45678h

R5

R6

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1883h21032h

xxxxh2103Ah

2100h

2346h

55D6h

21038h

21036h

21034h

1883h21032h

xxxxh2103Ah

23456h

+12346h

3579Ch

5.4.3 Symbolic Mode

www.ti.com Symbolic Mode in Lower 64 KB

The extension word contains the MSBs of the source index and of the destination index and the A/L-bit for
20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01.

The Symbolic mode calculates the address of the operand by adding the signed index to the program
counter. The Symbolic mode has three addressing possibilities:
• Symbolic mode in lower 64-KB memory
• MSP430 instruction with symbolic mode addressing memory above the lower 64-KB memory.
• MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB
If the PC points to an address in the lower 64 KB of the memory range, the calculated memory address
bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means, the calculated
memory address is always located in the lower 64 KB and does not overflow or underflow out of the lower
64-KB memory space. The RAM and the peripheral registers can be accessed this way and existing
MSP430 software is usable without modifications as shown in Figure 5-19.

SLAU208–June 2008 CPUX 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16-bit signed

PC index

Program

counter PC

16-bit signed add

0 Memory address

FFFFF

00000

L
o

w
e

r
6

4
 K

B

0FFFF

10000

PC.19:0

Lower 64 KB

PC.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Symbolic Mode in Lower 64 KB www.ti.com

Figure 5-19. Symbolic Mode Running in Lower 64 KB

Operation: The signed 16-bit index in the next word after the instruction is added temporarily to
the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range 00000h, to 0FFFFh. The
operand is the content of the addressed memory location.

Length: Two or three words
Comment: Valid for source and destination. The assembler calculates the PC index and

inserts it.
Example: ADD.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI. Bytes EDE and
TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC + 4766h where the PC
index 4766h is the result of 0579Ch - 01036h = 04766h. Address 01036h is the
location of the index for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated
16-bit result of 00778h – 1038h = FF740h. Address 01038h is the location of the
index for this example.

CPUX112 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address

Space

F740h

4766h

PC

0103Ah

01038h

01036h

01038h

+0F740h

00778h

Before:
Address

Space

After:

05D0h01034h

xxxxh

F740h

4766h

PC0103Ah

01038h

01036h

50D0h01034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

01036h

+04766h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

16-bit signed PC index
(sign extended to 20 bits)

Program

counter PC

20-bit signed add

Memory address

FFFFF

00000

L
o

w
e

r
6

4
 K

B

0FFFF

10000

PC.19:0

Upper Memory

PC.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

PC ±32 KB

S

www.ti.com MSP430 Instruction with Symbolic Mode in Upper Memory

MSP430 Instruction with Symbolic Mode in Upper Memory
If the PC points to an address above the lower 64-KB memory, the PC bits 19:16 are used for the address
calculation of the operand. The operand may be located in memory in the range PC +32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into
the lower 64-KB memory space as shown in Figure 5-20 and Figure 5-21.

Figure 5-20. Symbolic Mode Running in Upper Memory

SLAU208–June 2008 CPUX 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

FFFFF

0000C

L
o

w
e

r
 6

4
 K

B

0FFFF

10000

PC.19:0

PC.19:0

PC.19:0

±
3

2
 K

B

PC.19:0

±
3

2
 K

B

MSP430 Instruction with Symbolic Mode in Upper Memory www.ti.com

Figure 5-21. Overflow and Underflow for the Symbolic Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the PC. This delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the PC index and
inserts it

Example: ADD.W EDE,&TONI ;

This instruction adds the 16-bit data contained in source word EDE and destination
word TONI and places the 16-bit result into the destination word TONI. For this
example, the instruction is located at address 2,F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h which is the 16-bit result
of 3379Ch - 2F036h = 04766h. Address 2F036h is the location of the index for this
example.

Destination: Word TONI located at address 00778h pointed to by the absolute address 00778h.

CPUX114 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address

Space

0778h

4766h

PC

2F03Ah

2F038h

2F036h

2F036h

+04766h

3379Ch

Before:
Address

Space

After:

5092h2F034h

xxxxh

0778h

4766h

PC2F03Ah

2F038h

2F036h

5092h2F034h

xxxxh

5432h

3379Eh

3379Ch

xxxxh

5432h

3379Eh

3379Ch

5432h

+2345h

7777h

src

dst

Sum

xxxxh

2345h

0077Ah

00778h

xxxxh

7777h

0077Ah

00778h

www.ti.com MSP430X Instruction with Symbolic Mode

MSP430X Instruction with Symbolic Mode
When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the
range of PC + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit PC and the 20-bit index. The four

MSBs of the index are contained in the extension word, the 16 LSBs are contained
in the word following the instruction.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit
result of 3579Ch - 21036h = 14766h. Address 21036h is the address of the index in
this example.

Destination: Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit
result of 77778h - 21038h = 56740h. Address 21038h is the address of the index in
this example.

SLAU208–June 2008 CPUX 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6740h

Address Space

4766h

50D0h

PC

21038h

21036h

21034h

21038h

+56740h

77778h

Before: Address SpaceAfter:

PC

xxxxh

xx45h

7777Ah

77778h

xxxxh

xx77h

7777Ah

77778h

32h

+45h

77h

src

dst

Sum

xxxxh

xx32h

3579Eh

3579Ch

xxxxh

xx32h

3579Eh

3579Ch

18C5h21032h

xxxxh2103Ah

6740h

4766h

50D0h

21038h

21036h

21034h

18C5h21032h

xxxxh2103Ah

21036h

+14766h

3579Ch

5.4.4 Absolute Mode

Absolute Mode in Lower 64 KB www.ti.com

The Absolute mode uses the contents of the word following the instruction as the address of the operand.
The Absolute mode has two addressing possibilities:
• Absolute mode in lower 64-KB memory
• MSP430X instruction with Absolute mode

Absolute Mode in Lower 64 KB
If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value
and therefore points to an address in the lower 64 KB of the memory range. The address is calculated as
an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers
can be accessed this way and existing MSP430 software is usable without modifications.

Length: Two or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADD.W &EDE,&TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE
Destination: Word at address TONI

CPUX116 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address Space

7778h

579Ch

PC

2103Ah

21038h

21036h

Before: Address SpaceAfter:

5292h21034h

xxxxh

7778h

579Ch

PC2103Ah

21038h

21036h

5292h21034h

xxxxh

2345h

0777Ah

07778h

xxxxh

7777h

0777Ah

07778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

0579Eh

0579Ch

xxxxh

5432h

0579Eh

0579Ch

www.ti.com MSP430X Instruction with Absolute Mode

MSP430X Instruction with Absolute Mode
If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value
and therefore points to any address in the memory range. The address value is calculated as an index
from 0. The four MSBs of the index are contained in the extension word, and the 16 LSBs are contained in
the word following the instruction.

Length: Three or four words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADDX.A &EDE,&TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE
Destination: Two words beginning with address TONI

SLAU208–June 2008 CPUX 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

7778h

Address

Space

579Ch

52D2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1987h21032h

xxxxh2103Ah

7778h

579Ch

52D2h

21038h

21036h

21034h

1987h21032h

xxxxh2103Ah

5.4.5 Indirect Register Mode

MSP430X Instruction with Absolute Mode www.ti.com

The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The
Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words
Operation: The operand is the content the addressed memory location. The source register

Rsrc is not modified.
Comment: Valid only for the source operand. The substitute for the destination operand is

0(Rdst).
Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3579Ch for this example.
Destination: Word pointed to by R6 + 2100h which results in address 45678h + 2100h = 7778h.

CPUX118 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address

Space

2100h

55A6h PC

21038h

21036h

21034h

3579Ch

45678h

R5

R6

45678h

+02100h

47778h

Register
Before:

Address

Space

Register
After:

xxxxh

2100h

55A6h

PC21038h

21036h

21034h

3579Ch

45678h

R5

R6

xxxxh

2345h

4777Ah

47778h

xxxxh

7777h

4777Ah

47778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

3579Eh

3579Ch

xxxxh

5432h

3579Eh

3579ChR5 R5

5.4.6 Indirect, Autoincrement Mode

www.ti.com MSP430X Instruction with Absolute Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc
is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for
address-word instructions immediately after accessing the source operand. If the same register is used for
source and destination, it contains the incremented address for the destination access. Indirect
Autoincrement mode always uses 20-bit addresses.

Length: One, two, or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid only for the source operand
Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3,579Ch for this example
Destination: Byte pointed to by R6 + 0h which results in address 0778h for this example

SLAU208–June 2008 CPUX 119
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address

Space

0000h

55F6h PC

21038h

21036h

21034h

3579Ch

00778h

R5

R6

00778h

+0000h

00778h

Register
Before:

Address

Space

Register
After:

xxxxh

0000h

55F6h

PC21038h

21036h

21034h

3579Dh

00778h

R5

R6

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

xxh

32h

3579Dh

3579Ch

xxh

xx32h

3579Dh

3579ChR5

R5

5.4.7 Immediate Mode

MSP430 Instructions With Immediate Mode www.ti.com

odeThe Immediate mode allows accessing constants as operands by including the constant in the
memory location following the instruction. The program counter PC is used with the Indirect Autoincrement
mode. The PC points to the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or address-word instructions. The
Immediate mode has two addressing possibilities:
• 8-bit or 16-bit constants with MSP430 instructions
• 20-bit constants with MSP430X instruction

MSP430 Instructions With Immediate Mode
If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value
and is stored in the word following the instruction.

Length: Two or three words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with the 16-bit destination
operand.

Comment: Valid only for the source operand
Example: ADD #3456h,&TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h
Destination: Word at address TONI

CPUX120 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

xxxxh

Address

Space

0778h

3456h

PC

2103Ah

21038h

21036h

Before:
Address

Space

After:

50B2h21034h

xxxxh

0778h

3456h

PC2103Ah

21038h

21036h

50B2h21034h

xxxxh

2345h

0077Ah

00778h

xxxxh

579Bh

0077Ah

00778h

3456h

+2345h

579Bh

src

dst

Sum

www.ti.com MSP430X Instructions With Immediate Mode

MSP430X Instructions With Immediate Mode
If an MSP430X instruction is used with immediate addressing mode, the constant is a 20-bit value. The 4
MSBs of the constant are stored in the extension word and the 16 LSBs of the constant are stored in the
word following the instruction.

Length: Three or four words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with the 20-bit destination
operand.

Comment: Valid only for the source operand
Example: ADDX.A #23456h,&TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h
Destination: Two words beginning with address TONI

SLAU208–June 2008 CPUX 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

7778h

Address

Space

3456h

50F2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0003h

579Bh

7777Ah

77778h

23456h

+12345h

3579Bh

src

dst

Sum

1907h21032h

xxxxh2103Ah

7778h

3456h

50F2h

21038h

21036h

21034h

1907h21032h

xxxxh2103Ah

MSP430X Instructions With Immediate Mode www.ti.com

CPUX122 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.5 MSP430 and MSP430X Instructions

5.5.1 MSP430 Instructions

15 12 11 8 7 6 5 4 0

Op-code Rsrc Ad B/W As Rdst

Source or Destination 15:0

Destination 15:0

www.ti.com MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are
used throughout the 1-MB memory range unless their 16-bit capability is exceeded. The MSP430X
instructions are used when the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and MSP430X instruction:
• To use only the MSP430 instructions: The only exceptions are the CALLA and the RETA instruction.

This can be done if a few, simple rules are met:
– Placement of all constants, variables, arrays, tables, and data in the lower 64 KB. This allows the

use of MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit
addresses are needed.

– Placement of subroutine constants immediately after the subroutine code. This allows the use of
the symbolic addressing mode with its 16-bit index to reach addresses within the range of PC +32
KB.

• To use only MSP430X instructions: The disadvantages of this method are the reduced speed due to
the additional CPU cycles and the increased program space due to the necessary extension word for
any double operand instruction.

• Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X instructions.

The MSP430 instructions can be used, regardless if the program resides in the lower 64 KB or beyond it.
The only exceptions are the instructions CALL and RET which are limited to the lower 64 KB address
range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the
entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions
Figure 5-22 shows the format of the MSP430 double operand instructions. Source and destination words
are appended for the Indexed, Symbolic, Absolute and Immediate modes. Table 5-4 lists the twelve
MSP430 double operand instructions.

Figure 5-22. MSP430 Double Operand Instruction Format

Table 5-4. MSP430 Double Operand Instructions
Status Bits (1)S-Reg,Mnemonic OperationD-Reg V N Z C

MOV(.B) src,dst src → dst – – – –
ADD(.B) src,dst src + dst → dst * * * *
ADDC(.B) src,dst src + dst + C → dst * * * *
SUB(.B) src,dst dst + .not.src + 1 → dst * * * *
SUBC(.B) src,dst dst + .not.src + C → dst * * * *

(1) * = The status bit is affected.
– = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

SLAU208–June 2008 CPUX 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 12 11 8 7 6 5 4 0

Op-code Rsrc Ad B/W As Rdst

Source or Destination 15:0

Destination 15:0

MSP430 Single Operand (Format II) Instructions www.ti.com

Table 5-4. MSP430 Double Operand Instructions (continued)
Status Bits (1)S-Reg,Mnemonic OperationD-Reg V N Z C

CMP(.B) src,dst dst - src * * * *
DADD(.B) src,dst src + dst + C → dst (decimally) * * * *
BIT(.B) src,dst src .and. dst 0 * * Z
BIC(.B) src,dst .not.src .and. dst → dst – – – –
BIS(.B) src,dst src .or. dst → dst – – – –
XOR(.B) src,dst src .xor. dst → dst * * * Z
AND(.B) src,dst src .and. dst → dst 0 * * Z

MSP430 Single Operand (Format II) Instructions
Figure 5-23 shows the format for MSP430 single operand instructions, except RETI. The destination word
is appended for the Indexed, Symbolic, Absolute and Immediate modes. Table 5-5 lists the seven single
operand instructions.

Figure 5-23. MSP430 Single Operand Instructions

Table 5-5. MSP430 Single Operand Instructions
Status Bits (1)S-Reg,Mnemonic OperationD-Reg V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *
RRA(.B) dst MSB → MSB →....LSB → C 0 * * *
PUSH(.B) src SP - 2 → SP, src → SP – – – –
SWPB dst bit 15...bit 8 ↔ bit 7...bit 0 – – – –
CALL dst Call subroutine in lower 64 KB – – – –
RETI TOS → SR, SP + 2 → SP * * * *

TOS → PC,SP + 2 → SP
Register mode: bit 7 → bit 8...bit 19

SXT dst 0 * * ZOther modes: bit 7 → bit 8...bit 15
(1) * = The status bit is affected.

– = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

Jumps
Figure 5-24 shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset
of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit
program counter. This allows jumps in a range of -511 to +512 words relative to the program counter in
the full 20-bit address space Jumps do not affect the status bits. Table 5-6 lists and describes the eight
jump instructions.

124 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15

Op-Code

13 12 10 9 8 0

Condition S 10-Bit Signed PC Offset

www.ti.com Emulated Instructions

Figure 5-24. Format of the Conditional Jump Instructions

Table 5-6. Conditional Jump Instructions
Mnemonic S-Reg, D-Reg Operation
JEQ/JZ Label Jump to label if zero bit is set
JNE/JNZ Label Jump to label if zero bit is reset
JC Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) = 0
JL Label Jump to label if (N .XOR. V) = 1
JMP Label Jump to label unconditionally

Emulated Instructions
In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make
code easier to write and read, but do not have op-codes themselves. Instead, they are replaced
automatically by the assembler with a core instruction. There is no code or performance penalty for using
emulated instructions. The emulated instructions are listed in Table 5-7.

Table 5-7. Emulated Instructions
Status Bits (1)

Instruction Explanation Emulation
V N Z C

ADC(.B) dst Add Carry to dst ADDC(.B) #0,dst * * * *
BR dst Branch indirectly dst MOV dst,PC – – – –
CLR(.B) dst Clear dst MOV(.B) #0,dst – – – –
CLRC Clear Carry bit BIC #1,SR – – – 0
CLRN Clear Negative bit BIC #4,SR – 0 – –
CLRZ Clear Zero bit BIC #2,SR – – 0 –
DADC(.B) dst Add Carry to dst decimally DADD(.B) #0,dst * * * *
DEC(.B) dst Decrement dst by 1 SUB(.B) #1,dst * * * *
DECD(.B) dst Decrement dst by 2 SUB(.B) #2,dst * * * *
DINT Disable interrupt BIC #8,SR – – – –
EINT Enable interrupt BIS #8,SR – – – –
INC(.B) dst Increment dst by 1 ADD(.B) #1,dst * * * *
INCD(.B) dst Increment dst by 2 ADD(.B) #2,dst * * * *
INV(.B) dst Invert dst XOR(.B) #–1,dst * * * *
NOP No operation MOV R3,R3 – – – –
POP dst Pop operand from stack MOV @SP+,dst – – – –
RET Return from subroutine MOV @SP+,PC – – – –
RLA(.B) dst Shift left dst arithmetically ADD(.B) dst,dst * * * *
RLC(.B) dst Shift left dst logically through Carry ADDC(.B) dst,dst * * * *
SBC(.B) dst Subtract Carry from dst SUBC(.B) #0,dst * * * *

(1) * = The status bit is affected.
– = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

SLAU208–June 2008 CPUX 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430 Instruction Execution www.ti.com

Table 5-7. Emulated Instructions (continued)
Status Bits (1)

Instruction Explanation Emulation
V N Z C

SETC Set Carry bit BIS #1,SR – – – 1
SETN Set Negative bit BIS #4,SR – 1 – –
SETZ Set Zero bit BIS #2,SR – – 1 –
TST(.B) dst Test dst (compare with 0) CMP(.B) #0,dst 0 * * 1

MSP430 Instruction Execution
The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used - not the instruction itself. The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines
Table 5-8 lists the length and the CPU cycles for reset, interrupts, and subroutines.

Table 5-8. Interrupt, Return, and Reset Cycles and Length
Execution Time Length of InstructionAction (MCLK Cycles) (Words)

Return from interrupt RETI 5 1
Return from subroutine RET 4 1
Interrupt request service (cycles needed before 6 –first instruction)
WDT reset 4 –
Reset (RST/NMI) 4 –

Format-II (Single Operand) Instruction Cycles and Lengths
Table 5-9 lists the length and the CPU cycles for all addressing modes of the MSP430 single operand
instructions.

Table 5-9. MSP430 Format-II Instruction Cycles and Length
No. of Cycles

Addressing Length of ExampleRRA, RRCMode InstructionPUSH CALLSWPB, SXT
Rn 1 3 4 1 SWPB R5

@Rn 3 3 4 1 RRC @R9

@Rn+ 3 3 4 1 SWPB @R10+

#N N/A 3 4 2 CALL #LABEL

X(Rn) 4 4 5 2 CALL 2(R7)

EDE 4 4 5 2 PUSH EDE

&EDE 4 4 6 2 SXT &EDE

Jump Instructions Cycles and Lengths
All jump instructions require one code word, and take two CPU cycles to execute, regardless of whether
the jump is taken or not.

Format-I (Double Operand) Instruction Cycles and Lengths
Table 5-10 lists the length and CPU cycles for all addressing modes of the MSP430 format-I instructions.

CPUX126 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.5.2 MSP430X Extended Instructions

www.ti.com Format-I (Double Operand) Instruction Cycles and Lengths

Table 5-10. MSP430 Format-I Instructions Cycles and Length
Addressing Mode No. of Length of ExampleCycles InstructionSource Destination

Rn Rm 1 1 MOV R5,R8

PC 3 1 BR R9

x(Rm) 4 (1) 2 ADD R5,4(R6)

EDE 4 (1) 2 XOR R8,EDE

&EDE 4 (1) 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5

PC 4 1 BR @R8

x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R5,EDE

&EDE 5 (1) 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6

PC 4 1 BR @R9+

x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R9+,EDE

&EDE 5 (1) 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 (1) 3 MOV #0300h,0(SP)

EDE 5 (1) 3 ADD #33,EDE

&EDE 5 (1) 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7

PC 5 2 BR 2(R6)

TONI 6 (1) 3 MOV 4(R7),TONI

x(Rm) 6 (1) 3 ADD 4(R4),6(R9)

&TONI 6 (1) 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 5 2 BR EDE

TONI 6 (1) 3 CMP EDE,TONI

x(Rm) 6 (1) 3 MOV EDE,0(SP)

&TONI 6 (1) 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 5 2 BR &EDE

TONI 6 (1) 3 MOV &EDE,TONI

x(Rm) 6 (1) 3 MOV &EDE,0(SP)

&TONI 6 (1) 3 MOV &EDE,&TONI

(1) MOV, BIT, and CMP instructions execute in one fewer cycle.

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most
MSP430X instructions require an additional word of op-code called the extension word. Some extended
instructions do not require an additional word and are noted in the instruction description. All addresses,
indexes and immediate numbers have 20-bit values, when preceded by the extension word.

There are two types of extension word:
• Register/register mode for Format-I instructions and register mode for Format-II instructions
• Extension word for all other address mode combinations

SLAU208–June 2008 CPUX 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 ZC # A/L 0 0 (n-1)/Rn

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 A/L 0 0 Destination bits 19:16

Register Mode Extension Word www.ti.com

Register Mode Extension Word
The register mode extension word is shown in Figure 5-25 and described in Table 5-11. An example is
shown in Figure 5-27.

Figure 5-25. Extension Word for Register Modes

Table 5-11. Description of the Extension Word Bits for Register Mode
Bit Description
15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.
10:9 Reserved
ZC Zero carry bit

0 The executed instruction uses the status of the carry bit C.
1 The executed instruction uses the carry bit as 0. The carry bit will be defined by the result of the final

operation after instruction execution.
Repetition bit

0 The number of instruction repetitions is set by extension-word bits 3:0.
1 The number of instructions repetitions is defined by the value of the four LSBs of Rn. See description for bits

3:0.
A/L Data length extension bit. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used

data length of the instruction.
A/L B/W Comment
0 0 Reserved
0 1 20-bit address word
1 0 16-bit word
1 1 8-bit byte

5:4 Reserved
3:0 Repetition count

= 0 These four bits set the repetition count n. These bits contain n – 1.
= 1 These four bits define the CPU register whose bits 3:0 set the number of repetitions. Rn.3:0 contain n – 1.

Non-Register Mode Extension Word
The extension word for non-register modes is shown in Figure 5-26 and described in Table 5-12. An
example is shown in Figure 5-28.

Figure 5-26. Extension Word for Non-Register Modes

Table 5-12. Description of the Extension Word Bits for Non-Register Modes
Bit Description
15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.
Source Bits The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an
19:16 immediate operand, an index or to an absolute address.

128 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 00 ZC # A/L Rsvd (n-1)/Rn

Op-code Rsrc Ad B/W As Rdst

XORX.A R9,R8

0 0 0 1 1 0 0 0 0 0 0

14(XOR) 9 0 1 0 8(R8)

XORX instruction Source R9

0: Use Carry

1: Repetition count
in bits 3:0

01:Address word

Destination
register mode

Source
register mode

Destination R8

www.ti.com Non-Register Mode Extension Word

Table 5-12. Description of the Extension Word Bits for Non-Register Modes (continued)
Bit Description
A/L Data length extension bit. Together with the B/W-bits of the following MSP430 instruction, the AL bit defines the used

data length of the instruction.
A/L B/W Comment
0 0 Reserved
0 1 20-bit address word
1 0 16-bit word
1 1 8-bit byte

5:4 Reserved
Destination The four MSBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may
Bits 19:16 belong to an index or to an absolute address.

Note: B/W and A/L Bit Settings for SWPBX and SXTX

The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 N/A
1 0 SWPB.W, SXTX.W
1 1 N/A

Figure 5-27. Example for an Extended Register/Register Instruction

SLAU208–June 2008 CPUX 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad B/W As Rdst

XORX.A #12345h, 45678h(R15)

0 0 0 1 1 1 0 0 4

14 (XOR) 0 (PC) 1 1 3 15 (R15)

18xx extension word 12345h

@PC+

X(Rn)

Source 15:0

Destination 15:0

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

01: Address
word

Extended Double Operand (Format-I) Instructions www.ti.com

Figure 5-28. Example for an Extended Immediate/Indexed Instruction

Extended Double Operand (Format-I) Instructions
All twelve double-operand instructions have extended versions as listed in Table 1-13.

Table 5-13. Extended Double Operand Instructions
Status Bits (1)

Mnemonic Operands Operation
V N Z C

MOVX(.B,.A) src,dst src → dst – – – –
ADDX(.B,.A) src,dst src + dst → dst * * * *
ADDCX(.B,.A) src,dst src + dst + C → dst * * * *
SUBX(.B,.A) src,dst dst + .not.src + 1 → dst * * * *
SUBCX(.B,.A) src,dst dst + .not.src + C → dst * * * *
CMPX(.B,.A) src,dst dst – src * * * *

src + dst + C → dst
DADDX(.B,.A) src,dst * * * *(decimal)
BITX(.B,.A) src,dst src .and. dst 0 * * Z
BICX(.B,.A) src,dst .not.src .and. dst → dst – – – –
BISX(.B,.A) src,dst src .or. dst → dst – – – –
XORX(.B,.A) src,dst src .xor. dst → dst * * * Z
ANDX(.B,.A) src,dst src .and. dst → dst 0 * * Z

(1) * = The status bit is affected.
– = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

CPUX130 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n-1/Rn

Op-code B/W dst

0 ZC # 0 0

src 0 0 0

0 0 0 1 1 A/L

Op-code B/W dst

src.15:0

src.19:16 0 0

src Ad As

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

src Ad

0 0 0 1 1 A/L dst.19:16

Op-code B/W dst

src.15:0

0 0

src Ad

0 0 0 0

dst.19:160 0 0 0

As

src.19:16

As

dst.15:0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 19:16

Operand LSBs 15:0

0...

Address

Address+2

www.ti.com Extended Double Operand (Format-I) Instructions

The four possible addressing combinations for the extension word for format-I instructions are shown in
Figure 5-29.

Figure 5-29. Extended Format-I Instruction Formats

If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then
two words are used for this operand as shown in Figure 5-30.

Figure 5-30. 20-Bit Addresses in Memory

SLAU208–June 2008 CPUX 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n-1/Rn

Op-code B/W dst

0 ZC # 0 0

0 0 0 1 1 A/L

Op-code B/W dst

0 0

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

0 0 0 0

dst.19:160 0 0 0

0 0 0 0

0 0

1 x

x 1

Extended Single Operand (Format-II) Instructions www.ti.com

Extended Single Operand (Format-II) Instructions
Extended MSP430X Format-II instructions are listed in Table 5-14.

Table 5-14. Extended Single-Operand Instructions
Status Bits (1)

Mnemonic Operands Operation
n V N Z C

CALLA dst Call indirect to subroutine (20-bit address) – – – –
POPM.A #n,Rdst Pop n 20-bit registers from stack 1 to 16 * * * *
POPM.W #n,Rdst Pop n 16-bit registers from stack 1 to 16 * * * *
PUSHM.A #n,Rsrc Push n 20-bit registers to stack 1 to 16 * * * *
PUSHM.W #n,Rsrc Push n 16-bit registers to stack 1 to 16 * * * *
PUSHX(.B,.A) src Push 8/16/20-bit source to stack * * * *
RRCM(.A) #n,Rdst Rotate right Rdst n bits through carry (16-/20-bit register) 1 to 4 * * * *
RRUM(.A) #n,Rdst Rotate right Rdst n bits unsigned (16-/20-bit register) 1 to 4 0 * * Z
RRAM(.A) #n,Rdst Rotate right Rdst n bits arithmetically (16-/20-bit register) 1 to 4 – – – –
RLAM(.A) #n,Rdst Rotate left Rdst n bits arithmetically (16-/20-bit register) 1 to 4 – – – –
RRCX(.B,.A) dst Rotate right dst through carry (8-/16-/20-bit data) 1 * * * Z
RRUX(.B,.A) dst Rotate right dst unsigned (8-/16-/20-bit) 1 0 * * Z
RRAX(.B,.A) dst Rotate right dst arithmetically 1
SWPBX(.A) dst Exchange low byte with high byte 1
SXTX(.A) Rdst Bit7 → bit8 ... bit19 1
SXTX(.A) dst Bit7 → bit8 ... MSB 1

(1) * = The status bit is affected.
– = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

The three possible addressing mode combinations for format-II instructions are shown in Figure 5-31.

Figure 5-31. Extended Format-II Instruction Format

CPUX132 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 8 7 4 3 0

Op-code n-1 Rdst - n+1

15 12 11 10 9 4 3 0

C n-1 Op-code Rdst

15 12 11 8 7 4 3 0

C Rsrc Op-code 0(PC)

C #imm/abs19:16 Op-code 0(PC)

C Rsrc Op-code 0(PC)

#imm15:0 / &abs15:0

index15:0

15 4 3 0

Op-code Rdst

Op-code Rdst

Op-code #imm/ix/abs19:16

index15:0

#imm15:0 / index15:0 / &abs15:0

www.ti.com Extended Format II Instruction Format Exceptions

Extended Format II Instruction Format Exceptions
Exceptions for the Format II instruction formats are shown in Figure 5-32 through Figure 5-35.

Figure 5-32. PUSHM/POPM Instruction Format

Figure 5-33. RRCM, RRAM, RRUM and RLAM Instruction Format

Figure 5-34. BRA Instruction Format

Figure 5-35. CALLA Instruction Format

SLAU208–June 2008 CPUX 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Extended Emulated Instructions www.ti.com

Extended Emulated Instructions
The extended instructions together with the constant generator form the extended emulated instructions.
Table 5-15 lists the emulated instructions.

Table 5-15. Extended Emulated Instructions
Instruction Explanation Emulation
ADCX(.B,.A) dst Add carry to dst ADDCX(.B,.A) #0,dst

BRA dst Branch indirect dst MOVA dst,PC

RETA Return from subroutine MOVA @SP+,PC

CLRA Rdst Clear Rdst MOV #0,Rdst

CLRX(.B,.A) dst Clear dst MOVX(.B,.A) #0,dst

DADCX(.B,.A) dst Add carry to dst decimally DADDX(.B,.A) #0,dst

DECX(.B,.A) dst Decrement dst by 1 SUBX(.B,.A) #1,dst

DECDA Rdst Decrement Rdst by 2 SUBA #2,Rdst

DECDX(.B,.A) dst Decrement dst by 2 SUBX(.B,.A) #2,dst

INCX(.B,.A) dst Increment dst by 1 ADDX(.B,.A) #1,dst

INCDA Rdst Increment Rdst by 2 ADDA #2,Rdst

INCDX(.B,.A) dst Increment dst by 2 ADDX(.B,.A) #2,dst

INVX(.B,.A) dst Invert dst XORX(.B,.A) #-1,dst

RLAX(.B,.A) dst Shift left dst arithmetically ADDX(.B,.A) dst,dst

RLCX(.B,.A) dst Shift left dst logically through carry ADDCX(.B,.A) dst,dst

SBCX(.B,.A) dst Subtract carry from dst SUBCX(.B,.A) #0,dst

TSTA Rdst Test Rdst (compare with 0) CMPA #0,Rdst

TSTX(.B,.A) dst Test dst (compare with 0) CMPX(.B,.A) #0,dst

POPX dst Pop to dst MOVX(.B, .A) @SP+,dst

134 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com MSP430X Address Instructions

MSP430X Address Instructions
MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the register mode and the Immediate mode,
except for the MOVA instruction as listed in Table 5-16. Restricting the addressing modes removes the
need for the additional extension-word op-code improving code density and execution time. Address
instructions should be used any time an MSP430X instruction is needed with the corresponding restricted
addressing mode.

Table 5-16. Address Instructions, Operate on 20-Bit Register Data
Status Bits (1)

Mnemonic Operands Operation
V N Z C

ADDA Rsrc,Rdst Add source to destination register * * * *
#imm20,Rdst

MOVA Rsrc,Rdst Move source to destination – – – –
#imm20,Rdst

z16(Rsrc),Rdst

EDE,Rdst

&abs20,Rdst

@Rsrc,Rdst

@Rsrc+,Rdst

Rsrc,z16(Rdst)

Rsrc,&abs20

CMPA ADDA Compare source to destination register * * * *
ADDA

SUBA Subtract source from destination
ADDA * * * *register
ADDA

(1) * = The status bit is affected.
– = The status bit is not affected.
0 = The status bit is cleared.
1 = The status bit is set.

SLAU208–June 2008 CPUX 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430X Instruction Execution www.ti.com

MSP430X Instruction Execution
The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format
and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-II (Single-Operand) Instruction Cycles and Lengths
Table 5-17 lists the length and the CPU cycles for all addressing modes of the MSP430X extended
single-operand instructions.

Table 5-17. MSP430X Format II Instruction Cycles and Length
Execution Cycles/Length of Instruction (Words)

Instruction
Rn @Rn @Rn+ #N X(Rn) EDE &EDE

RRAM n/1 – – – – – –
RRCM n/1 – – – – – –
RRUM n/1 – – – – – –
RLAM n/1 – – – – – –
PUSHM 2+n/1 – – – – – –
PUSHM.A 2+2n/1 – – – – – –
POPM 2+n/1 – – – – – –
POPM.A 2+2n/1 – – – – – –
CALLA 5/1 6/1 6/1 5/2 5 (1)/2 7/2 7/2
RRAX(.B) 1+n/2 4/2 4/2 – 5/3 5/3 5/3
RRAX.A 1+n/2 6/2 6/2 – 7/3 7/3 7/3
RRCX(.B) 1+n/2 4/2 4/2 – 5/3 5/3 5/3
RRCX.A 1+n/2 6/2 6/2 – 7/3 7/3 7/3
PUSHX(.B) 4/2 4/2 4/2 4/3 5 (1)/3 5/3 5/3
PUSHX.A 5/2 6/2 6/2 5/3 7 (1)/3 7/3 7/3
POPX(.B) 3/2 – – – 5/3 5/3 5/3
POPX.A 4/2 – – – 7/3 7/3 7/3

(1) Add one cycle when Rn = SP.

136 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths

MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths
Table 5-18 lists the length and CPU cycles for all addressing modes of the MSP430X extended format-I
instructions.

Table 5-18. MSP430X Format-I Instruction Cycles and Length
Length ofAddressing Mode No. of Cycles Instruction Examples

Source Destination .B/.W .A .B/.W/.A
Rn Rm (1) 2 2 2 BITX.B R5,R8

PC 4 4 2 ADDX R9,PC

x(Rm) 5 (2) 7 (3) 3 ANDX.A R5,4(R6)

EDE 5 (2) 7 (3) 3 XORX R8,EDE

&EDE 5 (2) 7 (3) 3 BITX.W R5,&EDE

@Rn Rm 3 4 2 BITX @R5,R8

PC 5 6 2 ADDX @R9,PC

x(Rm) 6 (2) 9 (3) 3 ANDX.A @R5,4(R6)

EDE 6 (2) 9 (3) 3 XORX @R8,EDE

&EDE 6 (2) 9 (3) 3 BITX.B @R5,&EDE

@Rn+ Rm 3 4 2 BITX @R5+,R8

PC 5 6 2 ADDX.A @R9+,PC

x(Rm) 6 (2) 9 (3) 3 ANDX @R5+,4(R6)

EDE 6 (2) 9 (3) 3 XORX.B @R8+,EDE

&EDE 6 (2) 9 (3) 3 BITX @R5+,&EDE

#N Rm 3 3 33 BITX #20,R8

PC (4) 4 4 3 ADDX.A #FE000h,PC

x(Rm) 6 (2) 8 (3) 4 ANDX #1234,4(R6)

EDE 6 (2) 8 (3) 4 XORX #A5A5h,EDE

&EDE 6 (2) 8 (3) 4 BITX.B #12,&EDE

x(Rn) Rm 4 5 3 BITX 2(R5),R8

PC (4) 6 7 3 SUBX.A 2(R6),PC

TONI 7 (2) 10 (3) 4 ANDX 4(R7),4(R6)

x(Rm) 7 (2) 10 (3) 4 XORX.B 2(R6),EDE

&TONI 7 (2) 10 (3) 4 BITX 8(SP),&EDE

EDE Rm 4 5 3 BITX.B EDE,R8

PC (4) 6 7 3 ADDX.A EDE,PC

TONI 7 (2) 10 (3) 4 ANDX EDE,4(R6)

x(Rm) 7 (2) 10 (3) 4 ANDX EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX EDE,&TONI

&EDE Rm 4 5 3 BITX &EDE,R8

PC (4) 6 7 3 ADDX.A &EDE,PC

TONI 7 (2) 10 (3) 4 ANDX.B &EDE,4(R6)

x(Rm) 7 (2) 10 (3) 4 XORX &EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX &EDE,&TONI

(1) Repeat instructions require n+1 cycles where n is the number of times the instruction is executed.
(2) Reduce the cycle count by one for MOV, BIT, and CMP instructions.
(3) Reduce the cycle count by two for MOV, BIT, and CMP instructions.
(4) Reduce the cycle count by one for MOV, ADD, and SUB instructions.

SLAU208–June 2008 CPUX 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSP430X Address Instruction Cycles and Lengths www.ti.com

MSP430X Address Instruction Cycles and Lengths
Table 5-19 lists the length and the CPU cycles for all addressing modes of the MSP430X address
instructions.

Table 5-19. Address Instruction Cycles and Length
Execution Time Length of InstructionAddressing Mode (MCLK Cycles) (Words)

ExampleCMPA CMPAMOVASource Destination ADDA MOVA ADDABRA SUBA SUBA
Rn Rn 1 1 1 1 CMPA R5,R8

PC 3 3 1 1 SUBA R9,PC

x(Rm) 4 – 2 – MOVA R5,4(R6)

EDE 4 – 2 – MOVA R8,EDE

&EDE 4 – 2 – MOVA R5,&EDE

@Rn Rm 3 – 1 – MOVA @R5,R8

PC 5 – 1 – MOVA @R9,PC

@Rn+ Rm 3 – 1 – MOVA @R5+,R8

PC 5 – 1 – MOVA @R9+,PC

#N Rm 2 3 2 2 CMPA #20,R8

PC 3 3 2 2 SUBA #FE000h,PC

x(Rn) Rm 4 – 2 – MOVA 2(R5),R8

PC 6 – 2 – MOVA 2(R6),PC

EDE Rm 4 – 2 – MOVA EDE,R8

PC 6 – 2 – MOVA EDE,PC

&EDE Rm 4 – 2 – MOVA &EDE,R8

PC 6 – 2 – MOVA &EDE,PC

138 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.6 Instruction Set Description
www.ti.com Instruction Set Description

Table 5-20 shows all available instructions:

Table 5-20. Instruction Map of MSP430X
000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

0xxx MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM

RRC. RRA. PUSH CALL10xx RRC SWPB RRA SXT PUSH CALL RETIB B .B A

14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W

18xx
Extension Word For Format I and Format II Instructions

1Cxx

20xx JNE/JNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xxx MOV, MOV.B

5xxx ADD, ADD.B

6xxx ADDC, ADDC.B

7xxx SUBC, SUBC.B

8xxx SUB, SUB.B

9xxx CMP, CMP.B

Axxx DADD, DADD.B

Bxxx BIT, BIT.B

Cxxx BIC, BIC.B

Dxxx BIS, BIS.B

Exxx XOR, XOR.B

Fxxx AND, AND.B

SLAU208–June 2008 CPUX 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.6.1 Extended Instruction Binary Descriptions
Instruction Set Description www.ti.com

Detailed MSP430X instruction binary descriptions are shown in the following tables.
Instruction Instructionsrc or data.19:16 dstGroup IdentifierInstruction

15 12 11 8 7 4 3 0
MOVA 0 0 0 0 src 0 0 0 0 dst MOVA @Rsrc,Rdst

0 0 0 0 src 0 0 0 1 dst MOVA @Rsrc+,Rdst

0 0 0 0 &abs.19:16 0 0 1 0 dst MOVA &abs20,Rdst

&abs.15:0
0 0 0 0 src 0 0 1 1 dst MOVA x(Rsrc),Rdst

x.15:0 ±15-bit index x
0 0 0 0 src 0 1 1 0 &abs.19:16 MOVA Rsrc,&abs20

&abs.15:0
0 0 0 0 src 0 1 1 1 dst MOVA Rsrc,X(Rdst)

x.15:0 ±15-bit index x
0 0 0 0 imm.19:16 1 0 0 0 dst MOVA #imm20,Rdst

imm.15:0
CMPA 0 0 0 0 imm.19:16 1 0 0 1 dst CMPA #imm20,Rdst

imm.15:0
ADDA 0 0 0 0 imm.19:16 1 0 1 0 dst ADDA #imm20,Rdst

imm.15:0
SUBA 0 0 0 0 imm.19:16 1 0 1 1 dst SUBA #imm20,Rdst

imm.15:0
MOVA 0 0 0 0 src 1 1 0 0 dst MOVA Rsrc,Rdst

CMPA 0 0 0 0 src 1 1 0 1 dst CMPA Rsrc,Rdst

ADDA 0 0 0 0 src 1 1 1 0 dst ADDA Rsrc,Rdst

SUBA 0 0 0 0 src 1 1 1 1 dst SUBA Rsrc,Rdst

Instruction InstructionBit Loc. Inst. ID dstGroup IdentifierInstruction
15 12 11 10 9 8 7 4 3 0

RRCM.A 0 0 0 0 n – 1 0 0 0 1 0 0 dst RRCM.A #n,Rdst

RRAM.A 0 0 0 0 n – 1 0 1 0 1 0 0 dst RRAM.A #n,Rdst

RLAM.A 0 0 0 0 n – 1 1 0 0 1 0 0 dst RLAM.A #n,Rdst

RRUM.A 0 0 0 0 n – 1 1 1 0 1 0 0 dst RRUM.A #n,Rdst

RRCM.W 0 0 0 0 n – 1 0 0 0 1 0 1 dst RRCM.W #n,Rdst

RRAM.W 0 0 0 0 n – 1 0 1 0 1 0 1 dst RRAM.W #n,Rdst

RLAM.W 0 0 0 0 n – 1 1 0 0 1 0 1 dst RLAM.W #n,Rdst

RRUM.W 0 0 0 0 n – 1 1 1 0 1 0 1 dst RRUM.W #n,Rdst

CPUX140 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

Instruction Identifier dst
Instruction

15 12 11 8 7 6 5 4 3 0
RETI 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
CALLA 0 0 0 1 0 0 1 1 0 1 0 0 dst CALLA Rdst

0 0 0 1 0 0 1 1 0 1 0 1 dst CALLA x(Rdst)

x.15:0
0 0 0 1 0 0 1 1 0 1 1 0 dst CALLA @Rdst

0 0 0 1 0 0 1 1 0 1 1 1 dst CALLA @Rdst+

0 0 0 1 0 0 1 1 1 0 0 0 &abs.19:16 CALLA &abs20

&abs.15:0
0 0 0 1 0 0 1 1 1 0 0 1 x.19:16 CALLA EDE

x.15:0 CALLA x(PC)

0 0 0 1 0 0 1 1 1 0 1 1 imm.19:16 CALLA #imm20

imm.15:0
Reserved 0 0 0 1 0 0 1 1 1 0 1 0 x x x x
Reserved 0 0 0 1 0 0 1 1 1 1 x x x x x x
PUSHM.A 0 0 0 1 0 1 0 0 n – 1 dst PUSHM.A #n,Rdst

PUSHM.W 0 0 0 1 0 1 0 1 n – 1 dst PUSHM.W #n,Rdst

POPM.A 0 0 0 1 0 1 1 0 n – 1 dst – n + 1 POPM.A #n,Rdst

POPM.W 0 0 0 1 0 1 1 1 n – 1 dst – n + 1 POPM.W #n,Rdst

SLAU208–June 2008 CPUX 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.6.2 MPS430 Instructions
Instruction Set Description www.ti.com

The MSP430 instructions are listed and described on the following pages.

CPUX142 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination
Syntax ADC dst or ADC.W dst

ADC.B dst

Operation dst + C → dst
Emulation ADDC #0,dst

ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.

ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.

ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

SLAU208–June 2008 CPUX 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

ADD[.W] Add source word to destination word
ADD.B Add source byte to destination byte
Syntax ADD src,dst or ADD.W src,dst

ADD.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous content of the

destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label
TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 = 0
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

CPUX144 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

ADDC[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte
Syntax ADDC src,dst or ADDC.W src,dst

ADDC.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous content of the destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant value 15 and the carry of the previous instruction are added to the 16-bit

counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1. R6.19:8 = 0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

SLAU208–June 2008 CPUX 145
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

AND[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte
Syntax AND src,dst or AND.W src,dst

AND.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in

the lower 64 K. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0

MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

AND #AA55h,&TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

CPUX146 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

BIC[.W] Clear bits set in source word in destination word
BIC.B Clear bits set in source byte in destination byte
Syntax BIC src,dst or BIC.W src,dst

BIC.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0

BIC.W @R5,R7 ; Clear bits in R7 set in @R5

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P1OUT ; Clear I/O port P1 bits set in @R5

SLAU208–June 2008 CPUX 147
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte
Syntax BIS src,dst or BIS.W src,dst

BIS.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0

BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P1OUT ; Set I/O port P1 bits. R5 + 1

CPUX148 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte
Syntax BIT src,dst or BIT.W src,dst

BIT.B src,dst

Operation src .and. dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared!

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this

is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits
JNZ TONI ; At least one bit is set in R5
... ; Both bits are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set. R7.19:16 are not affected.

BIT.W @R5,R7 ; Test bits in R7
JC TONI ; At least one bit is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in output Port1. Jump
to label TONI if no bit is set. The next table byte is addressed.

BIT.B @R5+,&P1OUT ; Test I/O port P1 bits. R5 + 1
JNC TONI ; No corresponding bit is set
... ; At least one bit is set

SLAU208–June 2008 CPUX 149
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* BR, Branch to destination in lower 64K address space
BRANCH
Syntax BR dst

Operation dst → PC
Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the lower 64K address
space. All source addressing modes can be used. The branch instruction is a word
instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.

BR #EXEC ; Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time-S/W flow uses R5 pointer-it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

CPUX150 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

CALL Call a subroutine in lower 64 K
Syntax CALL dst

Operation dst → PC 16-bit dst is evaluated and stored
SP – 2 → SP
PC → @SP updated PC with return address to TOS
tmp → PC saved 16-bit dst to PC

Description A subroutine call is made from an address in the lower 64 K to a subroutine address in
the lower 64 K. All seven source addressing modes can be used. The call instruction is a
word instruction. The return is made with the RET instruction.

Status Bits Status bits are not affected.
PC.19:16 cleared (address in lower 64 K)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly to address.

CALL #EXEC ; Start address EXEC
CALL #0AA04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC.
EXEC is located at the address (PC + X) where X is within PC + 32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address
EXEC in the lower 64 K.

CALL &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by
register R5 (20-bit address).

CALL @R5 ; Start address at @R5

SLAU208–June 2008 CPUX 151
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* CLR[.W] Clear destination
* CLR.B Clear destination
Syntax CLR dst or CLR.W dst

CLR.B dst

Operation 0 → dst
Emulation MOV #0,dst

MOV.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.

CLR TONI ; 0 -> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 -> TONI

CPUX152 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* CLRC Clear carry bit
Syntax CLRC

Operation 0 → C
Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.
Status Bits N: Not affected

Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by

R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

SLAU208–June 2008 CPUX 153
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* CLRN Clear negative bit
Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst → dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The Negative bit in the status register is cleared. This avoids special treatment with

negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

CPUX154 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* CLRZ Clear zero bit
Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst → dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The zero bit in the status register is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the
word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5
afterwards by 2. The next time the software uses R5 as a pointer, it can alter the
program execution due to access to the next word address in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address
pointed to by register (R5 + X), e.g. a table with addresses starting at X. The address is
within the lower 64 KB. X is within +32 KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

SLAU208–June 2008 CPUX 155
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

CMP[.W] Compare source word and destination word
CMP.B Compare source byte and destination byte
Syntax CMP src,dst or CMP.W src,dst

CMP.B src,dst

Operation (.not.src) + 1 + dst
or
dst – src

Emulation BIC #2,SR

Description The source operand is subtracted from the destination operand. This is made by adding
the 1's complement of the source + 1 to the destination. The result affects only the status
bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared.

Status Bits N: Set if result is negative (src > dst), reset if positive (src = dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the

constant. The address of EDE is within PC + 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h
JEQ TONI ; EDE contains 1800h
... ; Not equal

Example A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7
contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the
source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers
JL TONI ; R7 < 10(R5)
... ; R7 >= 10(R5)

Example A table byte pointed to by R5 (20-bit address) is compared to the value in output Port1.
Jump to label TONI if values are equal. The next table byte is addressed.

CMP.B @R5+,&P1OUT ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

CPUX156 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination
Syntax DADC dst or DADC.W dst

DADC.B dst

Operation dst + C → dst (decimally)
Emulation DADD #0,dst DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB is 1

Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The four-digit decimal number contained in R5 is added to an eight-digit decimal number

pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

SLAU208–June 2008 CPUX 157
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* DADD[.W] Add source word and carry decimally to destination word
* DADD.B Add source byte and carry decimally to destination byte
Syntax DADD src,dst or DADD.W src,dst

DADD.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B) or four (.W)

binary coded decimals (BCD) with positive signs. The source operand and the carry bit C
are added decimally to the destination operand. The source operand is not affected. The
previous content of the destination is lost. The result is not defined for non-BCD
numbers.

Status Bits N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

Example The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5
contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry
DADD.W &BCD,R4 ; Add LSDs. R4.19:16 = 0
DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0
JC OVERFLOW ; Result >9999,9999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in word BCD (16-bit address) is added decimally to
a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = 0CLRC ;
Clear carryDADD.B &BCD,R4 ; Add BCD to R4 decimally. R4: 0,00ddh

CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.

R4: 0,00ddh

CPUX158 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

EDE

EDE+254

TONI

TONI+254

www.ti.com Instruction Set Description

* DEC[.W] Decrement destination
* DEC.B Decrement destination
Syntax DEC dst or DEC.W dst

DEC.B dst

Operation dst – 1 → dst
Emulation SUB #1,dst

SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 1.

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI. Tables should not overlap: start of
; destination address TONI must not be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI-EDE-1(R6)
DEC R10
JNZ L$1

Do not transfer tables using the routine above with the overlap shown in Figure 5-36.

Figure 5-36. Decrement Overlap

SLAU208–June 2008 CPUX 159
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst

DECD.B dst

Operation dst – 2 → dst
Emulation SUB #2,dst

SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI.
; Tables should not overlap: start of destination address TONI must not
; be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

CPUX160 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* DINT Disable (general) interrupts
Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst → dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR). The
result is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the status register is cleared to allow a

nondisrupted move of a 32-bit counter. This ensures that the counter is not modified
during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, DINT should be executed at
least one instruction before the beginning of the uninterruptible sequence, or it should be
followed by a NOP instruction.

SLAU208–June 2008 CPUX 161
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* EINT Enable (general) interrupts
Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR → SR / .src .OR. dst → dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result is placed
into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the status register is set.

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always executed, even if
an interrupt service request is pending when the interrupts are enabled.

162 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* INC[.W] Increment destination
* INC.B Increment destination
Syntax INC dst or INC.W dst

INC.B dst

Operation dst + 1 → dst
Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch

to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

SLAU208–June 2008 CPUX 163
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination
Syntax INCD dst or INCD.W dst

INCD.B dst

Operation dst + 2 → dst
Emulation ADD #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned register
RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

CPUX164 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* INV[.W] Invert destination
* INV.B Invert destination
Syntax INV dst or INV.W dst

INV.B dst

Operation .not.dst → dst
Emulation XOR #0FFFFh,dst

XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

SLAU208–June 2008 CPUX 165
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

JC Jump if carry
JHS Jump if higher or same (unsigned)
Syntax JC label

JHS label

Operation If C = 1: PC + (2 × Offset) → PC
If C = 0: execute the following instruction

Description The carry bit C in the status register is tested. If it is set, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range –511 to +512 words relative to the
PC in the full memory range. If C is reset, the instruction after the jump is executed.
JC is used for the test of the carry bit C.
JHS is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit -> C
JC Label1 ; Yes, proceed at Label1
... ; No, continue

Example If R5 ≥ R6 (unsigned) the program continues at Label2

CMP R6,R 5 ; Is R5 >= R6? Info to C
JHS Label2 ; Yes, C = 1
... ; No, R5 < R6. Continue

Example If R5 ≥ 12345h (unsigned operands) the program continues at Label2

CMPA #12345h,R5 ; Is R5 >= 12345h? Info to C
JHS Label2 ; Yes, 12344h < R5 <= F,FFFFh. C = 1
... ; No, R5 < 12345h. Continue

CPUX166 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

JEQ Jump if equal
JZ Jump if zero
Syntax JEQ label

JZ label

Operation If Z = 1: PC + (2 × Offset) → PC
If Z = 0: execute following instruction

Description The zero bit Z in the status register is tested. If it is set, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range –511 to +512 words relative to the
PC in the full memory range. If Z is reset, the instruction after the jump is executed.
JZ is used for the test of the zero bit Z.
JEQ is used for the comparison of operands.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the P2IN.0 bit defines the program flow.

BIT.B #1,&P2IN ; Port 2, bit 0 reset?
JZ Label1 ; Yes, proceed at Label1
... ; No, set, continue

Example If R5 = 15000h (20-bit data) the program continues at Label2.

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR
JEQ Label2 ; Yes, R5 = 15000h. Z = 1
... ; No, R5 not equal 15000h. Continue

Example R7 (20-bit counter) is incremented. If its content is zero, the program continues at
Label4.

ADDA #1,R7 ; Increment R7
JZ Label4 ; Zero reached: Go to Label4
... ; R7 not equal 0. Continue here.

SLAU208–June 2008 CPUX 167
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

JGE Jump if greater or equal (signed)
Syntax JGE label

Operation If (N .xor. V) = 0: PC + (2 × Offset) → PC
If (N .xor. V) = 1: execute following instruction

Description The negative bit N and the overflow bit V in the status register are tested. If both bits are
set or both are reset, the signed 10-bit word offset contained in the instruction is
multiplied by two, sign extended, and added to the 20-bit program counter PC. This
means a jump in the range -511 to +512 words relative to the PC in full Memory range. If
only one bit is set, the instruction after the jump is executed.
JGE is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JGE instruction is correct.
Note that JGE emulates the non-implemented JP (jump if positive) instruction if used
after the instructions AND, BIT, RRA, SXTX and TST. These instructions clear the V bit.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run in the full

memory range.

TST.B &EDE ; Is EDE positive? V <- 0
JGE Label1 ; Yes, JGE emulates JP
... ; No, 80h <= EDE <= FFh

Example If the content of R6 is greater than or equal to the memory pointed to by R7, the program
continues a Label5. Signed data. Data and program in full memory range.

CMP @R7,R6 ; Is R6 >= @R7?
JGE Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 ≥ 12345h (signed operands) the program continues at Label2. Program in full
memory range.

CMPA #12345h,R5 ; Is R5 >= 12345h?
JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh
... ; No, 80000h <= R5 < 12345h

CPUX168 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

JL Jump if greater or equal (signed)
Syntax JL label

Operation If (N .xor. V) = 1: PC + (2 × Offset) → PC
If (N .xor. V) = 0: execute following instruction

Description The negative bit N and the overflow bit V in the status register are tested. If only one is
set, the signed 10-bit word offset contained in the instruction is multiplied by two, sign
extended, and added to the 20-bit program counter PC. This means a jump in the range
–511 to +512 words relative to the PC in full memory range. If both bits N and V are set
or both are reset, the instruction after the jump is executed.
JL is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE contains a smaller, signed operand than byte TONI, continue at Label1. The

address EDE is within PC ± 32 K.

CMP.B &TONI,EDE ; Is EDE < TONI
JL Label1 ; Yes
... ; No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit address) the
program continues at Label Label5. Data and program in full memory range.

CMP @R7,R6 ; Is R6 < @R7?
JL Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 < 12345h (signed operands) the program continues at Label2. Data and program in
full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?
JL Label2 ; Yes, 80000h =< R5 < 12345h
... ; No, 12344h < R5 <= 7FFFFh

SLAU208–June 2008 CPUX 169
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

JMP Jump unconditionally
Syntax JMP label

Operation PC + (2 × Offset) → PC
Description The signed 10-bit word offset contained in the instruction is multiplied by two, sign

extended, and added to the 20-bit program counter PC. This means an unconditional
jump in the range -511 to +512 words relative to the PC in the full memory. The JMP
instruction may be used as a BR or BRA instruction within its limited range relative to the
program counter.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower

64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10
JMP MAINLOOP ; Go to main loop

Example The interrupt vector TAIV of Timer_A3 is read and used for the program flow. Program in
full memory range, but interrupt handlers always starts in lower 64K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending
JMP IHCCR1 ; Timer block 1 caused interrupt
JMP IHCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return

CPUX170 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

JN Jump if negative
Syntax JN label

Operation If N = 1: PC + (2 × Offset) → PC
If N = 0: execute following instruction

Description The negative bit N in the status register is tested. If it is set, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range -511 to +512 words relative to the
PC in the full memory range. If N is reset, the instruction after the jump is executed.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte COUNT is tested. If it is negative, program execution continues at Label0. Data

in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?
JN Label0 ; Yes, proceed at Label0
... ; COUNT >= 0

Example R6 is subtracted from R5. If the result is negative, program continues at Label2. Program
in full memory range.

SUB R6,R5 ; R5 - R6 -> R5
JN Label2 ; R5 is negative: R6 > R5 (N = 1)
... ; R5 >= 0. Continue here.

Example R7 (20-bit counter) is decremented. If its content is below zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JN Label4 ; R7 < 0: Go to Label4
... ; R7 >= 0. Continue here.

SLAU208–June 2008 CPUX 171
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

JNC Jump if no carry
JLO Jump if lower (unsigned)
Syntax JNC label

JLO label

Operation If C = 0: PC + (2 × Offset) → PC
If C = 1: execute following instruction

Description The carry bit C in the status register is tested. If it is reset, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range –511 to +512 words relative to the
PC in the full memory range. If C is set, the instruction after the jump is executed.
JNC is used for the test of the carry bit C.
JLO is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE < 15 the program continues at Label2. Unsigned data. Data in lower 64 K,

program in full memory range.

CMP.B #15,&EDE ; Is EDE < 15? Info to C
JLO Label2 ; Yes, EDE < 15. C = 0
... ; No, EDE >= 15. Continue

Example The word TONI is added to R5. If no carry occurs, continue at Label0. The address of
TONI is within PC ± 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C
JNC Label0 ; No carry
... ; Carry = 1: continue here

CPUX172 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

JNZ Jump if not zero
JNE Jump if not equal
Syntax JNZ label

JNE label

Operation If Z = 0: PC + (2 × Offset) → PC
If Z = 1: execute following instruction

Description The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word offset
contained in the instruction is multiplied by two, sign extended, and added to the 20-bit
program counter PC. This means a jump in the range –511 to +512 words relative to the
PC in the full memory range. If Z is set, the instruction after the jump is executed.
JNZ is used for the test of the zero bit Z.
JNE is used for the comparison of operands.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is tested. If it is not zero, the program continues at Label3. The

address of STATUS is within PC ± 32 K.

TST.B STATUS ; Is STATUS = 0?
JNZ Label3 ; No, proceed at Label3
... ; Yes, continue here

Example If word EDE ≠ 1500 the program continues at Label2. Data in lower 64 K, program in full
memory range.

CMP #1500,&EDE ; Is EDE = 1500? Info to SR
JNE Label2 ; No, EDE not equal 1500.
... ; Yes, R5 = 1500. Continue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JNZ Label4 ; Zero not reached: Go to Label4
... ; Yes, R7 = 0. Continue here.

SLAU208–June 2008 CPUX 173
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

MOV[.W] Move source word to destination word
MOV.B Move source byte to destination byte
Syntax MOV src,dst or MOV.W src,dst

MOV.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).

MOV #01800h,&EDE ; Move 1800h to EDE

Example The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The
length of the tables is 030h words. Both tables reside in the lower 64K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)
Loop MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMP #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The
length of the tables is 020h bytes. Both tables may reside in full memory range, but must
be within R10 ± 32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

CPUX174 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* NOP No operation
Syntax NOP

Operation None
Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.

Status Bits Status bits are not affected.

SLAU208–June 2008 CPUX 175
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination
Syntax POP dst

POP.B dst

Operation @SP → temp
SP + 2 → SP
temp → dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the destination. The
stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.
Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are restored from
the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent of the byte suffix.

176 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack
Syntax PUSH dst or PUSH.W dst

PUSH.B dst

Operation SP – 2 → SP
dst → @SP

Description The 20-bit stack pointer SP is decremented by two. The operand is then copied to the
RAM word addressed by the SP. A pushed byte is stored in the low byte, the high byte is
not affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the two 16-bit registers R9 and R10 on the stack.

PUSH R9 ; Save R9 and R10 XXXXh
PUSH R10 ; YYYYh

Example Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are
within PC ± 32 K.

PUSH.B EDE ; Save EDE xxXXh
PUSH.B TONI ; Save TONI xxYYh

SLAU208–June 2008 CPUX 177
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Item n

PC
Return

Item n

Stack before RET

instruction

Stack after RET

instruction

SP

SP

Instruction Set Description www.ti.com

RET Return from subroutine
Syntax RET

Operation @SP →PC.15:0 Saved PC to PC.15:0. PC.19:16 ← 0
SP + 2 → SP

Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL instruction is
restored to the PC. The program continues at the address following the subroutine call.
The four MSBs of the program counter PC.19:16 are cleared.

Status Bits Status bits are not affected.
PC.19:16: Cleared

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR in the lower 64 K and return to the address in the lower 64K

after the CALL.

CALL #SUBR ; Call subroutine starting at SUBR
... ; Return by RET to here

SUBR PUSH R14 ; Save R14 (16 bit data)
... ; Subroutine code
POP R14 ; Restore R14
RET ; Return to lower 64 K

Figure 5-37. Stack After a RET Instruction

178 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

RETI Return from interrupt
Syntax RETI

Operation @SP → SR.15:0 Restore saved status register SR with PC.19:16
SP + 2 → SP
@SP → PC.15:0 Restore saved program counter PC.15:0
SP + 2 → SP House keeping

Description The status register is restored to the value at the beginning of the interrupt service
routine. This includes the four MSBs of the program counter PC.19:16. The stack pointer
is incremented by two afterward.
The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits)
and PC.15:0. The 20-bit program counter is restored to the value at the beginning of the
interrupt service routine. The program continues at the address following the last
executed instruction when the interrupt was granted. The stack pointer is incremented by
two afterward.

Status Bits N: Restored from stack
C: Restored from stack
Z: Restored from stack
V: Restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack.
Example Interrupt handler in the lower 64 K. A 20-bit return address is stored on the stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)
... ; Interrupt handler code
POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full memory range

SLAU208–June 2008 CPUX 179
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 0

7 0

C

Byte

Word

0

Instruction Set Description www.ti.com

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically
Syntax RLA dst or RLA.W dst

RLA.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADD dst,dst ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 5-38. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.
An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed: the
result has changed sign.

Figure 5-38. Destination Operand—Arithmetic Shift Left

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed: the
result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:the initial value is 04000h ≤ dst < 0C000h; reset

otherwise
Set if an arithmetic overflow occurs:the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

Note: RLA Substitution

The assembler does not recognize the instructions:
RLA @R5+ RLA.B @R5+ RLA(.B) @R5

They must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) ADD(.B) @R5

180 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 0

7 0

C

Byte

Word

www.ti.com Instruction Set Description

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry
Syntax RLC dst or RLC.W dst

RLC.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 5-39. The carry bit
(C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Figure 5-39. Destination Operand—Carry Left Shift
Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:the initial value is 04000h ≤ dst < 0C000h; reset

otherwise
Set if an arithmetic overflow occurs:the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C -> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

Note: RLA Substitution

The assembler does not recognize the instructions:
RLC @R5+ RLC.B @R5+ RLC(.B) @R5

They must be substituted by:
ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) ADDC(.B) @R5

SLAU208–June 2008 CPUX 181
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

Instruction Set Description www.ti.com

RRA[.W] Rotate right arithmetically destination word
RRA.B Rotate right arithmetically destination byte
Syntax RRA.B dst or RRA.W dst
Operation MSB → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one bit position as shown in

Figure 5-40. The MSB retains its value (sign). RRA operates equal to a signed division
by 2. The MSB is retained and shifted into the MSB–1. The LSB+1 is shifted into the
LSB. The previous LSB is shifted into the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

Example The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 5-40. Rotate Right Arithmetically RRA.B and RRA.W

182 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

www.ti.com Instruction Set Description

RRC[.W] Rotate right through carry destination word
RRC.B Rotate right through carry destination byte
Syntax RRC dst or RRC.W dst

RRC.B dst

Operation C → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right by one bit position as shown in Figure 5-41. The

carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C.
Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC EDE ; EDE = EDE >> 1 + 8000h

Figure 5-41. Rotate Right Through Carry RRC.B and RRC.W

SLAU208–June 2008 CPUX 183
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination
Syntax SBC dst or SBC.W dst

SBC.B dst

Operation dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SUBC #0,dst

SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by

R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

CPUX184 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* SETC Set carry bit
Syntax SETC

Operation 1 → C
Emulation BIS #1,SR

Description The carry bit (C) is set.
Status Bits N: Not affected

Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Emulation of the decimal subtraction:

Subtract R5 from R6 decimally.
Assume that R5 = 03987h and R6 = 04137h.

DSUB ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

SLAU208–June 2008 CPUX 185
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* SETN Set carry bit
Syntax SETN

Operation 1 → N
Emulation BIS #4,SR

Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

CPUX186 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* SETZ Set zero bit
Syntax SETZ

Operation 1 → N
Emulation BIS #2,SR

Description The zero bit (Z) is set.
Status Bits N: Not affected

Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

SLAU208–June 2008 CPUX 187
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

SUB[.W] Subtract source word from destination word
SUB.B Subtract source byte from destination byte
Syntax SUB src,dst or SUB.W src,dst

SUB.B src,dst

Operation (.not.src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1's complement of the source + 1 to the destination. The source operand is not
affected, the result is written to the destination operand.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7
contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC ± 32
K. The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

CPUX188 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

SUBC[.W] Subtract source word with carry from destination word
SUBC.B Subtract source byte with carry from destination byte
Syntax SUBC src,dst or SUBC.W src,dst

SUBC.B src,dst

Operation (.not.src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1's complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Used for 32, 48, and 64-bit
operands.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from R5 with the carry from the previous

instruction. R5.19:16 = 0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The
address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction
is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

SLAU208–June 2008 CPUX 189
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

0

x

0...

19

19

16

16

Instruction Set Description www.ti.com

SWPB Swap bytes
Syntax SWPB dst

Operation dst.15:8 ↔ dst.7:0
Description The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in

register mode.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM word EDE (lower 64 K).

MOV #1234h,&EDE ; 1234h -> EDE
SWPB &EDE ; 3412h -> EDE

Figure 5-42. Swap Bytes in Memory

Figure 5-43. Swap Bytes in a Register

190 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

SXT Extend sign
Syntax SXT dst

Operation dst.7 → dst.15:8, dst.7 → dst.19:8 (register mode)
Description Register mode: the sign of the low byte of the operand is extended into the bits

Rdst.19:8.
Rdst.7 = 0: Rdst.19:8 = 000h afterwards
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards

Other Modes: the sign of the low byte of the operand is extended into the high byte.
dst.7 = 0: high byte = 00h afterwards
dst.7 = 1: high byte = FFh afterwards

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the 16-bit

signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5,R7 ; Add signed 16-bit values

Example The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data
in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5,R7 ; Add signed 20-bit values

SLAU208–June 2008 CPUX 191
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* TST[.W] Test destination
* TST.B Test destination
Syntax TST dst or TST.W dst

TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at

R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not
zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

CPUX192 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

XOR[.W] Exclusive OR source word with destination word
XOR.B Exclusive OR source byte with destination byte
Syntax XOR src,dst or XOR.W src,dst

XOR.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into the

destination. The source operand is not affected. The previous content of the destination
is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI.

Both operands are located in lower 64 K.

XOR &TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE.
R7.19:8 = 0. The address of EDE is within PC ± 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.
INV.B R7 ; Invert low byte of R7, high byte is 0h

SLAU208–June 2008 CPUX 193
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.6.3 Extended Instructions
Instruction Set Description www.ti.com

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space.
MSP430X instructions require an additional word of op-code called the extension word. All addresses,
indexes, and immediate numbers have 20-bit values, when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following pages.

CPUX194 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* ADCX.A Add carry to destination address-word
* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte
Syntax ADCX.A dst

ADCX dst or ADCX.W dst
ADCX.B dst

Operation dst + C → dst
Emulation ADDCX.A #0,dst

ADDCX #0,dst

ADDCX.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

SLAU208–June 2008 CPUX 195
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

ADDX.A Add source address-word to destination address-word
ADDX.[W] Add source word to destination word
ADDX.B Add source byte to destination byte
Syntax ADDX.A src,dst

ADDX src,dst or ADDX.W src,dst
ADDX.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous contents of the

destination are lost. Both operands can be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and

CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

Example A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed on a carry.

ADDX.W @R5,R6 ; Add table word to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1.

ADDX.B @R5+,R6 ; Add table byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

Note: Use ADDA for the following two cases for better code density and execution.

ADDX.A Rsrc,Rdst
ADDX.A #imm20,Rdst

CPUX196 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

ADDCX.A Add source address-word and carry to destination address-word
ADDCX.[W] Add source word and carry to destination word
ADDCX.B Add source byte and carry to destination byte
Syntax ADDCX.A src,dst

ADDCX src,dst or ADDCX.W src,dst
ADDCX.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous contents of the destination are lost. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant 15 and the carry of the previous instruction are added to the 20-bit counter

CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry.

ADDCX.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

SLAU208–June 2008 CPUX 197
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

ANDX.A Logical AND of source address-word with destination address-word
ANDX.[W] Logical AND of source word with destination word
ANDX.B Logical AND of source byte with destination byte
Syntax ANDX.A src,dst

ANDX src,dst or ANDX.W src,dst
ANDX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected. Both operands may be
located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM

located in two words. If the result is zero, a branch is taken to label TONI.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5
ANDX.A R5,TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

ANDX.A #AAA55h,TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0.
The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

CPUX198 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

BICX.A Clear bits set in source address-word in destination address-word
BICX.[W] Clear bits set in source word in destination word
BICX.B Clear bits set in source byte in destination byte
Syntax BICX.A src,dst

BICX src,dst or BICX.W src,dst
BICX.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected. Both operands
may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0.

BICX.W @R5,R7 ; Clear bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1.

BICX.B @R5,&P1OUT ; Clear I/O port P1 bits

SLAU208–June 2008 CPUX 199
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

BISX.A Set bits set in source address-word in destination address-word
BISX.[W] Set bits set in source word in destination word
BISX.B Set bits set in source byte in destination byte
Syntax BISX.A src,dst

BISX src,dst or BISX.W src,dst
BISX.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected. Both operands may be located
in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B @R5,&P1OUT ; Set I/O port P1 bits

CPUX200 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

BITX.A Test bits set in source address-word in destination address-word
BITX.[W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte
Syntax BITX.A src,dst

BITX src,dst or BITX.W src,dst
BITX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits. Both operands may be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5 ; Test R5.16:15 bits
JNZ TONI ; At least one bit is set
... ; Both are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set.

BITX.W @R5,R7 ; Test bits in R7: C = .not.Z
JC TONI ; At least one is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1. Jump to
label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN ; Test input P1 bits. R5 + 1
JNC TONI ; No corresponding input bit is set
... ; At least one bit is set

SLAU208–June 2008 CPUX 201
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX.A dst

CLRX dst or CLRX.W dst
CLRX.B dst

Operation 0 → dst
Emulation MOVX.A #0,dst

MOVX #0,dst

MOVX.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is cleared.

CLRX.A TONI ; 0 -> TONI

CPUX202 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

CMPX.A Compare source address-word and destination address-word
CMPX.[W] Compare source word and destination word
CMPX.B Compare source byte and destination byte
Syntax CMPX.A src,dst

CMPX src,dst or CMPX.W src,dst
CMPX.B src,dst

Operation (.not. src) + 1 + dst or dst – src
Description The source operand is subtracted from the destination operand by adding the 1's

complement of the source + 1 to the destination. The result affects only the status bits.
Both operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the

constant.

CMPX.A #018000h,EDE ; Compare EDE with 18000h
JEQ TONI ; EDE contains 18000h
... ; Not equal

Example A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI
if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers
JL TONI ; R7 < @R5
... ; R7 >= @R5

Example A table byte pointed to by R5 (20-bit address) is compared to the input in I/O Port1.
Jump to label TONI if the values are equal. The next table byte is addressed.

CMPX.B @R5+,&P1IN ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

Note: Use CMPA for the following two cases for better density and execution.

CMPA Rsrc,Rdst
CMPA #imm20,Rdst

SLAU208–June 2008 CPUX 203
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* DADCX.A Add carry decimally to destination address-word
* DADCX.[W] Add carry decimally to destination word
* DADCX.B Add carry decimally to destination byte
Syntax DADCX.A dst

DADCX dst or DADCX.W dst
DADCX.B dst

Operation dst + C → dst (decimally)
Emulation DADDX.A #0,dst

DADDX #0,dst

DADDX.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset

if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

CPUX204 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

DADDX.A Add source address-word and carry decimally to destination address-word
DADDX.[W] Add source word and carry decimally to destination word
DADDX.B Add source byte and carry decimally to destination byte
Syntax DADDX.A src,dst

DADDX src,dst or DADDX.W src,dst
DADDX.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B), four (.W), or

five (.A) binary coded decimals (BCD) with positive signs. The source operand and the
carry bit C are added decimally to the destination operand. The source operand is not
affected. The previous contents of the destination are lost. The result is not defined for
non-BCD numbers. Both operands may be located in the full address space.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset
if MSB is 0.

Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

Example The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added
decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain
the MSDs).

CLRC ; Clear carry
DADDX.W BCD,R4 ; Add LSDs
DADDX.W BCD+2,R5 ; Add MSDs with carry
JC OVERFLOW ; Result >99999999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in 20-bit address BCD is added decimally to a
two-digit BCD number contained in R4.

CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.

; R4: 000ddh

SLAU208–June 2008 CPUX 205
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* DECX.A Decrement destination address-word
* DECX.[W] Decrement destination word
* DECX.B Decrement destination byte
Syntax DECX.A dst

DECX dst or DECX.W dst
DECX.B dst

Operation dst – 1 → dst
Emulation SUBX.A #1,dst

SUBX #1,dst

SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by 1.

DECX.A TONI ; Decrement TONI

CPUX206 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* DECDX.A Double-decrement destination address-word
* DECDX.[W] Double-decrement destination word
* DECDX.B Double-decrement destination byte
Syntax DECDX.A dst

DECDX dst or DECDX.W dst
DECDX.B dst

Operation dst – 2 → dst
Emulation SUBX.A #2,dst

SUBX #2,dst

SUBX.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by 2.

DECDX.A TONI ; Decrement TONI

SLAU208–June 2008 CPUX 207
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* INCX.A Increment destination address-word
* INCX.[W] Increment destination word
* INCX.B Increment destination byte
Syntax INCX.A dst

INCX dst or INCX.W dst
INCX.B dst

Operation dst + 1 → dst
Emulation ADDX.A #1,dst

ADDX #1,dst

ADDX.B #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-wordTONI is incremented by 1.

INCX.A TONI ; Increment TONI (20-bits)

CPUX208 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* INCDX.A Double-increment destination address-word
* INCDX.[W] Double-increment destination word
* INCDX.B Double-increment destination byte
Syntax INCDX.A dst

INCDX dst or INCDX.W dst
INCDX.B dst

Operation dst + 2 → dst
Emulation ADDX.A #2,dst

ADDX #2,dst

ADDX.B #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFEh, reset otherwise
Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is incremented by two; PC points to upper memory.

INCDX.B LEO ; Increment LEO by two

SLAU208–June 2008 CPUX 209
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* INVX.A Invert destination
* INVX.[W] Invert destination
* INVX.B Invert destination
Syntax INVX.A dst

INVX dst or INVX.W dst
INVX.B dst

Operation .NOT.dst → dst
Emulation XORX.A #0FFFFFh,dst

XORX #0FFFFh,dst

XORX.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example 20-bit content of R5 is negated (twos complement).

INVX.A R5 ; Invert R5
INCX.A R5 ; R5 is now negated

Example Content of memory byte LEO is negated. PC is pointing to upper memory.

INVX.B LEO ; Invert LEO
INCX.B LEO ; MEM(LEO) is negated

CPUX210 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

MOVX.A Move source address-word to destination address-word
MOVX.[W] Move source word to destination word
MOVX.B Move source byte to destination byte
Syntax MOVX.A src,dst

MOVX src,dst or MOVX.W src,dst
MOVX.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.

Both operands may be located in the full address space.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 20-bit constant 18000h to absolute address-word EDE.

MOVX.A #018000h,&EDE ; Move 18000h to EDE

Example The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The
length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)
Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The
length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the
MOVA instruction. This saves two bytes and code cycles. Examples for the addressing
combinations are:

MOVX.A Rsrc,Rdst MOVA Rsrc,Rdst ; Reg/Reg
MOVX.A #imm20,Rdst MOVA #imm20,Rdst ; Immediate/Reg
MOVX.A &abs20,Rdst MOVA &abs20,Rdst ; Absolute/Reg
MOVX.A @Rsrc,Rdst MOVA @Rsrc,Rdst ; Indirect/Reg
MOVX.A @Rsrc+,Rdst MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg
MOVX.A Rsrc,&abs20 MOVA Rsrc,&abs20 ; Reg/Absolute

SLAU208–June 2008 CPUX 211
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

The next four replacements are possible only if 16-bit indexes are sufficient for the
addressing.

MOVX.A z20(Rsrc),Rdst MOVA z16(Rsrc),Rdst ; Indexed/Reg
MOVX.A Rsrc,z20(Rdst) MOVA Rsrc,z16(Rdst) ; Reg/Indexed
MOVX.A symb20,Rdst MOVA symb16,Rdst ; Symbolic/Reg
MOVX.A Rsrc,symb20 MOVA Rsrc,symb16 ; Reg/Symbolic

CPUX212 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

POPM.A Restore n CPU registers (20-bit data) from the stack
POPM.[W] Restore n CPU registers (16-bit data) from the stack
Syntax POPM.A #n,Rdst 1 ≤ n ≤ 16

POPM.W #n,Rdst or POPM #n,Rdst 1 ≤ n ≤ 16
Operation POPM.A: Restore the register values from stack to the specified CPU registers. The

stack pointer SP is incremented by four for each register restored from stack. The 20-bit
values from stack (2 words per register) are restored to the registers.
POPM.W: Restore the 16-bit register values from stack to the specified CPU registers.
The stack pointer SP is incremented by two for each register restored from stack. The
16-bit values from stack (one word per register) are restored to the CPU registers.
Note : This instruction does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended CPU
registers, starting with the CPU register (Rdst – n + 1). The stack pointer is incremented
by (n y 4) after the operation.
POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU
registers, starting with CPU register (Rdst – n + 1). The stack pointer is incremented by
(n y 2) after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are
cleared.

Status Bits Status bits are not affected, except SR is included in the operation.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13

Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

SLAU208–June 2008 CPUX 213
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM.[W] Save n CPU registers (16-bit words) on the stack
Syntax PUSHM.A #n,Rdst 1 ≤ n ≤ 16

PUSHM.W #n,Rdst or PUSHM #n,Rdst 1 ≤ n ≤ 16
Operation PUSHM.A: Save the 20-bit CPU register values on the stack. The stack pointer (SP) is

decremented by four for each register stored on the stack. The MSBs are stored first
(higher address).
PUSHM.W: Save the 16-bit CPU register values on the stack. The stack pointer is
decremented by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack.
The stack pointer is decremented by (n × 4) after the operation. The data (Rn.19:0) of
the pushed CPU registers is not affected.
PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The
stack pointer is decremented by (n × 2) after the operation. The data (Rn.19:0) of the
pushed CPU registers is not affected.
Note : This instruction does not use the extension word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9

Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

CPUX214 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* POPX.A Restore single address-word from the stack
* POPX.[W] Restore single word from the stack
* POPX.B Restore single byte from the stack
Syntax POPX.A dst

POPX dst or POPX.W dst
POPX.B dst

Operation Restore the 8/16/20-bit value from the stack to the destination. 20-bit addresses are
possible. The stack pointer SP is incremented by two (byte and word operands) and by
four (address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. register mode, indexed mode,
symbolic mode, and absolute mode are possible. The stack pointer is incremented by
two or four.
Note: the stack pointer is incremented by two also for byte operations.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Write the 16-bit value on TOS to the 20-bit address &EDE.

POPX.W &EDE ; Write word to address EDE

Example Write the 20-bit value on TOS to R9.

POPX.A R9 ; Write address-word to R9

SLAU208–June 2008 CPUX 215
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

PUSHX.A Restore single address-word from the stack
PUSHX.[W] Restore single word from the stack
PUSHX.B Restore single byte from the stack
Syntax PUSHX.A src

PUSHX src or PUSHX.W src
PUSHX.B src

Operation Save the 8/16/20-bit value of the source operand on the TOS. 20-bit addresses are
possible. The stack pointer (SP) is decremented by two (byte and word operands) or by
four (address-word operand) before the write operation.

Description The stack pointer is decremented by two (byte and word operands) or by four
(address-word operand). Then the source operand is written to the TOS. All seven
addressing modes are possible for the source operand.
Note : This instruction does not use the extension word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the byte at the 20-bit address &EDE on the stack.

PUSHX.B &EDE ; Save byte at address EDE

Example Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

CPUX216 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

0

0

www.ti.com Instruction Set Description

RLAM.A Rotate left arithmetically the 20-bit CPU register content
RLAM.[W] Rotate left arithmetically the 16-bit CPU register content
Syntax RLAM.A #n,Rdst 1 ≤ n ≤ 4

RLAM.W #n,Rdst or RLAM #n,Rdst 1 ≤ n ≤ 4
Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Description The destination operand is shifted arithmetically left one, two, three, or four positions as

shown in Figure 5-44. RLAM works as a multiplication (signed and unsigned) with 2, 4,
8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4)
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to an

arithmetic multiplication by 8.

RLAM.A #3,R5 ; R5 = R5 x 8

Figure 5-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A

SLAU208–June 2008 CPUX 217
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSB 0

C 0

Instruction Set Description www.ti.com

* RLAX.A Rotate left arithmetically address-word
* RLAX.[W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte
Syntax RLAX.A dst

RLAX dst or RLAX.W dst
RLAX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADDX.A dst,dst

ADDX dst,dst

ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 5-45. The MSB
is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as
a signed multiplication by 2.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is multiplied by 2.

RLAX.A R7 ; Shift left R7 (20-bit)

Figure 5-45. Destination Operand-Arithmetic Shift Left

218 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

MSB 0

C

www.ti.com Instruction Set Description

* RLCX.A Rotate left through carry address-word
* RLCX.[W] Rotate left through carry word
* RLCX.B Rotate left through carry byte
Syntax RLCX.A dst

RLCX dst or RLCX.W dst
RLCX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDCX.A dst,dst

ADDCX dst,dst

ADDCX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 5-46. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ; (R5 x 2) + C -> R5

Example The RAM byte LEO is shifted left one position. PC is pointing to upper memory.

RLCX.B LEO ; RAM(LEO) x 2 + C -> RAM(LEO)

Figure 5-46. Destination Operand-Carry Left Shift

SLAU208–June 2008 CPUX 219
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

Instruction Set Description www.ti.com

RRAM.A Rotate right arithmetically the 20-bit CPU register content
RRAM.[W] Rotate right arithmetically the 16-bit CPU register content
Syntax RRAM.A #n,Rdst 1 ≤ n ≤ 4

RRAM.W #n,Rdst or RRAM #n,Rdst 1 ≤ n ≤ 4
Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one, two, three, or four bit

positions as shown in Figure 5-47. The MSB retains its value (sign). RRAM operates
equal to a signed division by 2/4/8/16. The MSB is retained and shifted into MSB-1. The
LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word
instruction RRAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5

Example The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) × R15.

PUSHM.A #1,R15 ; Save extended R15 on stack
RRAM.A #1,R15 ; R15 y 0.5 -> R15
ADDX.A @SP+,R15 ; R15 y 0.5 + R15 = 1.5 y R15 -> R15
RRAM.A #1,R15 ; (1.5 y R15) y 0.5 = 0.75 y R15 -> R15

Figure 5-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

220 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

RRAX.A Rotate right arithmetically the 20-bit operand
RRAX.[W] Rotate right arithmetically the 16-bit operand
RRAX.B Rotate right arithmetically the 8-bit operand
Syntax RRAX.A Rdst

RRAX.W Rdst

RRAX Rdst

RRAX.B Rdst

RRAX.A dst

RRAX dst or RRAX.W dst
RRAX.B dst

Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 5-48. The MSB retains its value (sign). The word instruction
RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits
Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX
here operates equal to a signed division by 2.
All other modes for the destination: the destination operand is shifted right arithmetically
by one bit position as shown in Figure 5-49. The MSB retains its value (sign), the LSB
is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All
addressing modes - with the exception of the Immediate Mode - are possible in the full
memory.

Status Bits N: Set if result is negative, reset if positive
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right four positions.

RPT #4
RRAX.A R5 ; R5/16 -> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.

SLAU208–June 2008 CPUX 221
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

819

0 0

19 16

0000

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

Instruction Set Description www.ti.com

RRAX.B &EDE ; EDE/2 -> EDE

Figure 5-48. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode

Figure 5-49. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode

222 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0

15

LSB

C

19 0

MSB LSB

16

www.ti.com Instruction Set Description

RRCM.A Rotate right through carry the 20-bit CPU register content
RRCM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRCM.A #n,Rdst 1 ≤ n ≤ 4

RRCM.W #n,Rdst or RRCM #n,Rdst 1 ≤ n ≤ 4
Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 5-50. The carry bit C is shifted into the MSB, the LSB is shifted into the
carry bit. The word instruction RRCM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The address-word in R5 is shifted right by three positions. The MSB-2 is loaded with 1.

SETC ; Prepare carry for MSB-2
RRCM.A #3,R5 ; R5 = R5 3 + 20000h

Example The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The
MSB–1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6 = R6 2. R6.19:16 = 0

Figure 5-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

SLAU208–June 2008 CPUX 223
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

RRCX.A Rotate right through carry the 20-bit operand
RRCX.[W] Rotate right through carry the 16-bit operand
RRCX.B Rotate right through carry the 8-bit operand
Syntax RRCX.A Rdst

RRCX.W Rdst

RRCX Rdst

RRCX.B Rdst

RRCX.A dst

RRCX dst or RRCX.W dst
RRCX.B dst

Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 5-51. The word instruction RRCX.W clears the bits
Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is
shifted into the MSB, the LSB is shifted into the carry bit.
All other modes for the destination: the destination operand is shifted right by one bit
position as shown in Figure 5-52. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. All addressing modes - with the exception of the Immediate
Mode - are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded

with 1.

SETC ; Prepare carry for MSB
RRCX.A EDE ; EDE = EDE 1 + 80000h

Example The word in R6 is shifted right by twelve positions.

CPUX224 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0 - 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

www.ti.com Instruction Set Description

RPT #12
RRCX.W R6 ; R6 = R6 12. R6.19:16 = 0

Figure 5-51. Rotate Right Through Carry RRCX(.B,.A) – Register Mode

Figure 5-52. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode

SLAU208–June 2008 CPUX 225
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

0

0

16

Instruction Set Description www.ti.com

RRUM.A Rotate right through carry the 20-bit CPU register content
RRUM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRUM.A #n,Rdst 1 ≤ n ≤ 4

RRUM.W #n,Rdst or RRUM #n,Rdst 1 ≤ n ≤ 4
Operation 0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 5-53. Zero is shifted into the MSB, the LSB is shifted into the carry bit.
RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W
clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 = R5 4. R5/16

Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15 = 0

Figure 5-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

226 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

C

19 0

MSB0 - 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

0

0

0

www.ti.com Instruction Set Description

RRUX.A Rotate right unsigned the 20-bit operand
RRUX.[W] Rotate right unsigned the 16-bit operand
RRUX.B Rotate right unsigned the 8-bit operand
Syntax RRUX.A Rdst

RRUX.W Rdst

RRUX Rdst

RRUX.B Rdst

Operation C=0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description RRUX is valid for register mode only: the destination operand is shifted right by one bit

position as shown in Figure 5-54. The word instruction RRUX.W clears the bits
Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into
the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The word in R6 is shifted right by twelve positions.

RPT #12
RRUX.W R6 ; R6 = R6 12. R6.19:16 = 0

Figure 5-54. Rotate Right Unsigned RRUX(.B,.A) – Register Mode

SLAU208–June 2008 CPUX 227
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* SBCX.A Subtract source and borrow/.NOT. carry from destination address-word
* SBCX.[W] Subtract source and borrow/.NOT. carry from destination word
* SBCX.B Subtract source and borrow/.NOT. carry from destination byte
Syntax SBCX.A dst

SBCX dst or SBCX.W dst
SBCX.B dst

Operation dst + 0FFFFFh + C → dst
dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SBCX.A #0,dst

SBCX #0,dst

SBCX.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by

R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

CPUX228 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

SUBX.A Subtract source address-word from destination address-word
SUBX.[W] Subtract source word from destination word
SUBX.B Subtract source byte from destination byte
Syntax SUBX.A src,dst

SUBX src,dst or SUBX.W src,dst
SUBX.B src,dst

Operation (.not. src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1's complement of the source + 1 to the destination. The source operand is not
affected. The result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label
TONI if R7 contains zero after the instruction. R5 is auto-incremented by 2. R7.19:16 =
0.

SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from the byte R12 points to in the full address space. Address of
CNT is within PC ± 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.

SUBX.A Rsrc,Rdst
SUBX.A #imm20,Rdst

SLAU208–June 2008 CPUX 229
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

SUBCX.A Subtract source address-word with carry from destination address-word
SUBCX.[W] Subtract source word with carry from destination word
SUBCX.B Subtract source byte with carry from destination byte
Syntax SUBCX.A src,dst

SUBCX src,dst or SUBCX.W src,dst
SUBCX.B src,dst

Operation (.not. src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1's complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from R5 with the carry from the previous

instruction.

SUBCX.A #87654h,R5 ; Subtract 87654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction
is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

CPUX230 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX.A

After SWPBX.A

X

X

19

19

16

16

15 8 7 0

Low ByteHigh Byte

Before SWPBX.A

After SWPBX.A

X

19 1631 20

X

15 8 7 0

High ByteLow Byte0

19 1631 20

X

www.ti.com Instruction Set Description

SWPBX.A Swap bytes of lower word
SWPBX.[W] Swap bytes of word
Syntax SWPBX.A dst

SWPBX dst or SWPBX.W dst
Operation dst.15:8 ↔ dst.7:0
Description Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used,

Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared.
Other Modes: When the .A extension is used, bits 31:20 of the destination address are
cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When
the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM address-word EDE.

MOVX.A #23456h,&EDE ; 23456h -> EDE
SWPBX.A EDE ; 25634h -> EDE

Example Exchange the bytes of R5.

MOVA #23456h,R5 ; 23456h -> R5
SWPBX.W R5 ; 05634h -> R5

Figure 5-55. Swap Bytes SWPBX.A Register Mode

Figure 5-56. Swap Bytes SWPBX.A In Memory

SLAU208–June 2008 CPUX 231
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

X

0

19

19

16

16

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

Instruction Set Description www.ti.com

Figure 5-57. Swap Bytes SWPBX[.W] Register Mode

Figure 5-58. Swap Bytes SWPBX[.W] In Memory

232 CPUX SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15 8 7 6 019 162031

0 0...... S

19 16

15 8 7 6 019 16

S

19 16

SXTX.A Rdst

SXTX.A dst

15 8 7 6 0

S

15 8 7 6 019 16

S

19 16

SXTX[.W] Rdst

SXTX[.W] dst

www.ti.com Instruction Set Description

SXTX.A Extend sign of lower byte to address-word
SXTX.[W] Extend sign of lower byte to word
Syntax SXTX.A dst

SXTX dst or SXTX.W dst
Operation dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register Mode)
Description Register Mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits

Rdst.19:8.
Other Modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.
SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20

located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE -> EDE+2/EDE

Figure 5-59. Sign Extend SXTX.A

Figure 5-60. Sign Extend SXTX[.W]

SLAU208–June 2008 CPUX 233
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* TSTX.A Test destination address-word
* TSTX.[W] Test destination word
* TSTX.B Test destination byte
Syntax TSTX.A dst

TSTX dst or TSTX.W dst
TSTX.B dst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPX.A #0,dst

CMPX #0,dst

CMPX.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at

LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO ; LEO is zero

LEOPOS ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

CPUX234 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

5.6.4 Address Instructions

www.ti.com Instruction Set Description

XORX.A Exclusive OR source address-word with destination address-word
XORX.[W] Exclusive OR source word with destination word
XORX.B Exclusive OR source byte with destination byte
Syntax XORX.A src,dst

XORX src,dst or XORX.W src,dst
XORX.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into

the destination. The source operand is not affected. The previous contents of the
destination are lost. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI

(20-bit address).

XORX.A TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 = 0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE
(20-bit address).

XORX.B EDE,R7 ; Set different bits to 1 in R7
INV.B R7 ; Invert low byte of R7. R7.19:8 = 0.

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction. Restricting the addressing modes removes the need for the additional
extension-word op-code improving code density and execution time. The MSP430X address instructions
are listed and described in the following pages.

SLAU208–June 2008 CPUX 235
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

ADDA Add 20-bit source to a 20-bit destination register
Syntax ADDA Rsrc,Rdst

ADDA #imm20,Rdst

Operation src + Rdst → Rdst
Description The 20-bit source operand is added to the 20-bit destination CPU register. The previous

contents of the destination are lost. The source operand is not affected.
Status Bits N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5
JC TONI ; Jump on carry
... ; No carry occurred

CPUX236 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* BRA Branch to destination
Syntax BRA dst

Operation dst → PC
Emulation MOVA dst,PC

Description An unconditional branch is taken to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The branch instruction is an
address-word instruction. If the destination address is contained in a memory location
X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate Mode: Branch to label EDE located anywhere in the 20-bit address space or
branch directly to address.

BRA #EDE ; MOVA #imm20,PC
BRA #01AA04h

Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and
EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within +32 K.
Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the following
instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute Mode: Branch to the 20-bit address contained in absolute addresses EXEC
(LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register Mode: Branch to the 20-bit address contained in register R5. Indirect R5.

BRA R5 ; MOVA R5,PC

Indirect Mode: Branch to the 20-bit address contained in the word pointed to by register
R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the words
pointed to by register R5 and increment the address in R5 afterwards by 4. The next
time the S/W flow uses R5 as a pointer, it can alter the program execution due to
access to the next address in the table pointed to by R5. Indirect, indirect R5.

SLAU208–June 2008 CPUX 237
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

Indexed Mode: Branch to the 20-bit address contained in the address pointed to by
register (R5 + X) (e.g., a table with addresses starting at X). (R5 + X) points to the
LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 + 32 K. Indirect,
indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5),PC

Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the following
instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

CPUX238 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

CALLA Call a subroutine
Syntax CALLA dst

Operation dst → tmp 20-bit dst is evaluated and stored
SP – 2 → SP
PC.19:16 → @SP updated PC with return address to TOS (MSBs)
SP – 2 → SP
PC.15:0 → @SP updated PC to TOS (LSBs)
tmp → PC saved 20-bit dst to PC

Description A subroutine call is made to a 20-bit address anywhere in the full address space. All
seven source addressing modes can be used. The call instruction is an address-word
instruction. If the destination address is contained in a memory location X, it is
contained in two ascending words: X (LSBs) and (X + 2) (MSBs). Two words on the
stack are needed for the return address. The return is made with the instruction RETA.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC ; Start address EXEC
CALLA #01AA04h ; Start address 01AA04h

Symbolic Mode: Call a subroutine at the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is
within +32 K. Indirect addressing.

CALLA EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 20-bit address contained in register R5. Indirect
R5.

CALLA R5 ; Start address at @R5

Indirect Mode: Call a subroutine at the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

CALLA @R5 ; Start address at @R5

Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address contained in the
words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4.
The next time the S/W flow uses R5 as a pointer, it can alter the program execution due
to access to the next word address in the table pointed to by R5. Indirect, indirect R5.

SLAU208–June 2008 CPUX 239
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the address pointed
to by register (R5 + X); e.g., a table with addresses starting at X. (R5 + X) points to the
LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5 +32 K.
Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @(R5+X). z16(R5)

CPUX240 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* CLRA Clear 20-bit destination register
Syntax CLRA Rdst

Operation 0 → Rdst
Emulation MOVA #0,Rdst

Description The destination register is cleared.
Status Bits Status bits are not affected.
Example The 20-bit value in R10 is cleared.

CLRA R10 ; 0 -> R10

SLAU208–June 2008 CPUX 241
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

CMPA Compare the 20-bit source with a 20-bit destination register
Syntax CMPA Rsrc,Rdst

CMPA #imm20,Rdst

Operation (.not. src) + 1 + Rdst or Rdst – src
Description The 20-bit source operand is subtracted from the 20-bit destination CPU register. This

is made by adding the 1's complement of the source + 1 to the destination register. The
result affects only the status bits.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit immediate operand and R6 are compared. If they are equal the program

continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h
JEQ EQUAL ; R5 = 12345h
... ; Not equal

Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to
R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 - R6)
JGE GRE ; R5 >= R6
... ; R5 < R6

CPUX242 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* DECDA Double-decrement 20-bit destination register
Syntax DECDA Rdst

Operation Rdst – 2 → Rdst
Emulation SUBA #2,Rdst

Description The destination register is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise
C: Reset if Rdst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is decremented by 2.

DECDA R5 ; Decrement R5 by two

SLAU208–June 2008 CPUX 243
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* INCDA Double-increment 20-bit destination register
Syntax INCDA Rdst

Operation Rdst + 2 → Rdst
Emulation ADDA #2,Rdst

Description The destination register is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 0FFFFEh, reset otherwise
Set if Rdst contained 0FFFEh, reset otherwise
Set if Rdst contained 0FEh, reset otherwise

C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise
Set if Rdst contained 0FEh or 0FFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is incremented by 2.

INCDA R5 ; Increment R5 by two

CPUX244 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

MOVA Move the 20-bit source to the 20-bit destination
Syntax MOVA Rsrc,Rdst

MOVA #imm20,Rdst

MOVA z16(Rsrc),Rdst

MOVA EDE,Rdst

MOVA &abs20,Rdst

MOVA @Rsrc,Rdst

MOVA @Rsrc+,Rdst

MOVA Rsrc,z16(Rdst)

MOVA Rsrc,&abs20

Operation src → Rdst
Rsrc → dst

Description The 20-bit source operand is moved to the 20-bit destination. The source operand is not
affected. The previous content of the destination is lost.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Copy 20-bit value in R9 to R8.

MOVA R9,R8 ; R9 -> R8

Write 20-bit immediate value 12345h to R12.
MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 +
100h) LSBs and (R9 + 102h) MSBs.

MOVA 100h(R9),R8 ; Index: + 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) to R12.

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC
index ± 32 K.

MOVA EDE,R12 ; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses
@R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four
afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs.

SLAU208–June 2008 CPUX 245
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand
in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs).

MOVA R13,&EDE ; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC
index ± 32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

CPUX246 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

* RETA Return from subroutine
Syntax RETA

Operation @SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP + 2 → SP
@SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP + 2 → SP

Emulation MOVA @SP+,PC

Description The 20-bit return address information, pushed onto the stack by a CALLA instruction, is
restored to the program counter PC. The program continues at the address following
the subroutine call. The status register bits SR.11:0 are not affected. This allows the
transfer of information with these bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR from anywhere in the 20-bit address space and return to the

address after the CALLA.

CALLA #SUBR ; Call subroutine starting at SUBR
... ; Return by RETA to here

SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)
... ; Subroutine code
POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)
RETA ; Return (to full address space)

SLAU208–June 2008 CPUX 247
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Instruction Set Description www.ti.com

* TSTA Test 20-bit destination register
Syntax TSTA Rdst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set according to the
result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is positive but

not zero, continue at R7POS.

TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

CPUX248 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Instruction Set Description

SUBA Subtract 20-bit source from 20-bit destination register
Syntax SUBA Rsrc,Rdst

SUBA #imm20,Rdst

Operation (.not.src) + 1 + Rdst → Rdst or Rdst – src → Rdst
Description The 20-bit source operand is subtracted from the 20-bit destination register. This is

made by adding the 1's complement of the source + 1 to the destination. The result is
written to the destination register, the source is not affected.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB (Rdst.19), reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at

label TONI.

SUBA R5,R6 ; R6 - R5 -> R6
JC TONI ; Carry occurred
... ; No carry

SLAU208–June 2008 CPUX 249
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

CPUX250 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 6
SLAU208–June 2008

Flash Memory Controller

This chapter describes the operation of the MSP430x5xx flash memory controller.

Topic .. Page

6.1 Flash Memory Introduction... 252
6.2 Flash Memory Segmentation .. 253
6.3 Flash Memory Operation .. 255
6.4 Flash Memory Registers... 269

SLAU208–June 2008 Flash Memory Controller 251
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.1 Flash Memory Introduction

MAB MDB

Control Registers Address/Data Latch

Timing
Generator

Programming
Voltage

Generator

Flash
Memory

Array

Flash Memory Introduction www.ti.com

The MSP430 flash memory is byte-, word- and long-word addressable and programmable. The flash
memory module has an integrated controller that controls programming and erase operations. The module
contains three registers, a timing generator, and a voltage generator to supply program and erase
voltages. The cumulative high-voltage time must not be exceeded and each word can be written not more
than twice before another erase cycle. See device specific datasheet for details.

The flash memory features include:
• Internal programming voltage generation
• Byte, Word (2 bytes), and Long (4 bytes) programmable
• Ultralow-power operation
• Segment erase, bank erase and mass erase
• Marginal 0 and marginal 1 read modes
• Each bank can be erased individually while program execution can proceed in a different flash bank.

The bank sizes are in the device-specific data sheet.

The block diagram of the flash memory and controller is shown in Figure 6-1.

Note: Minimum VCORE During Flash Write or Erase

The minimum VCORE voltage during a flash write or erase operation is 1.6 V. If VCORE falls
below 1.6 V during a write or erase, the result of the write or erase will be unpredictable.

Figure 6-1. Flash Memory Module Block Diagram

Flash Memory Controller252 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.2 Flash Memory Segmentation

64-kbyte
Flash Memory

Bank C

64-kbyte
Flash Memory

Bank D

64-kbyte
Flash Memory

Bank A

64-kbyte
Flash Memory

Bank B

512-byte
Bootloader Memory A

128-byte Information
Memory Segment B

128-byte Information
Memory Segment A

512-byte
Bootloader Memory B

128-byte Information
Memory Segment D

128-byte Information
Memory Segment C

512-byte
Bootloader Memory C

512-byte
Bootloader Memory D

Segment 0

Segment 0

Segment 0

Segment 1

Segment 2

Segment 125

Segment 126

Segment 127

Segment X

www.ti.com Flash Memory Segmentation

The MSP430 flash main memory is partitioned into segments. Each bank contains 512-byte segments.
Single bits, bytes or words can be written to flash memory, but a segment is the smallest size of the flash
memory that can be erased.

The flash memory is partitioned into main and information memory sections. There is no difference in the
operation of the main and information memory sections. Code and data can be located in either section.
The difference between the sections is the segment size.

There are four information memory segments, A through D. Each information memory segment contains
128 bytes and can be erased individually.

The bootstrap loader memory consists of four segments, A through D. Each bootstrap loader memory
segment contains 512 bytes and can be erased individually.

The main memory segment size is 512 byte. See the device-specific data sheet for the start and end
addresses of each bank and for the complete memory map of a device.

Figure 6-2 shows the flash segmentation using an example of 256-KB flash that has four banks of 64 KB,
the segments A through D, and the information memory.

Figure 6-2. Flash Memory Segments, 256-KB Example

SLAU208–June 2008 Flash Memory Controller 253
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.2.1 Segment A
Flash Memory Segmentation www.ti.com

Segment A of the information memory is locked separately from all other segments with the LOCKA bit. If
LOCKA = 1, segment A cannot be written or erased, and all information memory is protected from being
segment erased. If LOCKA = 0, segment A can be erased and written like any other flash memory
segment.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to LOCKA has no effect. This
allows existing flash programming routines to be used unchanged.
; Unlock Info Memory

BIC #FWKEY+LOCKINFO, &FCTL4 ; Clear LOCKINFO
; Unlock SegmentA

BIT #LOCKA,&FCTL3 ; Test LOCKA
JZ SEGA_UNLOCKED ; Already unlocked?
MOV #FWKEY+LOCKA,&FCTL3 ; No, unlock SegmentA

SEGA_UNLOCKED ; Yes, continue
; SegmentA is unlocked

; Lock SegmentA
BIT #LOCKA,&FCTL3 ; Test LOCKA
JNZ SEGALOCKED ; Already locked?
MOV #FWKEY+LOCKA,&FCTL3 ; No, lock SegmentA

SEGA_LOCKED ; Yes, continue
; SegmentA is locked
; Lock Info Memory

BIS #FWKEY+LOCKINFO,&FCTL4 ; Set LOCKINFO

Flash Memory Controller254 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.3 Flash Memory Operation

6.3.1 Erasing Flash Memory

www.ti.com Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash memory is not being erased
or written, the flash timing generator and voltage generator are off, and the memory operates identically to
ROM.

Read and Fetch While Erase – The flash memory allows to execute a program from flash while a
different flash bank is erased. Data reads are also possible from any flash bank not being erased.

Note: Read and Fetch While Erase

The read and fetch while erase feature is available in flash memory configurations where
more than one flash bank is available. If there is one flash bank available, holding the
complete flash program memory, the read from the program memory and information
memory and bootstrap-loader memory during the erase is not provided.

MSP430 flash memory is in-system programmable (ISP) without the need for additional external voltage.
The CPU can program the flash memory. The flash memory write/erase modes are selected by the
BLKWRT, WRT, MERAS, and ERASE bits and are:
• Byte/word/long-word (32-bit) write
• Block write
• Segment erase
• Bank erase (only main memory)
• Mass erase (all main memory banks)
• Read during bank erase (except for the one currently read from)

Reading or writing to flash memory while it is busy programming or erasing (page, mass or bank) from the
same bank is prohibited. Any flash erase or programming can be initiated from within flash memory or
RAM.

The logical value of an erased flash memory bit is 1. Each bit can be programmed from 1 to 0 individually
but to reprogram from 0 to 1 requires an erase cycle. The smallest amount of flash that can be erased is
one segment. There are three erase modes selected by the ERASE and MERAS bits listed in Table 6-1.

Table 6-1. Erase Modes
MERAS ERASE Erase Mode

0 1 Segment erase
1 0 Bank erase (of one bank) selected by the dummy write address
1 1 Mass erase (all memory banks, information memory A to D and bootstrap loader segments A to D are

not erased)

SLAU208–June 2008 Flash Memory Controller 255
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

BUSY

Erase Operation Active

Erase Time, Current Consumption is Increased

Generate
Programming Voltage

Remove
Programming Voltage

t = 23...32 msmass_erase,segment_erase

Erase Cycle www.ti.com

Erase Cycle
An erase cycle is initiated by a dummy write to the address range of the segment to be erased. The
dummy write starts the erase operation. Figure 6-3 shows the erase cycle timing. The BUSY bit is set
immediately after the dummy write and remains set throughout the erase cycle. BUSY, MERAS, and
ERASE are automatically cleared when the cycle completes. The mass erase cycle timing is not
dependent on the amount of flash memory present on a device. Erase cycle times are equivalent for all
MSP430F5xx devices.

Figure 6-3. Erase Cycle Timing

Erasing Main Memory
The main memory consists of one or more banks. Each bank can be erased individually (bank erase). All
main memory banks can be erased in the mass erase mode.

Erasing Information Memory or Flash Segments
The information memory A to D and the bootstrap loader segments A to D can be erased in segment
erase mode. They are not erased during a bank erase or a mass erase.

Flash Memory Controller256 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Yes
BUSY = 1

Disable watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK = 1, (Set LOCKINFO = 1)
reenable watchdog

www.ti.com Initiating Erase From Flash

Initiating Erase From Flash
An erase cycle can be initiated from within flash memory. Code can be executed from flash or RAM during
a bank erase. The executed code cannot be located in a bank to be erased.

During a segment erase, the CPU is held until the erase cycle completes. After the erase cycle ends, the
CPU resumes code execution with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase the code needed for
execution after the erase operation. If this occurs, CPU execution will be unpredictable after the erase
cycle.

The flow to initiate an erase from flash is shown in Figure 6-4.

Figure 6-4. Erase Cycle From Flash

; Segment Erase from flash.
; Assumes Program Memory. Information memory or BSL
; requires LOCKINFO to be cleared as well.
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable segment erase
CLR &0FC10h ; Dummy write

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

SLAU208–June 2008 Flash Memory Controller 257
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Yes
BUSY = 1

Yes
BUSY = 1

Disable watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK = 1, (Set LOCKINFO = 1)
Reenable watchdog

Initiating Erase From RAM www.ti.com

Initiating Erase From RAM
An erase cycle can be initiated from RAM. In this case, the CPU is not held and continues to execute
code from RAM. The mass erase (all main memory banks) operation is initiated while executing from
RAM. The BUSY bit is used to determine the end of the erase cycle. If the flash is busy completing a bank
erase, flash addresses of a different bank can be used to read data or to fetch instructions. While the flash
is BUSY, starting an erase cycle or a programming cycle causes an access violation, ACCIFG is set to 1,
and the result of the erase operation is unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 6-5.

Figure 6-5. Erase Cycle From RAM

; segment Erase from RAM.
; Assumes Program Memory. Information memory or BSL
; requires LOCKINFO to be cleared as well.
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable page erase
CLR &0FC10h ; Dummy write

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

Flash Memory Controller258 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.3.2 Writing Flash Memory

BUSY

Programming Operation Active

Programming Time, V Current Consumption is IncreasedCC

t = TDB (36) µsWord_Write

Generate
Programming Voltage

Remove
Programming Voltage

www.ti.com Byte/Word Write

The write modes, selected by the WRT and BLKWRT bits, are listed in Table 6-2.

Table 6-2. Write Modes
BLKWRT WRT Write Mode

0 1 Byte/word write
1 0 Long-word write
1 1 Long-word block write

The write modes use a sequence of individual write instructions. Using the long-word write mode is
approximately twice as fast as the byte/word mode. Using the long-word block write mode is
approximately four times faster than byte/word mode, because the voltage generator remains on for the
complete block write, and long-words are written in parallel. Any instruction that modifies a destination can
be used to modify a flash location in either byte/word write mode, long-word write mode, or block
long-word write mode.

The BUSY bit is set while the write operation is active and cleared when the operation completes. If the
write operation is initiated from RAM, the CPU must not access flash while BUSY is set to 1. Otherwise,
an access violation occurs, ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write
A byte/word write operation can be initiated from within flash memory or from RAM. When initiating from
within flash memory the CPU is held while the write completes. After the write completes, the CPU
resumes code execution with the instruction following the write access. The byte/word write timing is
shown in Figure 6-6.

Figure 6-6. Byte/Word/Long-Word Write Timing

When a byte/word write is executed from RAM, the CPU continues to execute code from RAM. The BUSY
bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is
set, and the write result is unpredictable.

In byte/word write mode, the internally-generated programming voltage is applied to the complete
128-byte block. The cumulative programming time, tCPT, must not be exceeded for any block. Each byte or
word write adds to the cumulative program time of a segment. If the maximum cumulative program time is
reached or exceeded the segment must be erased. Further programming or using the data returns
unpredictable results. See the device-specific data sheet for specifications.

SLAU208–June 2008 Flash Memory Controller 259
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Setup flash controller
and set WRT = 1

Disable watchdog

Set WRT = 0, LOCK = 1,
reenable watchdog

Write byte or word

Initiating Byte/Word Write From Flash www.ti.com

Initiating Byte/Word Write From Flash
The flow to initiate a byte/word write from flash is shown in Figure 6-7.

Figure 6-7. Initiating a Byte/Word Write From Flash

; Byte/word write from flash.
; Assumes 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Eh ; 0123h -> 0x0FF1E
MOV #FWKEY,&FCTL1 ; Done. Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

Flash Memory Controller260 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Yes
BUSY = 1

Yes
BUSY = 1

Disable watchdog

Setup flash controller
and set WRT = 1

Write byte or word

Set WRT = 0, LOCK = 1,
Reenable watchdog

www.ti.com Initiating Byte/Word Write From RAM

Initiating Byte/Word Write From RAM
The flow to initiate a byte/word write from RAM is shown in Figure 6-8.

Figure 6-8. Initiating a Byte/Word Write From RAM

; Byte/word write from RAM.
; Assumes 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Eh ; 0123h -> 0x0FF1E

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY,&FCTL1 ; Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

SLAU208–June 2008 Flash Memory Controller 261
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Setup flash controller
and set BLKWRT = 1

Disable watchdog

Set BLKWRT = 0, LOCK = 1,
Reenable watchdog

Write 4 bytes or 2 words

Long-Word Write www.ti.com

Long-Word Write
A long-word write operation can be initiated from within flash memory or from RAM. The BUSY bit is set to
1 after 32 bits are written to the flash controller and the programming cycle starts. When initiating from
within flash memory, the CPU is held while the write completes. After the write completes, the CPU
resumes code execution with the instruction following the write access. The long-word write timing is
shown in Figure 6-6.

A long-word consists of four consecutive bytes aligned to at 32-bit address (only the lower two address
bits are different). The bytes can be written in any order or any combination of bytes and words. If a byte
or word is written more than once, the last data written to the four bytes are stored into the flash memory.

If a write to a flash address outside of the 32-bit address happens before all four bytes are available, the
data written so far is discarded, and the latest byte/word written defines the new 32-bit aligned address.

When 32 bits are available, the write cycle is executed. When executing from RAM, the CPU continues to
execute code. The BUSY bit must be zero before the CPU accesses flash again, otherwise an access
violation occurs, ACCVIFG is set, and the write result is unpredictable.

In long-word write mode, the internally-generated programming voltage is applied to a complete 128-byte
block. The cumulative programming time, tCPT, must not be exceeded for any block. Each byte or word
write adds to the cumulative program time of a segment. If the maximum cumulative program time is
reached or exceeded the segment must be erased. Further programming or using the data returns
unpredictable results.

With each byte or word write, the amount of time the block is subjected to the programming voltage
accumulates. If the cumulative programming time is reached or exceeded, the block must be erased
before further programming or use. See the device-specific data sheet for specifications.

Initiating Long-Word Write From Flash
The flow to initiate a long-word write from flash is shown in Figure 6-9.

Figure 6-9. Initiating Long-Word Write From Flash

; Long-word write from flash.
; Assumes 0x0FF1C and 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT,&FCTL1 ; Enable 2-word write
MOV #0123h,&0FF1Ch ; 0123h -> 0x0FF1C
MOV #45676h,&0FF1Eh ; 04567h -> 0x0FF1E
MOV #FWKEY,&FCTL1 ; Done. Clear BLKWRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

Flash Memory Controller262 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Yes
BUSY = 1

Yes
BUSY = 1

Disable watchdog

Setup flash controller
and set BLKWRT = 1

Write 4 bytes or 2 words

Set BLKWRT=0, LOCK = 1,
Reenable watchdog

www.ti.com Initiating Long-Word Write From RAM

Initiating Long-Word Write From RAM
The flow to initiate a long-word write from RAM is shown in Figure 6-10.

Figure 6-10. Initiating Long-Word Write from RAM

; Two 16-bit word writes from RAM.
; Assumes 0x0FF1C and 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Ch ; 0123h -> 0x0FF1C
MOV #4567h,&0FF1Eh ; 4567h -> 0x0FF1E

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY,&FCTL1 ; Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

SLAU208–June 2008 Flash Memory Controller 263
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

BUSY

WAIT

t = TBDBlock,0

Write to Flash; e.g., #0123h, &Flash

MOV #4567h, &Flash1

MOV

BLKWRT bit

t = TBDBlock,1–127 t = TBDBlock,1–127 t = TBDEnd

Generate
Programming Voltage

Programming Operation Active Remove
Programming Voltage

Cumulative Programming Time t 10 ms, V Current Consumption is IncreasedCPT CC£

Block Write www.ti.com

Block Write
The block write can be used to accelerate the flash write process when many sequential bytes or words
need to be programmed. The flash programming voltage remains on for the duration of writing the
128-byte row. The cumulative programming time tCPT must not be exceeded for any row during a block
write.

A block write cannot be initiated from within flash memory. The block write must be initiated from RAM.
The BUSY bit remains set throughout the duration of the block write. The WAIT bit must be checked
between writing four bytes, or two words to the block. When WAIT is set, then four bytes, or two 16-bit
words of the block can be written. When writing successive blocks, the BLKWRT bit must be cleared after
the current block is completed. BLKWRT can be set initiating the next block write after the required flash
recovery time given by tEND. BUSY is cleared following each block write completion, indicating the next
block can be written. Figure 6-11 shows the block write timing.

Figure 6-11. Block-Write Cycle Timing

Flash Memory Controller264 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Yes
BUSY = 1

Disable watchdog

Setup flash controller

Set BLKWRT = WRT = 1

Write 4 bytes or 2 words

No
Block Border?

Yes
WAIT = 0?

Yes
BUSY = 1

Set BLKWRT=0

Yes Another
Block?

Set WRT = 0, LOCK = 1,
Reenable WDT

www.ti.com Block Write Flow and Example

Block Write Flow and Example
A block write flow is shown in Figure 6-12 and the following code example.

Figure 6-12. Block Write Flow

SLAU208–June 2008 Flash Memory Controller 265
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.3.3 Flash Memory Access During Write or Erase

Block Write Flow and Example www.ti.com

; Write one block starting at 0F000h.
; Must be executed from RAM, Assumes Flash is already erased.
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #32,R5 ; Use as write counter
MOV #0F000h,R6 ; Write pointer
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

L1 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT+WRT,&FCTL1 ; Enable block write

L2 MOV Write_Value1,0(R6) ; Write 1st location
MOV Write_Value2,2(R6) ; Write 2nd word

L3 BIT #WAIT,&FCTL3 ; Test WAIT
JZ L3 ; Loop while WAIT=0
INCD R6 ; Point to next words
INCD R6 ; Point to next words
DEC R5 ; Decrement write counter
JNZ L2 ; End of block?
MOV #FWKEY,&FCTL1 ; Clear WRT, BLKWRT

L4 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L4 ; Loop while busy
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT if needed

When a write or an erase operation is initiated from RAM while BUSY = 1, the CPU may not write to any
flash location. Otherwise, an access violation occurs, ACCVIFG is set, and the result is unpredictable.

When a write operation is initiated from within flash memory, the CPU continues code execution with the
next instruction fetch after the write cycle completed (BUSY = 0).

The op-code 3FFFh is the JMP PC instruction. This causes the CPU to loop until the flash operation is
finished. When the operation is finished and BUSY = 0, the flash controller allows the CPU to fetch the
op-code and program execution resumes.

The flash access conditions while BUSY = 1 are listed in Table 6-3.

Table 6-3. Flash Access While the Flash is busy (BUSY = 1)
Flash Operation Flash Access WAIT Result

Read 0 From the erased bank: ACCVIFG = 0. 03FFFh is the value read.
From any other flash location: ACCVIFG = 0. Valid read.

Write 0 ACCVIFG = 1. Write is ignored.Bank erase
Instruction fetch 0 From the erased bank: ACCVIFG = 0. CPU fetches 03FFFh. This is the

JMP PC instruction.
From any other flash location: ACCVIFG = 0. Valid instruction fetch.

Read 0 ACCVIFG = 0. 03FFFh is the value read.
Segment erase Write 0 ACCVIFG = 1. Write is ignored.

Instruction fetch 0 ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction.
Read 0 ACCVIFG = 0. 03FFFh is the value read.

Word/byte write or Write 0 ACCVIFG = 1. Write is ignored.long-word write
Instruction fetch 0 ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction.

Any 0 ACCVIFG = 1, LOCK = 1, block write is exited.
Read 1 ACCVIFG = 0: 03FFFh is the value read.

Block write
Write 1 ACCVIFG = 0, Valid write.

Instruction fetch 1 ACCVIFG = 1, LOCK = 1, block write is exited.

266 Flash Memory Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.3.4 Stopping Write or Erase Cycle

6.3.5 Checking Flash memory

6.3.6 Configuring and Accessing the Flash Memory Controller

6.3.7 Flash Memory Controller Interrupts

6.3.8 Programming Flash Memory Devices

www.ti.com Block Write Flow and Example

Interrupts are automatically disabled during any flash operation.

The watchdog timer (in watchdog mode) should be disabled before a flash erase cycle. A reset will abort
the erase and the result will be unpredictable. After the erase cycle has completed, the watchdog may be
reenabled.

Any write or erase operation can be stopped before its normal completion by setting the emergency exit
bit EMEX. Setting the EMEX bit stops the active operation immediately and stops the flash controller. All
flash operations cease, the flash returns to read mode, and all bits in the FCTL1 register are reset. The
LOCK bit of FCTL3 is set. The result of the intended operation is unpredictable.

The result of a programming cycle of the flash memory can be checked by calculating and storing a
checksum (CRC) of parts and/or the complete flash memory content. The CRC module can be used for
this purpose (see the device-specific data sheet). During the runtime of the system, the known checksums
can be recalculated and compared with the expected values stored in the flash memory. The program
checking the flash memory content is executed in RAM. To get an early indication of weak memory cells,
reading the flash can be done in combination with the device-specific marginal read modes. The marginal
read modes are controlled by the FCTL4.MRG0 and FCTL4.MRG1 register bits if available (device
specific).

The FCTLx registers are 16-bit password-protected read/write registers. Any read or write access must
use word instructions, and write accesses must include the write password 0A5h in the upper byte. Any
write to any FCTLx register with a value other than 0A5h in the upper byte is a security key violation, sets
the KEYV flag, and triggers a PUC system reset. Any read of any FCTLx registers reads 096h in the
upper byte.

Any write to FCTL1 during an erase or byte/word/double-word write operation is an access violation and
sets ACCVIFG. Writing to FCTL1 is allowed in block write mode when WAIT = 1, but writing to FCTL1 in
block write mode when WAIT = 0 is an access violation and sets ACCVIFG.

Any write to FCTL2 (this register is currently not implemented) when BUSY = 1 is an access violation.

Any FCTLx register may be read when BUSY = 1. A read does not cause an access violation.

The flash controller has two interrupt sources, KEYV and ACCVIFG. ACCVIFG is set when an access
violation occurs. When the ACCVIE bit is reenabled after a flash write or erase, a set ACCVIFG flag
generates an interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not necessary for GIE
to be set for ACCVIFG to request an interrupt. ACCVIFG may also be checked by software to determine if
an access violation occurred. ACCVIFG must be reset by software.

The key violation flag, KEYV, is set when any of the flash control registers are written with an incorrect
password. When this occurs, a PUC is generated immediately, resetting the device.

There are three options for programming an MSP430 flash device. All options support in-system
programming:
• Program via JTAG
• Program via the bootstrap loader
• Program via a custom solution

SLAU208–June 2008 Flash Memory Controller 267
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Host

Flash memory

UAR

Px.x,

etc.

T

SPI,

,

CPU executes

user software

Commands, data, etc.

Read/write flash memory

MSP430

Programming Flash Memory via JTAG www.ti.com

Programming Flash Memory via JTAG
MSP430 devices can be programmed via the JTAG port. The JTAG interface requires four signals (5
signals on 20- and 28-pin devices), ground and optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables the JTAG port and is not
reversible. Further access to the device via JTAG is not possible For more details see the application
report Programming a Flash-Based MSP430 Using the JTAG Interface at www.ti.com/msp430.

Programming Flash Memory via Bootstrap Loader (BSL)
Every MSP430 flash device contains a bootstrap loader. The BSL enables users to read or program the
flash memory or RAM using a UART serial interface. Access to the MSP430 flash memory via the BSL is
protected by a 256-bit user-defined password. For more details, see the application report Features of the
MSP430 Bootstrap Loader at www.ti.com/msp430.

Programming Flash Memory via Custom Solution
The ability of the MSP430 CPU to write to its own flash memory allows for in-system and external custom
programming solutions as shown in Figure 6-13. The user can choose to provide data to the MSP430
through any means available (UART, SPI, etc.). User-developed software can receive the data and
program the flash memory. Since this type of solution is developed by the user, it can be completely
customized to fit the application needs for programming, erasing, or updating the flash memory.

Figure 6-13. User-Developed Programming Solution

Flash Memory Controller268 SLAU208–June 2008
Submit Documentation Feedback

http://www.ti.com/msp430
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

6.4 Flash Memory Registers
www.ti.com Flash Memory Registers

The flash memory registers are listed in Table 6-4. The base address can be found in the device-specific
data sheet. The address offset is given in Table 6-4.

Table 6-4. Flash Controller Registers
Register Short Form Register Type Address Initial State
Flash memory control register 1 FCTL1 Read/write 0000h 9600h
Flash memory control register 3 FCTL3 Read/write 0004h 9658h
Flash memory control register 4 FCTL4 Read/write 0006h 9600h
Interrupt Enable 1 IE1 Read/write 000Ah 0000h
Interrupt Flag 1 IFG1 Read/write 000Ch 0000h

SLAU208–June 2008 Flash Memory Controller 269
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Flash Memory Registers www.ti.com

FCTL1, Flash Memory Control Register 1

15 14 13 12 11 10 9 8
FRKEY, Read as 096h

FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT SWRT Reserved Reserved MERAS ERASE Reserved
rw-0 rw-0 rw-0 r-0 r-0 rw-0 rw-0 r-0

FRKEY/FWKEY Bits 15–8 FCTL password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.
BLKWRT Bit 7 See following table.
WRT Bit 6 See following table.

BLKWRT WRT Write Mode
0 1 Byte/word write
1 0 Long-word write
1 1 Long-word block write

SWRT Bit 5 Smart write. If this bit is set the program time is shortened. The programming quality has to be
checked by marginal read modes.

Reserved Bits 4-3 Reserved. Must be written to 0. Always read 0.
MERAS Bit 2 Mass erase and erase. These bits are used together to select the erase mode. MERAS and

ERASE are automatically reset when EMEX is set.ERASE Bit 1

MERAS ERASE Erase Cycle
0 0 No erase
0 1 Segment erase
1 0 Bank erase (of one bank)
1 1 Mass erase (Erase all flash memory banks)

Reserved Bit 0 Reserved. Always read 0.

270 Flash Memory Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Flash Memory Registers

FCTL3, Flash Memory Control Register 3

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

Reserved LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY
r-0 rw-1 rw-0 rw-1 r-1 rw-0 rw-(0) rw-0

FWKEYx Bits 15–8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.
Reserved Bit 7 Reserved. Always read 0.
LOCKA Bit 6 Segment A lock. Write a 1 to this bit to change its state. Writing 0 has no effect.

0 Segment A, B, C, D are unlocked. and are erased during a mass erase.
1 Segment A of the information memory is write protected. Segment B, C, and D are

protected from all erase.
EMEX Bit 5 Emergency exit. Setting this bit stops any erase or write operation. The LOCK bit is set.

0 No emergency exit
1 Emergency exit

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit can be set anytime
during a byte/word write or erase operation and the operation will complete normally. In the block
write mode if the LOCK bit is set while BLKWRT = WAIT = 1, then BLKWRT and WAIT are reset and
the mode ends normally.
0 Unlocked
1 Locked

WAIT Bit 3 Wait. Indicates the flash memory is being written to.
0 The flash memory is not ready for the next byte/word write.
1 The flash memory is ready for the next byte/word write.

ACCVIFG Bit 2 Access violation interrupt flag
0 No interrupt pending
1 Interrupt pending

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password was written to any flash
control register and generates a PUC when set. KEYV must be reset with software.
0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates if the flash is currently busy erasing or programming.
0 Not busy
1 Busy

SLAU208–June 2008 Flash Memory Controller 271
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Flash Memory Registers www.ti.com

FCTL4, Flash Memory Control Register 4

15 14 13 12 11 10 9 8
FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

LOCKINFO Reserved MRG1 MRG0 Reserved VPE
rw-0 r-0 rw-0 rw-0 r-0 r-0 r-0 rw-0

FWKEYx Bits 15–8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.
LOCKINFO Bit 7 Lock information memory. If set the information memory cannot be erased in segment erase mode

and cannot be written to.
Reserved Bit 6 Reserved. Always read as 0.
MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The marginal read 1 bit is valid for

reads from the flash memory only. During a fetch cycle the marginal mode is turned off automatically.
If both MRG1 and MRG0 are set MRG1 is active and MRG0 is ignored.
0 Marginal 1 read mode is disabled.
1 Marginal 1 read mode is enabled.

MRG0 Bit 4 Marginal read 0 mode. This bit enables the marginal 0 read mode. The marginal read 1 bit is valid for
reads from the flash memory only. During a fetch cycle the marginal mode is turned off automatically.
If both MRG1 and MRG0 are set MRG1 is active and MRG0 is ignored.
0 Marginal 0 read mode is disabled.
1 Marginal 0 read mode is enabled.

Reserved Bit 3–1 Reserved. Always read as 0.
VPE Bit 0 Voltage changed during program error. This bit is set by hardware and can only be cleared by

software. If DVCC changed significantly during programming, this bit is set to indicate an invalid
result. The ACCVIFG bit is set if VPE is set.

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
ACCVIE

rw-0

Bits 7–6, 4–0 These bits may be used by other modules. See the device-specific data sheet.
ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the ACCVIFG interrupt. Because other

bits in IE1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or
BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

Flash Memory Controller272 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 7
SLAU208–June 2008

Digital I/O

This chapter describes the operation of the digital I/O ports. The digital I/O ports are implemented in all
MSP430x5xx devices.

Topic .. Page

7.1 Digital I/O Introduction ... 274
7.2 Digital I/O Operation .. 275
7.3 Digital I/O Registers... 279

SLAU208–June 2008 Digital I/O 273
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

7.1 Digital I/O Introduction

Digital I/O Introduction www.ti.com

MSP430x5xx devices may have up to 12 digital I/O ports implemented, P1 to P11 and PJ. Most ports
have eight I/O pins, however some ports may contain less. See the device-specific data sheet for ports
available. Each I/O pin is individually configurable for input or output direction, and each I/O line can be
individually read or written to. All ports have individually configurable pullup or pulldown resistors, as well
as, configurable drive strength.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be
individually enabled and configured to provide an interrupt on a rising edge or falling edge of an input
signal. All P1 I/O lines source a single interrupt vector P1IV, and all P2 I/O lines source a different, single
interrupt vector P2IV. On some MSP430x5xx devices, additional ports with interrupt capability may be
available. Please refer to the device specific datasheet for details.

Individual ports can be accessed as byte wide ports or can be combined into word wide ports and
accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc. are associated with the names
PA, PB, PC, PD, etc., respectively. When writing to port PA with word operations, all 16 bits are written to
the port. Writing to the lower byte of the PA port using byte operations, the upper byte remains
unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the lower byte
unchanged. Similarly for other ports. Writing to a port that contains less than the maximum number of bits
possible, the unused bits are a "do not care". All port registers are handled in this manner with this naming
convention except for the interrupt vector registers, P1IV and P2IV. These are word accessible only, and
PAIV does not exist.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination.
Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte operations
causes only the lower or upper byte to be transferred to the destination, respectively. Reading of the PA
port and storing to a general purpose register using byte operations causes the byte transferred to be
written to the least significant byte of the register. The upper significant byte of the destination register will
be cleared automatically. Ports PB, PC, PD, and PE behave similarly. When reading from ports that
contain less than the maximum bits possible, unused bits are read as zeros. Similarly, for Port PJ.

The digital I/O features include:
• Independently programmable individual I/Os
• Any combination of input or output
• Individually configurable P1 and P2 interrupts
• Independent input and output data registers
• Individually configurable pullup or pulldown resistors

Digital I/O274 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

7.2 Digital I/O Operation

7.2.1 Input Register PxIN

7.2.2 Output Registers PxOUT

7.2.3 Direction Registers PxDIR

7.2.4 Pullup/Pulldown Resistor Enable Registers PxREN

www.ti.com Digital I/O Operation

The digital I/O is configured with user software. The setup and operation of the digital I/O is discussed in
the following sections.

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function. These registers are read only.
• Bit = 0: The input is low
• Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption while the write
attempt is active.

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is
configured as I/O function, output direction.
• Bit = 0: The output is low
• Bit = 1: The output is high

If the pin is configured as I/O function, input direction and the pullup/pulldown resistor is enabled, the
corresponding bit in the PxOUT register selects pullup or pulldown.
• Bit = 0: The pin is pulled down
• Bit = 1: The pin is pulled up

Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the
selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as
required by the other function.
• Bit = 0: Port pin is switched to input direction
• Bit = 1: Port pin is switched to output direction

Each bit in each PxREN register enables or disables the pullup/pulldown resistor of the corresponding I/O
pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.
• Bit = 0: Pullup/pulldown resistor disabled
• Bit = 1: Pullup/pulldown resistor enabled

Table 7-1 summarizes the usage of PxDIRx, PxRENx, and PxOUTx for proper I/O configuration.

Table 7-1. I/O Configuration
PxDIRx PxRENx PxOUTx I/O Configuration

0 0 x Input
0 1 0 Input with pulldown resistor
0 1 1 Input with pullup resistor
1 x x Output

SLAU208–June 2008 Digital I/O 275
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

7.2.5 Output Drive Strength Registers PxDS

7.2.6 Function Select Registers PxSEL

7.2.7 P1 and P2 Interrupts

Digital I/O Operation www.ti.com

Each bit in each PxDS register selects either full drive or reduced drive strength. Default is reduced drive
strength.
• Bit = 0: Reduced drive strength
• Bit = 1: Full drive strength

Note: Drive Strength and EMI

All outputs default to reduced drive strength to reduce EMI. Using full drive strength can
result in increased EMI.

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet
to determine pin functions. Each PxSELx bit is used to select the pin function - I/O port or peripheral
module function.
• Bit = 0: I/O Function is selected for the pin
• Bit = 1: Peripheral module function is selected for the pin

Setting PxSELx = 1 does not automatically set the pin direction. Other peripheral module functions may
require the PxDIRx bits to be configured according to the direction needed for the module function. See
the pin schematics in the device-specific datasheet.

Note: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any PxSEL bit is set, the corresponding pin’s interrupt function is disabled. Therefore,
signals on these pins will not generate P1 or P2 interrupts, regardless of the state of the
corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the peripheral is a latched
representation of the signal at the device pin. While PxSELx=1, the internal input signal follows the signal
at the pin. However, if the PxSELx=0, the input to the peripheral maintains the value of the input signal at
the device pin before the PxSELx bit was reset.

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES
registers. All P1 interrupt flags are prioritized, with P1IFG.0 being the highest, and combined to source a
single interrupt vector. The highest priority enabled interrupt generates a number in the P1IV register. This
number can be evaluated or added to the program counter to automatically enter the appropriate software
routine. Disabled P1 interrupts do not affect the P1IV value. The same functionality exists for P2. The PxIV
registers are word access only.

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal
edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit
and the GIE bit are set. Software can also set each PxIFG flag, providing a way to generate a software
initiated interrupt.
• Bit = 0: No interrupt is pending
• Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt
service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set
PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

276 Digital I/O SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com P1IV, P2IV Software Example

Note: PxIFG Flags When Changing PxOUT, PxDIR, or PxREN

Writing to P1OUT, P1DIR, P1REN, P2OUT, P2DIR, or P2REN can result in setting the
corresponding P1IFG or P2IFG flags.

Any access, read or write, of the P1IV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that P1IFG.0 has the highest priority. If the P1IFG.0 and P1IFG.2 flags are set when
the interrupt service routine accesses the P1IV register, P1IFG.0 is reset automatically. After the RETI
instruction of the interrupt service routine is executed, the P1IFG.2 will generate another interrupt.

Port P2 interrupts behave similarly, and source a separate single interrupt vector and utilizes the P2IV
register.

P1IV, P2IV Software Example
The following software example shows the recommended use of P1IV and the handling overhead. The
P1IV value is added to the PC to automatically jump to the appropriate routine. The P2IV is similar.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

;Interrupt handler for P1IFGx Cycles
P1_HND ... ; Interrupt latency 6

ADD &P1IV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP P1_0_HND ; Vector 2: Port 1 bit 0 2
JMP P1_1_HND ; Vector 4: Port 1 bit 1 2
JMP P1_2_HND ; Vector 6: Port 1 bit 2 2
JMP P1_3_HND ; Vector 8: Port 1 bit 3 2
JMP P1_4_HND ; Vector 10: Port 1 bit 4 2
JMP P1_5_HND ; Vector 12: Port 1 bit 5 2
JMP P1_6_HND ; Vector 14: Port 1 bit 6 2
JMP P1_7_HND ; Vector 16: Port 1 bit 7 2

P1_7_HND ; Vector 16: Port 1 bit 7
... ; Task starts here
RETI ; Back to main program 5

P1_6_HND ; Vector 14: Port 1 bit 6
... ; Task starts here
RETI ; Back to main program 5

P1_5_HND ; Vector 12: Port 1 bit 5
... ; Task starts here
RETI ; Back to main program 5

P1_4_HND ; Vector 10: Port 1 bit 4
... ; Task starts here
RETI ; Back to main program 5

P1_3_HND ; Vector 8: Port 1 bit 3
... ; Task starts here
RETI ; Back to main program 5

P1_2_HND ; Vector 6: Port 1 bit 2
... ; Task starts here
RETI ; Back to main program 5

P1_1_HND ; Vector 4: Port 1 bit 1
... ; Task starts here
RETI ; Back to main program 5

P1_0_HND ; Vector 2: Port 1 bit 0
... ; Task starts here
RETI ; Back to main program 5

SLAU208–June 2008 Digital I/O 277
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

7.2.8 Configuring Unused Port Pins

Interrupt Edge Select Registers P1IES, P2IES www.ti.com

Interrupt Edge Select Registers P1IES, P2IES
Each PxIES bit selects the interrupt edge for the corresponding I/O pin.
• Bit = 0: The PxIFGx flag is set with a low-to-high transition
• Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx

Writing to P1IES or P2IES can result in setting the corresponding interrupt flags.

PxIESx PxINx PxIFGx
0 → 1 0 May be set
0 → 1 1 Unchanged
1 → 0 0 Unchanged
1 → 0 1 May be set

Interrupt Enable P1IE, P2IE
Each PxIE bit enables the associated PxIFG interrupt flag.
• Bit = 0: The interrupt is disabled
• Bit = 1: The interrupt is enabled

Unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PC
board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is don't
care, since the pin is unconnected. Alternatively, the integrated pullup/pulldown resistor can be enabled by
setting the PxREN bit of the unused pin to prevent the floating input. See chapter System Resets,
Interrupts, and Operating Modes for termination of unused pins.

Note: Configuring Port J and Shared JTAG pins:

It is important to remember in the application to take special precautions to ensure that the
Port J is configured properly to prevent any floating input. Since Port PJ is shared with the
JTAG function, floating inputs may not be noticed when in an emulation environment . Port J
is initialized to high impedance inputs by default.

Digital I/O278 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

7.3 Digital I/O Registers
www.ti.com Digital I/O Registers

The digital I/O registers are listed in Table 7-2. The base addresses can be found in the device specific
datasheet Each port grouping begins at its base address. The address offsets are given in Table 7-2.

Table 7-2. Digital I/O Registers
AddressPort Register Short Form Register Type Initial StateOffset

P1 P1 Interrupt Vector P1IV 0Eh Read only 0000h
P2 P2 Interrupt Vector P2IV 1Eh Read only 0000h
P1 Input P1IN 00h Read only

Output P1OUT 02h Read/write Unchanged
Direction P1DIR 04h Read/write 00h
Resistor Enable P1REN 06h Read/write 00h
Output drive strength P1DS 08h Read/write 00h
Port Select P1SEL 0Ah Read/write 00h
Interrupt Edge Select P1IES 18h Read/write Unchanged
Interrupt Enable P1IE 1Ah Read/write 00h
Interrupt Flag P1IFG 1Ch Read/write 00h

P2 Input P2IN 01h Read only
Output P2OUT 03h Read/write Unchanged
Direction P2DIR 05h Read/write 00h
Resistor Enable P2REN 07h Read/write 00h
Output drive strength P2DS 09h Read/write 00h
Port Select P2SEL 0Bh Read/write 00h
Interrupt Edge Select P2IES 19h Read/write Unchanged
Interrupt Enable P2IE 1Bh Read/write 00h
Interrupt Flag P2IFG 1Dh Read/write 00h

P3 Input P3IN 00h Read only
Output P3OUT 02h Read/write Unchanged
Direction P3DIR 04h Read/write 00h
Resistor Enable P3REN 06h Read/write 00h
Output drive strength P3DS 08h Read/write 00h
Port Select P3SEL 0Ah Read/write 00h

P4 Input P4IN 01h Read only
Output P4OUT 03h Read/write Unchanged
Direction P4DIR 05h Read/write 00h
Resistor Enable P4REN 07h Read/write 00h
Output drive strength P4DS 09h Read/write 00h
Port Select P4SEL 0Bh Read/write 00h

P5 Input P5IN 00h Read only
Output P5OUT 02h Read/write Unchanged
Direction P5DIR 04h Read/write 00h
Resistor Enable P5REN 06h Read/write 00h
Output drive strength P5DS 08h Read/write 00h
Port Select P5SEL 0Ah Read/write 00h

SLAU208–June 2008 Digital I/O 279
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Digital I/O Registers www.ti.com

Table 7-2. Digital I/O Registers (continued)
AddressPort Register Short Form Register Type Initial StateOffset

P6 Input P6IN 01h Read only
Output P6OUT 03h Read/write Unchanged
Direction P6DIR 05h Read/write 00h
Resistor Enable P6REN 07h Read/write 00h
Output drive strength P6DS 09h Read/write 00h
Port Select P6SEL 0Bh Read/write 00h

P7 Input P7IN 00h Read only
Output P7OUT 02h Read/write Unchanged
Direction P7DIR 04h Read/write 00h
Resistor Enable P7REN 06h Read/write 00h
Output drive strength P7DS 08h Read/write 00h
Port Select P7SEL 0Ah Read/write 00h

P8 Input P8IN 01h Read only
Output P8OUT 03h Read/write Unchanged
Direction P8DIR 05h Read/write 00h
Resistor Enable P8REN 07h Read/write 00h
Output drive strength P8DS 09h Read/write 00h
Port Select P8SEL 0Bh Read/write 00h

P9 Input P9IN 00h Read only
Output P9OUT 02h Read/write Unchanged
Direction P9DIR 04h Read/write 00h
Resistor Enable P9REN 06h Read/write 00h
Output drive strength P9DS 08h Read/write 00h
Port Select P9SEL 0Ah Read/write 00h

P10 Input P10IN 01h Read only
Output P10OUT 03h Read/write Unchanged
Direction P10DIR 05h Read/write 00h
Resistor Enable P10REN 07h Read/write 00h
Output drive strength P10DS 09h Read/write 00h
Port Select P10SEL 0Bh Read/write 00h

P11 Input P11IN 00h Read only
Output P11OUT 02h Read/write Unchanged
Direction P11DIR 04h Read/write 00h
Resistor Enable P11REN 06h Read/write 00h
Output drive strength P11DS 08h Read/write 00h
Port Select P11SEL 0Ah Read/write 00h

PJ Input PJIN 00h Read only
Output PJOUT 02h Read/write Unchanged
Direction PJDIR 04h Read/write 00h
Resistor Enable PJREN 06h Read/write 00h
Output drive strength PJDS 08h Read/write 00h

Digital I/O280 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Digital I/O Registers

P1IV, Port 1 Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 P1IVx 0
r0 r0 r0 r-0 r-0 r-0 r-0 r0

P1IVx Bits 15-0 Port 1 interrupt vector value

P1IVx InterruptInterrupt Source Interrupt FlagContents Priority
00h No interrupt pending
02h Port 1.0 interrupt P1IFG.0 Highest
04h Port 1.1 interrupt P1IFG.1
06h Port 1.2 interrupt P1IFG.2
08h Port 1.3 interrupt P1IFG.3
0Ah Port 1.4 interrupt P1IFG.4
0Ch Port 1.5 interrupt P1IFG.5
0Eh Port 1.6 interrupt P1IFG.6
10h Port 1.7 interrupt P1IFG.7 Lowest

P2IV, Port 2 Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 P2IVx 0
r0 r0 r0 r-0 r-0 r-0 r-0 r0

P2IVx Bits 15-0 Port 2 interrupt vector value

P2IVx InterruptInterrupt Source Interrupt FlagContents Priority
00h No interrupt pending
02h Port 2.0 interrupt P2IFG.0 Highest
04h Port 2.1 interrupt P2IFG.1
06h Port 2.2 interrupt P2IFG.2
08h Port 2.3 interrupt P2IFG.3
0Ah Port 2.4 interrupt P2IFG.4
0Ch Port 2.5 interrupt P2IFG.5
0Eh Port 2.6 interrupt P2IFG.6
10h Port 2.7 interrupt P2IFG.7 Lowest

SLAU208–June 2008 Digital I/O 281
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Digital I/O Registers www.ti.com

P1IES Port 1 Interrupt Edge Select Register

7 6 5 4 3 2 1 0

P1IES
rw rw rw rw rw rw rw rw

P1IES Bits 7-0 Port 1 interrupt edge select
0 P1IFGx flag is set with a low-to-high transition
1 P1IFGx flag is set with a high-to-low transition

P1IE, Port 1 Interrupt Enable Register

7 6 5 4 3 2 1 0
P1IE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P1IE Bits 7-0 Port 1 interrupt enable
0 Corresponding port interrupt disabled
1 Corresponding port interrupt enabled

P1IFG, Port 1 Interrupt Flag Register

7 6 5 4 3 2 1 0

P1IFG
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P1IFG Bits 7-0 Port 1 interrupt flag
0 No interrupt is pending
1 Interrupt is pending

P2IES Port 2 Interrupt Edge Select Register

7 6 5 4 3 2 1 0

P2IES
rw rw rw rw rw rw rw rw

P2IES Bits 7-0 Port 2 interrupt edge select
0 P2IFGx flag is set with a low-to-high transition
1 P2IFGx flag is set with a high-to-low transition

P2IE, Port 2 Interrupt Enable Register

7 6 5 4 3 2 1 0

P2IE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P2IE Bits 7-0 Port 2 interrupt enable
0 Corresponding port interrupt disabled
1 Corresponding port interrupt enabled

282 Digital I/O SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Digital I/O Registers

P2IFG, Port 2 Interrupt Flag Register

7 6 5 4 3 2 1 0

P2IFG
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P2IFG Bits 7-0 Port 2 interrupt flag
0 No interrupt is pending
1 Interrupt is pending

PxIN, Port x Input Register

7 6 5 4 3 2 1 0
PxIN

r r r r r r r r

PxIN Bits 7-0 Port x input. Read only.

PxOUT, Port x Output Register

7 6 5 4 3 2 1 0

PxOUT
rw rw rw rw rw rw rw rw

PxOUT Bits 7-0 Port x output
When I/O configured to output mode:
0 The output is low
1 The output is high
When I/O configured to input mode and pullups/pulldowns enabled:
0 Pull-down selected
1 Pullup selected

PxDIR, Port x Direction Register

7 6 5 4 3 2 1 0

PxDIR
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxDIR Bits 7-0 Port x direction
0 Port configured as input
1 Port configured as output

PxREN, Port x Resistor Enable Register

7 6 5 4 3 2 1 0

PxREN
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxREN Bits 7-0 Port x pullup/pulldown resistor enable
0 Pullup/pulldown disabled
1 Pullup/pulldown enabled

SLAU208–June 2008 Digital I/O 283
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Digital I/O Registers www.ti.com

PxDS, Port x Drive Strength Register

7 6 5 4 3 2 1 0

PxDS
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxDS Bits 7-0 Port x drive strength
0 Reduced output drive strength
1 Full output drive strength

Digital I/O284 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 8
SLAU208–June 2008

RAM Controller

The RAM Controller (RAMCTL) allows control of the operation of the RAM.

Topic .. Page

8.1 RAMCTL Introduction .. 286
8.2 RAMCTL Operation.. 286
8.3 RAMCTL Module Registers... 287

SLAU208–June 2008 RAM Controller 285
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

8.1 RAMCTL Introduction

8.2 RAMCTL Operation

RAMCTL Introduction www.ti.com

The RAMCTL provides access to the different power modes of the RAM. The RAMCTL allows the ability
to reduce the leakage current while the CPU is off. The RAM can also be switched off. In retention mode
the RAM content is saved while the RAM content is lost in off mode. The RAM is partitioned in sectors,
typically of 4k-byte (sector) size. Please refer to the device specific datasheet for actual block allocation
and size. Each sector is controlled by the RAM Controller RAM Sector Off control bit (RCRSyOFF) of the
RAMCTL control register 0 (RCCTL0). The RCCTL0 register is password protected. Only if the correct
password is written during a word write, the RCCTL0 register content can be modified. Byte write
accesses or write accesses with a wrong password are ignored.

Active Mode
In active mode the RAM can be read and written at any time. If a RAM address of a sector needs to
hold data the whole sector cannot be switched off.

Low-Power Modes
In all low-power modes, the CPU is switched off. As soon as the CPU is switched off, the RAM enters
retention mode to reduce the leakage current.

RAM Off Mode
Each sector can be turned off independently of each other by setting the respective RCRSyOFF bit to
1. Reading from a switched off RAM sector returns 0 as data. All data previously stored into a switched
off RAM sector is lost and cannot be read, even if the sector is turned on again.

Stack pointer
The program stack is located in RAM. Sectors holding the stack must not be turned off if an interrupt
has to be executed or a low-power mode is entered.

RAM Controller286 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

8.3 RAMCTL Module Registers
www.ti.com RAMCTL Module Registers

The RAMCTL module register is listed in Table 8-1. The base address can be found in the device specific
datasheet. The address offset is given in Table 8-1.

Table 8-1. RAMCTL Module Register
Register Short Form Register Type Address Initial State
RAMCTL control register 0 RCCTL0 Read/write 0000h 0000h

RCCTL0, RAM Controller Control Register 0

15 14 13 12 11 10 9 8
RCKEYx

Always reads as 69h
Must be written as 5Ah

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved RCRS3OFF RCRS2OFF RCRS1OFF RCRS0OFF
r-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0

RCKEY Bits 15-8 RAM Controller Key. Always read as 69h. Must be written as 5Ah, otherwise the RAM controller write is
ignored.

Reserved Bits 7-4 Reserved. Always read as 0.
RCRSyOFF Bits 3-0 RAM Controller RAM Sector y Off. Setting the bit to 1 turns off the RAM sector y. All data of the RAM

sector y is lost. See the device specific datasheet to find the address range and size of each RAM
sector.

SLAU208–June 2008 RAM Controller 287
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

RAM Controller288 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 9
SLAU208–June 2008

DMA Controller

The DMA controller module transfers data from one address to another without CPU intervention. This
chapter describes the operation of the DMA controller that is available on all MSP430x5xx devices.

Topic .. Page

9.1 DMA Introduction .. 290
9.2 DMA Operation.. 292
9.3 DMA Registers .. 303

SLAU208–June 2008 DMA Controller 289
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

9.1 DMA Introduction

DMA Introduction www.ti.com

The direct memory access (DMA) controller transfers data from one address to another, without CPU
intervention, across the entire address range. For example, the DMA controller can move data from the
ADC12_A conversion memory to RAM.

Devices that contain a DMA controller may have up to eight DMA channels available. Therefore,
depending on the number of DMA channels available, some features described in this chapter are not
applicable to all devices.

Using the DMA controller can increase the throughput of peripheral modules. It can also reduce system
power consumption by allowing the CPU to remain in a low-power mode without having to awaken to
move data to or from a peripheral.

The DMA controller features include:
• Up to eight independent transfer channels
• Configurable DMA channel priorities
• Requires only two MCLK clock cycles per transfer
• Byte or word and mixed byte/word transfer capability
• Block sizes up to 65535 bytes or words
• Configurable transfer trigger selections
• Selectable edge or level-triggered transfer
• Four addressing modes
• Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 9-1.

290 DMA Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ENNMI

DMA Channel n

DMASRSBYTE

DMAnSZ

DMAnDA

DMAnSA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DMA Channel1

DMASRSBYTE

DMA1SZ

DMA1DA

DMA1SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DMA Channel 0

DMASRSBYTE

DMA0SZ

DMA0DA

DMA0SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

Address
Space

NMI Interrupt Request

JTAG Active

Halt

Halt CPU

ROUNDROBIN

DMARMWDIS

DMAnTSELx

DMA0TRIG31

DMA0TRIG0

DMA0TSELx

5

DMA0TRIG1

00000

00001

11111

DMA1TRIG31

DMA1TRIG0

DMA1TSELx

5

DMA1TRIG1

00000

00001

11111

DMAnTRIG31

DMAnTRIG0

5

DMAnTRIG1

00000

00001

11111

to USB

if available

to USB

if available

D
M

A
P

ri
o

ri
ty

a
n

d
C

o
n

tr
o

l

to USB

if available

www.ti.com DMA Introduction

Figure 9-1. DMA Controller Block Diagram

SLAU208–June 2008 DMA Controller 291
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

9.2 DMA Operation

9.2.1 DMA Addressing Modes

Address SpaceAddress Space

DMA

Controller
Address Space Address Space

Fixed Address To Block Of AddressesFixed Address To Fixed Address

Block Of Addresses To Fixed Address Block Of Addresses To Block Of Addresses

DMA

Controller

DMA

Controller

DMA

Controller

9.2.2 DMA Transfer Modes

DMA Operation www.ti.com

The DMA controller is configured with user software. The setup and operation of the DMA is discussed in
the following sections.

The DMA controller has four addressing modes. The addressing mode for each DMA channel is
independently configurable. For example, channel 0 may transfer between two fixed addresses, while
channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 9-2.
The addressing modes are:
• Fixed address to fixed address
• Fixed address to block of addresses
• Block of addresses to fixed address
• Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and DMADSTINCRx control bits. The
DMASRCINCRx bits select if the source address is incremented, decremented, or unchanged after each
transfer. The DMADSTINCRx bits select if the destination address is incremented, decremented, or
unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte. When transferring
word-to-byte, only the lower byte of the source-word transfers. When transferring byte-to-word, the upper
byte of the destination-word is cleared when the transfer occurs.

Figure 9-2. DMA Addressing Modes

The DMA controller has six transfer modes selected by the DMADTx bits as listed in Table 9-1. Each
channel is individually configurable for its transfer mode. For example, channel 0 may be configured in
single transfer mode, while channel 1 is configured for burst-block transfer mode, and channel 2 operates
in repeated block mode. The transfer mode is configured independently from the addressing mode. Any
addressing mode can be used with any transfer mode.

Two types of data can be transferred selectable by the DMAxCTL DSTBYTE and SRCBYTE fields. The
source and/or destination location can be either byte or word data. It is also possible to transfer byte to
byte, word to word or any combination.

DMA Controller292 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Single Transfer

Table 9-1. DMA Transfer Modes
DMADTx Transfer Mode Description

000 Single transfer Each transfer requires a trigger. DMAEN is automatically cleared when DMAxSZ
transfers have been made.

001 Block transfer A complete block is transferred with one trigger. DMAEN is automatically cleared at
the end of the block transfer.

010, 011 Burst-block transfer CPU activity is interleaved with a block transfer. DMAEN is automatically cleared at
the end of the burst-block transfer.

100 Repeated single transfer Each transfer requires a trigger. DMAEN remains enabled.
101 Repeated block transfer A complete block is transferred with one trigger. DMAEN remains enabled.

110, 111 Repeated burst-block CPU activity is interleaved with a block transfer. DMAEN remains enabled.transfer

Single Transfer
In single transfer mode, each byte/word transfer requires a separate trigger. The single transfer state
diagram is shown in Figure 9-3.

The DMAxSZ register is used to define the number of transfers to be made. The DMADSTINCRx and
DMASRCINCRx bits select if the destination address and the source address are incremented or
decremented after each transfer. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer. The DMAxSZ
register is decremented after each transfer. When the DMAxSZ register decrements to zero it is reloaded
from its temporary register and the corresponding DMAIFG flag is set. When DMADTx = 0, the DMAEN bit
is cleared automatically when DMAxSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with DMAEN = 1, and a transfer
occurs every time a trigger occurs.

SLAU208–June 2008 DMA Controller 293
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Reset

Wait forTrigger

Idle

Hold CPU,
Transfer one word/byte

[+Trigger AND DMALEVEL = 0]
OR

[Trigger = 1 AND DMALEVEL = 1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

[ENNMI = 1

AND NMI event]

OR

[DMALEVEL = 1

AND Trigger = 0]

[DMADTx = 0

AND DMAxSZ = 0]

OR DMAEN = 0

DMAxSZ T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMAREQ = 0

DMAxSZ > 0
AND DMAEN = 1

DMAEN = 0
DMAEN = 1

T_Size DMAxSZ

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMADTx = 4

AND DMAxSZ = 0

AND DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

Block Transfers www.ti.com

Figure 9-3. DMA Single Transfer State Diagram

Block Transfers
In block transfer mode, a transfer of a complete block of data occurs after one trigger. When DMADTx = 1,
the DMAEN bit is cleared after the completion of the block transfer and must be set again before another
block transfer can be triggered. After a block transfer has been triggered, further trigger signals occurring
during the block transfer are ignored. The block transfer state diagram is shown in Figure 9-4.

The DMAxSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRx
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

294 DMA Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Reset

Wait forTrigger

Idle

Hold CPU,
Transfer one word/byte

[+TriggerAND DMALEVEL= 0]

OR

[Trigger=1AND DMALEVEL=1]

DMAABORT = 0

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

DMAxSZ > 0

[ENNMI = 1

AND NMI event]

OR

[DMALEVEL = 1

AND Trigger = 0]

[DMADTx = 1

AND DMAxSZ = 0]

OR

DMAEN = 0

DMAxSZ T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMAREQ = 0

T_Size DMAxSZ

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMADTx = 5
AND DMAxSZ = 0
AND DMAEN = 1

DMAEN = 0
DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size DMAxSZ→

DMAABORT = 1

2 × MCLK

DMAEN = 0

9.2.2.1 Burst-Block Transfers

www.ti.com Block Transfers

During a block transfer, the CPU is halted until the complete block has been transferred. The block
transfer takes 2 x MCLK x DMAxSZ clock cycles to complete. CPU execution resumes with its previous
state after the block transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion of the block transfer. The
next trigger after the completion of a repeated block transfer triggers another block transfer.

Figure 9-4. DMA Block Transfer State Diagram

In burst-block mode, transfers are block transfers with CPU activity interleaved. The CPU executes
2 MCLK cycles after every four byte/word transfers of the block resulting in 20% CPU execution capacity.
After the burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared. DMAEN
must be set again before another burst-block transfer can be triggered. After a burst-block transfer has
been triggered, further trigger signals occurring during the burst-block transfer are ignored. The
burst-block transfer state diagram is shown in Figure 9-5.

The DMAxSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRx
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAxSZ = 0, no transfers occur.

SLAU208–June 2008 DMA Controller 295
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Block Transfers www.ti.com

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of the burst-block transfer and
no further trigger signals are required to initiate another burst-block transfer. Another burst-block transfer
begins immediately after completion of a burst-block transfer. In this case, the transfers must be stopped
by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set. In repeated burst-block mode the
CPU executes at 20% capacity continuously until the repeated burst-block transfer is stopped.

296 DMA Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

2 × MCLK

Reset

Wait for Trigger

Idle

Hold CPU,

Transfer one word/byte

Burst State
(release CPU for 2 × MCLK)

[+Trigger AND DMALEVEL = 0]
OR

[Trigger=1 AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 × MCLK

DMAEN = 0

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

[DMADTx = {6, 7}

AND DMAxSZ = 0]

[ENNMI = 1
AND NMI event]

OR
[DMALEVEL = 1

AND
Trigger = 0]

[DMADTx = {2, 3}
AND DMAxSZ = 0]

OR
DMAEN = 0

DMAxSZ T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMAxSZ

DMAEN = 0
DMAEN = 1

DMAxSZ > 0
DMAxSZ > 0 AND

a multiple of 4 words/bytes
were transferred

DMAxSZ > 0

DMAEN = 0
DMAREQ = 0

T_Size DMAxSZ→

9.2.3 Initiating DMA Transfers

www.ti.com Block Transfers

Figure 9-5. DMA Burst-Block Transfer State Diagram

Each DMA channel is independently configured for its trigger source with the DMAxTSELx.The
DMAxTSELx bits should be modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur. Table 9-2 describes the trigger operation for each type of module. Please refer
to the specific device datasheet for the list of triggers available, along with their respective DMAxTSELx
values.

SLAU208–June 2008 DMA Controller 297
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Edge-Sensitive Triggers www.ti.com

When selecting the trigger, the trigger must not have already occurred, or the transfer will not take place.

Note: DMA Trigger Selection and USB

On devices that contain a USB module, the triggers selection from DMA channels 0, 1, or 2
can be used for the USB time stamp event selection. Please refer to the USB module
description for further details.

Edge-Sensitive Triggers
When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge of the trigger signal initiates
the transfer. In single-transfer mode, each transfer requires its own trigger. When using block or
burst-block modes, only one trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers
When DMALEVEL = 1, level-sensitive triggers are used. For proper operation, level-sensitive triggers can
only be used when external trigger DMAE0 is selected as the trigger. DMA transfers are triggered as long
as the trigger signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to complete. If the trigger signal
goes low during a block or burst-block transfer, the DMA controller is held in its current state until the
trigger goes back high or until the DMA registers are modified by software. If the DMA registers are not
modified by software, when the trigger signal goes high again, the transfer resumes from where it was
when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3} are recommended because
the DMAEN bit is automatically reset after the configured transfer.

Halting Executing Instructions for DMA Transfers
The DMARMWDIS bit controls when the CPU is halted for DMA transfers. When DMARMWDIS = 0, the
CPU is halted immediately and the transfer begins when a trigger is received. In this case, it is possible
that CPU read-modify-write operations can be interrupted by a DMA transfer. When DMARMWDIS = 1,
the CPU finishes the currently executing read-modify-write operation before the DMA controller halts the
CPU and the transfer begins.See Table 9-2

DMA Controller298 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

9.2.4 Stopping DMA Transfers

9.2.5 DMA Channel Priorities

www.ti.com Halting Executing Instructions for DMA Transfers

Table 9-2. DMA Trigger Operation
Module Operation

DMA A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset when the transfer
starts.
A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG triggers channel 2,
and DMA2IFG triggers channel 0. None of the DMAxIFG flags are automatically reset when the transfer starts.
A transfer is triggered by the external trigger DMAE0.

Timer_A A transfer is triggered when the TACCR0 CCIFG flag is set. The TACCR0 CCIFG flag is automatically reset
when the transfer starts. If the TACCR0 CCIE bit is set, the TACCR0 CCIFG flag will not trigger a transfer.
A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is automatically reset
when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2 CCIFG flag will not trigger a transfer.

Timer_B A transfer is triggered when the TBCCR0 CCIFG flag is set. The TBCCR0 CCIFG flag is automatically reset
when the transfer starts. If the TBCCR0 CCIE bit is set, the TBCCR0 CCIFG flag will not trigger a transfer.
A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is automatically reset
when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2 CCIFG flag will not trigger a transfer.

USCI_Ax A transfer is triggered when USCI_Ax receives new data. UCAxRXIFG is automatically reset when the transfer
starts. If UCAxRXIE is set, the UCAxRXIFG will not trigger a transfer.
A transfer is triggered when USCI_Ax is ready to transmit new data. UCAxTXIFG is automatically reset when the
transfer starts. If UCAxTXIE is set, the UCAxTXIFG will not trigger a transfer.

USCI_Bx A transfer is triggered when USCI_Bx receives new data. UCBxRXIFG is automatically reset when the transfer
starts. If UCBxRXIE is set, the UCBxRXIFG will not trigger a transfer.
A transfer is triggered when USCI_Bx is ready to transmit new data. UCBxTXIFG is automatically reset when the
transfer starts. If UCBxTXIE is set, the UCBxTXIFG will not trigger a transfer.

DAC12_A A transfer is triggered when the DAC12_xCTL0 DAC12IFG flag is set. The DAC12_xCTL0 DAC12IFG flag is
automatically cleared when the transfer starts. If the DAC12_xCTL0 DAC12IE bit is set, the DAC12_xCTL0
DAC12IFG flag will not trigger a transfer.

ADC12_A A transfer is triggered by an ADC12IFGx flag. When single-channel conversions are performed, the
corresponding ADC12IFGx is the trigger. When sequences are used, the ADC12IFGx for the last conversion in
the sequence is the trigger. A transfer is triggered when the conversion is completed and the ADC12IFGx is set.
Setting the ADC12IFGx with software will not trigger a transfer. All ADC12IFGx flags are automatically reset
when the associated ADC12MEMx register is accessed by the DMA controller.

MPY A transfer is triggered when the hardware multiplier is ready for a new operand.
Reserved No transfer is triggered.

There are two ways to stop DMA transfers in progress:
• A single, block, or burst-block transfer may be stopped with an NMI interrupt, if the ENNMI bit is set in

register DMACTL1.
• A burst-block transfer may be stopped by clearing the DMAEN bit.

The default DMA channel priorities are DMA0 through DMA7. If two or three triggers happen
simultaneously or are pending, the channel with the highest priority completes its transfer (single, block or
burst-block transfer) first, then the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher priority channel is triggered. The higher priority channel waits until the
transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit. When the ROUNDROBIN bit is
set, the channel that completes a transfer becomes the lowest priority. The order of the priority of the
channels always stays the same, DMA0-DMA1-DMA2, for example for three channels:

DMA Priority Transfer Occurs New DMA Priority
DMA0 - DMA1 - DMA2 DMA1 DMA2 - DMA0 - DMA1
DMA2 - DMA0 - DMA1 DMA2 DMA0 - DMA1 - DMA2
DMA0 - DMA1 - DMA2 DMA0 DMA1 - DMA2 - DMA0

SLAU208–June 2008 DMA Controller 299
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

9.2.6 DMA Transfer Cycle Time

9.2.7 Using DMA With System Interrupts

9.2.8 DMA Controller Interrupts

Halting Executing Instructions for DMA Transfers www.ti.com

When the ROUNDROBIN bit is cleared the channel priority returns to the default priority.

The DMA controller requires one or two MCLK clock cycles to synchronize before each single transfer or
complete block or burst-block transfer. Each byte/word transfer requires two MCLK cycles after
synchronization, and one cycle of wait time after the transfer. Because the DMA controller uses MCLK, the
DMA cycle time is dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DMA controller will use the MCLK source for each
transfer, without re-enabling the CPU. If the MCLK source is off, the DMA controller will temporarily restart
MCLK, sourced with DCOCLK, for the single transfer or complete block or burst-block transfer. The CPU
remains off, and after the transfer completes, MCLK is turned off. The maximum DMA cycle time for all
operating modes is shown in Table 9-3.

Table 9-3. Maximum Single-Transfer DMA Cycle Time
CPU Operating Mode Clock Source Maximum DMA Cycle Time
Active mode MCLK=DCOCLK 4 MCLK cycles
Active mode MCLK=LFXT1CLK 4 MCLK cycles
Low-power mode LPM0/1 MCLK=DCOCLK 5 MCLK cycles
Low-power mode LPM3/4 MCLK=DCOCLK 5 MCLK cycles + 5 µs (1)

Low-power mode LPM0/1 MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM3 MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM4 MCLK=LFXT1CLK 5 MCLK cycles + 5 µs (1)

(1) The additional 5 s are needed to start the DCOCLK. It is the t(LPMx) parameter in the data sheet.

DMA transfers are not interruptible by system interrupts. System interrupts remain pending until the
completion of the transfer. NMI interrupts can interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an interrupt service routine or other
routine must execute with no interruptions, the DMA controller should be disabled prior to executing the
routine.

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any mode, when the
corresponding DMAxSZ register counts to zero. If the corresponding DMAIE and GIE bits are set, an
interrupt request is generated.

All DMAIFG flags are prioritized, with DMA0IFG being the highest, and combined to source a single
interrupt vector. The highest priority enabled interrupt generates a number in the DMAIV register. This
number can be evaluated or added to the program counter to automatically enter the appropriate software
routine. Disabled DMA interrupts do not affect the DMAIV value.

Any access, read or write, of the DMAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that DMA0 has the highest priority. If the DMA0IFG and DMA2IFG flags are set
when the interrupt service routine accesses the DMAIV register, DMA0IFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the DMA2IFG will generate another interrupt.

300 DMA Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

9.2.9 Using the USCI_B I2C Module with the DMA Controller

www.ti.com DMAIV Software Example

DMAIV Software Example
The following software example shows the recommended use of DMAIV and the handling overhead for a
three channel DMA controller. The DMAIV value is added to the PC to automatically jump to the
appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

;Interrupt handler for DMAxIFG Cycles

DMA_HND ... ; Interrupt latency 6
ADD &DMAIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP DMA0_HND ; Vector 2: DMA channel 0 2
JMP DMA1_HND ; Vector 4: DMA channel 1 2
JMP DMA2_HND ; Vector 6: DMA channel 2 2
JMP DMA3_HND ; Vector 8: DMA channel 3 2
JMP DMA4_HND ; Vector 10: DMA channel 4 2
JMP DMA5_HND ; Vector 12: DMA channel 5 2
JMP DMA6_HND ; Vector 14: DMA channel 6 2
JMP DMA7_HND ; Vector 16: DMA channel 7 2

DMA7_HND ; Vector 16: DMA channel 7
... ; Task starts here
RETI ; Back to main program 5

DMA6_HND ; Vector 14: DMA channel 6
... ; Task starts here
RETI ; Back to main program 5

DMA5_HND ; Vector 12: DMA channel 5
... ; Task starts here
RETI ; Back to main program 5

DMA4_HND ; Vector 10: DMA channel 4
... ; Task starts here
RETI ; Back to main program 5

DMA3_HND ; Vector 8: DMA channel 3
... ; Task starts here
RETI ; Back to main program 5

DMA2_HND ; Vector 6: DMA channel 2
... ; Task starts here
RETI ; Back to main program 5

DMA1_HND ; Vector 4: DMA channel 1
... ; Task starts here
RETI ; Back to main program 5

DMA0_HND ; Vector 2: DMA channel 0
... ; Task starts here
RETI ; Back to main program 5

The USCI_B I2C module provides two trigger sources for the DMA controller. The USCI_B I2C module can
trigger a transfer when new I2C data is received and the when the transmit data is needed.

SLAU208–June 2008 DMA Controller 301
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

9.2.10 Using ADC12 with the DMA Controller

9.2.11 Using DAC12 With the DMA Controller

DMAIV Software Example www.ti.com

MSP430 devices with an integrated DMA controller can automatically move data from any ADC12MEMx
register to another location. DMA transfers are done without CPU intervention and independently of any
low-power modes. The DMA controller increases throughput of the ADC12 module, and enhances
low-power applications allowing the CPU to remain off while data transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx = {0,2} the ADC12IFGx flag
for the ADC12MEMx used for the conversion can trigger a DMA transfer. When CONSEQx = {1,3}, the
ADC12IFGx flag for the last ADC12MEMx in the sequence can trigger a DMA transfer. Any ADC12IFGx
flag is automatically cleared when the DMA controller accesses the corresponding ADC12MEMx.

MSP430 devices with an integrated DMA controller can automatically move data to the DAC12_xDAT
register. DMA transfers are done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput to the DAC12 module, and enhances low-power applications
allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using the DMA controller with the
DAC12. For example, an application that produces a sinusoidal waveform may store the sinusoid values
in a table. The DMA controller can continuously and automatically transfer the values to the DAC12 at
specific intervals creating the sinusoid with zero CPU execution. The DAC12_xCTL DAC12IFG flag is
automatically cleared when the DMA controller accesses the DAC12_xDAT register.

DMA Controller302 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

9.3 DMA Registers
www.ti.com DMA Registers

The DMA module registers are listed in Table 9-4. The base addresses can be found in the device specific
datasheet. Each channel starts at its respective base address. The address offsets are listed in Table 9-4.

Table 9-4. DMA Registers
AddressRegister Short Form Register Type Initial StateOffset

DMA control 0 DMACTL0 Read/write 00h 0000h
DMA control 1 DMACTL1 Read/write 02h 0000h
DMA control 2 DMACTL2 Read/write 04h 0000h
DMA control 3 DMACTL3 Read/write 06h 0000h
DMA control 4 DMACTL4 Read/write 08h 0000h
DMA interrupt vector DMAIV Read only 0Eh 0000h
DMA channel 0 control DMA0CTL Read/write 00h 0000h
DMA channel 0 source address DMA0SA Read/write 02h Unchanged
DMA channel 0 destination address DMA0DA Read/write 06h Unchanged
DMA channel 0 transfer size DMA0SZ Read/write 0Ah Unchanged
DMA channel 1 control DMA1CTL Read/write 00h 0000h
DMA channel 1 source address DMA1SA Read/write 02h Unchanged
DMA channel 1 destination address DMA1DA Read/write 06h Unchanged
DMA channel 1 transfer size DMA1SZ Read/write 0Ah Unchanged
DMA channel 2 control DMA2CTL Read/write 00h 0000h
DMA channel 2 source address DMA2SA Read/write 02h Unchanged
DMA channel 2 destination address DMA2DA Read/write 06h Unchanged
DMA-channel 2 transfer size DMA2SZ Read/write 0Ah Unchanged
DMA channel 3 control DMA3CTL Read/write 00h 0000h
DMA channel 3 source address DMA3SA Read/write 02h Unchanged
DMA channel 3 destination address DMA3DA Read/write 06h Unchanged
DMA-channel 3 transfer size DMA3SZ Read/write 0Ah Unchanged
DMA channel 4 control DMA4CTL Read/write 00h 0000h
DMA channel 4 source address DMA4SA Read/write 02h Unchanged
DMA channel 4 destination address DMA4DA Read/write 06h Unchanged
DMA-channel 4 transfer size DMA4SZ Read/write 0Ah Unchanged
DMA channel 5 control DMA5CTL Read/write 00h 0000h
DMA channel 5 source address DMA5SA Read/write 02h Unchanged
DMA channel 5 destination address DMA5DA Read/write 06h Unchanged
DMA-channel 5 transfer size DMA5SZ Read/write 0Ah Unchanged
DMA channel 6 control DMA6CTL Read/write 00h 0000h
DMA channel 6 source address DMA6SA Read/write 02h Unchanged
DMA channel 6 destination address DMA6DA Read/write 06h Unchanged
DMA-channel 6 transfer size DMA6SZ Read/write 0Ah Unchanged
DMA channel 7 control DMA7CTL Read/write 00h 0000h
DMA channel 7 source address DMA7SA Read/write 02h Unchanged
DMA channel 7 destination address DMA7DA Read/write 06h Unchanged
DMA-channel 7 transfer size DMA7SZ Read/write 0Ah Unchanged

SLAU208–June 2008 DMA Controller 303
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

DMACTL0, DMA Control Register 0 www.ti.com

DMACTL0, DMA Control Register 0
15 14 13 12 11 10 9 8

Reserved DMA1TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA0TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMA1TSELx Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for

number of channels and trigger assignment.
00000 DMA1TRIG0
00001 DMA1TRIG1
00010 DMA1TRIG2
⋮
11110 DMA1TRIG30
11111 DMA1TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMA0TSELx Bits 4-0 Same as DMA1TSELx

DMACTL1, DMA Control Register 1

15 14 13 12 11 10 9 8

Reserved DMA3TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA2TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMA3TSELx Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for

number of channels and trigger assignment.
00000 DMA3TRIG0
00001 DMA3TRIG1
00010 DMA3TRIG2
⋮
11110 DMA3TRIG30
11111 DMA3TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMA2TSELx Bits 4-0 Same as DMA3TSELx

304 DMA Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com DMACTL2, DMA Control Register 2

DMACTL2, DMA Control Register 2
15 14 13 12 11 10 9 8

Reserved DMA5TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA4TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMA5TSELx Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for

number of channels and trigger assignment.
00000 DMA5TRIG0
00001 DMA5TRIG1
00010 DMA5TRIG2
⋮
11110 DMA5TRIG30
11111 DMA5TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMA4TSELx Bits 4-0 Same as DMA5TSELx

DMACTL3, DMA Control Register 3

15 14 13 12 11 10 9 8

Reserved DMA7TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA6TSELx
r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.
DMA7TSELx Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for

number of channels and trigger assignment.
00000 DMA7TRIG0
00001 DMA7TRIG1
00010 DMA7TRIG2
⋮
11110 DMA7TRIG30
11111 DMA7TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.
DMA6TSELx Bits 4-0 Same as DMA7TSELx

SLAU208–June 2008 DMA Controller 305
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

DMACTL4, DMA Control Register 4 www.ti.com

DMACTL4, DMA Control Register 4
15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 DMARMWDIS ROUND ENNMI
ROBIN

r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Reserved Bits 15-3 Reserved. Read only. Always read as 0.
DMARMWDIS Bit 2 Read-Modify-Write Disable. This bit when set, inhibits any DMA transfers from occurring during CPU

read-modify-write operations.
0 DMA transfers can occur during read-modify-write CPU operations
1 DMA transfers inhibited during read-modify-write CPU operations

ROUNDROBIN Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.
0 DMA channel priority is DMA0 - DMA1 - DMA2 - - DMA7
1 DMA channel priority changes with each transfer

ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI interrupt. When an NMI
interrupts a DMA transfer, the current transfer is completed normally, further transfers are stopped, and
DMAABORT is set.
0 NMI interrupt does not interrupt DMA transfer
1 NMI interrupt interrupts a DMA transfer

306 DMA Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com DMAxCTL, DMA Channel x Control Register

DMAxCTL, DMA Channel x Control Register
15 14 13 12 11 10 9 8

Reserved DMADTx DMADSTINCRx DMASRCINCRx
r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

DMA DMA DMALEVEL DMAEN DMAIFG DMAIE DMAABORT DMAREQ
DSTBYTE SRCBYTE

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bit 15 Reserved. Read only. Always read as 0.
DMADTx Bits 14-12 DMA transfer mode

000 Single transfer
001 Block transfer
010 Burst-block transfer
011 Burst-block transfer
100 Repeated single transfer
101 Repeated block transfer
110 Repeated burst-block transfer
111 Repeated burst-block transfer

DMADSTINCRx Bits 11-10 DMA destination increment. This bit selects automatic incrementing or decrementing of the destination
address after each byte or word transfer. When DMADSTBYTE=1, the destination address
increments/decrements by one. When DMADSTBYTE=0, the destination address
increments/decrements by two. The DMAxDA is copied into a temporary register and the temporary
register is incremented or decremented. DMAxDA is not incremented or decremented.
00 Destination address is unchanged
01 Destination address is unchanged
10 Destination address is decremented
11 Destination address is incremented

DMASRCINCRx Bits 9-8 DMA source increment. This bit selects automatic incrementing or decrementing of the source address
for each byte or word transfer. When DMASRCBYTE=1, the source address increments/decrements by
one. When DMASRCBYTE=0, the source address increments/decrements by two. The DMAxSA is
copied into a temporary register and the temporary register is incremented or decremented. DMAxSA is
not incremented or decremented.
00 Source address is unchanged
01 Source address is unchanged
10 Source address is decremented
11 Source address is incremented

DMADSTBYTE Bit 7 DMA destination byte. This bit selects the destination as a byte or word.
0 Word
1 Byte

DMASRCBYTE Bit 6 DMA source byte. This bit selects the source as a byte or word.
0 Word
1 Byte

DMALEVEL Bit 5 DMA level. This bit selects between edge-sensitive and level-sensitive triggers.
0 Edge sensitive (rising edge)
1 Level sensitive (high level)

DMAEN Bit 4 DMA enable
0 Disabled
1 Enabled

SLAU208–June 2008 DMA Controller 307
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

DMAxCTL, DMA Channel x Control Register www.ti.com

DMAIFG Bit 3 DMA interrupt flag
0 No interrupt pending
1 Interrupt pending

DMAIE Bit 2 DMA interrupt enable
0 Disabled
1 Enabled

DMAABORT Bit 1 DMA abort. This bit indicates if a DMA transfer was interrupt by an NMI.
0 DMA transfer not interrupted
1 DMA transfer was interrupted by NMI

DMAREQ Bit 0 DMA request. Software-controlled DMA start. DMAREQ is reset automatically.
0 No DMA start
1 Start DMA

308 DMA Controller SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com DMAxSA, DMA Source Address Register

DMAxSA, DMA Source Address Register
31 30 29 28 27 26 25 24

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

23 22 21 20 19 18 17 16

Reserved DMAxSAx
r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxSAx
rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSAx
rw rw rw rw rw rw rw rw

Reserved Bits 31-20 Reserved. Read only. Always read as 0.
DMAxSA Bits 15-0 DMA source address. The source address register points to the DMA source address for single

transfers or the first source address for block transfers. The source address register remains unchanged
during block and burst-block transfers. There are two words for the DMAxSA register. Bits 31-20 are
reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended
instructions. When writing to DMAxSA with word instructions, bits 19-16 are cleared.

DMAxDA, DMA Destination Address Register

31 30 29 28 27 26 25 24

Reserved
r0 r0 r0 r0 r0 r0 r0 r0

23 22 21 20 19 18 17 16

Reserved DMAxDAx
r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxDAx
rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxDAx
rw rw rw rw rw rw rw rw

Reserved Bits 31-20 Reserved. Read only. Always read as 0.
DMAxDAx Bits 15-0 DMA destination address. The destination address register points to the DMA destination address for

single transfers or the first destination address for block transfers. The destination address register
remains unchanged during block and burst-block transfers. There are two words for the DMAxDA
register. Bits 31-20 are reserved and always read as zero. Reading or writing bits 19-16 requires the
use of extended instructions. When writing to DMAxDA with word instructions, bits 19-16 are cleared.

SLAU208–June 2008 DMA Controller 309
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

DMAxSZ, DMA Size Address Register www.ti.com

DMAxSZ, DMA Size Address Register
15 14 13 12 11 10 9 8

DMAxSZx
rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSZx
rw rw rw rw rw rw rw rw

DMAxSZx Bits 15-0 DMA size. The DMA size register defines the number of byte/word data per block transfer. DMAxSZ
register decrements with each word or byte transfer. When DMAxSZ decrements to 0, it is immediately
and automatically reloaded with its previously initialized value.
00000h Transfer is disabled
00001h One byte or word is transferred
00002h Two bytes or words are transferred
⋮
0FFFFh 65535 bytes or words are transferred

DMAIV, DMA Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 DMAIVx 0
r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0

DMAIVx Bits 15-0 DMA interrupt vector value

DMAIV InterruptInterrupt Source Interrupt FlagContents Priority
00h No interrupt pending
02h DMA channel 0 DMA0IFG Highest
04h DMA channel 1 DMA1IFG
06h DMA channel 2 DMA2IFG
08h DMA channel 3 DMA3IFG
0Ah DMA channel 4 DMA4IFG
0Ch DMA channel 5 DMA5IFG
0Eh DMA channel 6 DMA6IFG
10h DMA channel 7 DMA7IFG Lowest

DMA Controller310 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 10
SLAU208–June 2008

32-Bit Hardware Multiplier (MPY32)

This chapter describes the 32-bit hardware multiplier (MPY32). The 32-bit hardware multiplier is
implemented in all MSP430x5xx devices.

Topic .. Page

10.1 32-Bit Hardware Multiplier Introduction 312
10.2 32-Bit Hardware Multiplier Operation ... 314
10.3 32-Bit Hardware Multiplier Registers.. 326

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 311
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.1 32-Bit Hardware Multiplier Introduction

32-Bit Hardware Multiplier Introduction www.ti.com

The 32-bit hardware multiplier is a peripheral and is not part of the MSP430 CPU. This means its activities
do not interfere with the CPU activities. The multiplier registers are peripheral registers that are loaded
and read with CPU instructions.

The hardware multiplier supports:
• Unsigned multiply
• Signed multiply
• Unsigned multiply accumulate
• Signed multiply accumulate
• 8-bit, 16-bit, 24-bit, and 32-bit operands
• Saturation
• Fractional numbers
• 8-bit and 16-bit operation compatible with 16-bit hardware multiplier
• 8-bit and 24-bit multiplications without requiring a "sign extend" instruction

The 32-bit hardware multiplier block diagram is shown in Figure 10-1.

312 32-Bit Hardware Multiplier (MPY32) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

OP1 (high word)

16×16 Multiplier

Accessible
Register

32-bit Adder

RES0/RESLO

OP1 (low word) OP2 (high word)

15

OP2 (low word)

16

OP2

OP2LOP2HMACS32L

MAC32L

MPYS32L

MPY32L

MACS32H

MAC32H

MPYS32H

MPY32H

MACS

MAC

MPYS

MPY

RES1/RESHIRES2RES3SUMEXT

31 0151631 0

32-bit Demultiplexer

32-bit Multiplexer

16-bit Multiplexer 16-bit Multiplexer

OP1_32
OP2_32

MPYMx

MPYSAT
MPYFRAC

MPYC

2
Control
Logic

www.ti.com 32-Bit Hardware Multiplier Introduction

Figure 10-1. 32-Bit Hardware Multiplier Block Diagram

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 313
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.2 32-Bit Hardware Multiplier Operation

10.2.1 Operand Registers

32-Bit Hardware Multiplier Operation www.ti.com

The hardware multiplier supports 8-bit, 16-bit, 24-bit, and 32-bit operands with unsigned multiply, signed
multiply, unsigned multiply-accumulate, and signed multiply-accumulate operations. The size of the
operands are defined by the address the operand is written to and if it is written as word or byte. The type
of operation is selected by the address the first operand is written to.

The hardware multiplier has two 32-bit operand registers, operand one OP1 and operand two OP2, and a
64-bit result register accessible via registers RES0 to RES3. For compatibility with the 16×16 hardware
multiplier the result of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT, as well.
RESLO stores the low word of the 16×16-bit result, RESHI stores the high word of the result, and
SUMEXT stores information about the result.

The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can be read with the next
instruction after writing to OP2, except when using an indirect addressing mode to access the result.
When using indirect addressing for the result, a NOP is required before the result is ready.

The result of a 24-bit or 32-bit operation can be read with successive instructions after writing OP2 or
OP2H starting with RES0, except when using an indirect addressing mode to access the result. When
using indirect addressing for the result, a NOP is required before the result is ready.

Table 10-1 summarizes when each word of the 64-bit result is available for the various combinations of
operand sizes. With a 32-bit wide second operand, OP2L and OP2H need to be written. Depending on
when the two 16-bit parts are written, the result availability may vary; thus, the table shows two entries,
one for OP2L written and one for OP2H written. The worst case defines the actual result availability.

Table 10-1. Result Availability (MPYFRAC = 0, MPYSAT = 0)
Result ready in MCLK cycles

Operation AfterMPYC(OP1 × OP2) RES0 RES1 RES2 RES3 Bit
8/16 × 8/16 3 3 4 4 3 OP2 written

24/32 × 8/16 3 5 6 7 7 OP2 written
8/16 × 24/32 3 5 6 7 7 OP2L written

N/A 3 4 4 4 OP2H written
24/32 × 24/32 3 8 10 11 11 OP2L written

N/A 3 5 6 6 OP2H written

Operand one OP1 has twelve registers, shown in Table 10-2, used to load data into the multiplier and also
select the multiply mode. Writing the low-word of the first operand to a given address selects the type of
multiply operation to be performed but does not start any operation. When writing a second word to a
high-word register with suffix 32H the multiplier assumes a 32-bit wide OP1, otherwise 16-bits are
assumed. The last address written prior to writing OP2 defines the width of the first operand. For example,
if MPY32L is written first followed by MPY32H, all 32 bits are used and the data width of OP1 is set to 32
bits. If MPY32H is written first followed by MPY32L, the multiplication will ignore MPY32H and assume a
16-bit wide OP1 using the data written into MPY32L.

314 32-Bit Hardware Multiplier (MPY32) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com 32-Bit Hardware Multiplier Operation

Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for
successive operations. It is not necessary to re-write the OP1 value to perform the operations.

Table 10-2. OP1 Registers
OP1 Register Name Operation
MPY Unsigned multiply – operand bits 0 up to 15
MPYS Signed multiply – operand bits 0 up to 15
MAC Unsigned multiply accumulate –operand bits 0 up to 15
MACS Signed multiply accumulate – operand bits 0 up to 15
MPY32L Unsigned multiply – operand bits 0 up to 15
MPY32H Unsigned multiply – operand bits 16 up to 31
MPYS32L Signed multiply – operand bits 0 up to 15
MPYS32H Signed multiply – operand bits 16 up to 31
MAC32L Unsigned multiply accumulate – operand bits 0 up to 15
MAC32H Unsigned multiply accumulate – operand bits 16 up to 31
MACS32L Signed multiply accumulate – operand bits 0 up to 15
MACS32H Signed multiply accumulate – operand bits 16 up to 31

Writing the second operand to the operand two register OP2 initiates the multiply operation. Writing OP2
starts the selected operation with a 16-bit wide second operand together with the values stored in OP1.
Writing OP2L starts the selected operation with a 32-bit wide second operand and the multiplier expects a
the high-word to be written to OP2H. Writing to OP2H without a preceding write to OP2L is ignored.

Table 10-3. OP2 Registers
OP2 Register Name Operation

Start multiplication with 16-bit wide operand two (OP2)OP2 (operand bits 0 up to 15)
Start multiplication with 32-bit wide operand two (OP2)OP2L (operand bits 0 up to 15)
Continue multiplication with 32-bit wide operand two (OP2)OP2H (operand bits 16 up to 31)

For 8-bit or 24-bit operands the operand registers can be accessed with byte instructions. Accessing the
multiplier with a byte instruction during a signed operation will automatically cause a sign extension of the
byte within the multiplier module. For 24-bit operands only the high-word should be written as byte. If the
24-bit operands are sign-extended is defined by the register that is used to write the low-word to because
this register defines if the operation is unsigned or signed.

The high-word of a 32-bit operand remains unchanged when changing the size of the operand to 16 bit
either by modifying the operand size bits or by writing to the respective operand register. During the
execution of the 16-bit operation the content of the high-word is ignored.

Note: Changing of First or Second Operand During Multiplication

By default changing OP1 or OP2 while the selected multiply operation is being calculated will
render any results invalid that are not ready at the time the new operand(s) are changed.
Writing OP2 or OP2L will abort any ongoing calculation and start a new operation. Results
that are not ready at that time are invalid also for following MAC or MACS operations.

To avoid this behavior the MPYDLYWRTEN bit can be set to 1. Then all writes to any
MPY32 registers are delayed with MPYDLY32=0 until the 64-bit result is ready or with
MPYDLY32=1 until the 32-bit result is ready. For MAC and MACS operations always the
complete 64-bit result should be ready.

See Table 10-1 for how many CPU cycles are needed until a certain result register is ready
and valid for each of the different modes.

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 315
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.2.2 Result Registers

MACS Underflow and Overflow www.ti.com

The multiplication result is always 64-bits wide. It is accessible via registers RES0 to RES3. Used with a
signed operation MPYS or MACS the results are appropriately sign extended. If the result registers are
loaded with initial values before a MACS operation the user software must take care that the written value
is properly sign extended to 64 bits.

Note: Changing of Result Registers During Multiplication

The result registers must not be modified by the user software after writing the second
operand into OP2 or OP2L until the initiated operation is completed.

In addition to RES0 to RES3, for compatibility with the 16×16 hardware multiplier the 32-bit result of a 8-bit
or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT. In this case the result low register
RESLO holds the lower 16-bits of the calculation result and the result high register RESHI holds the upper
16-bits. RES0 and RES1 are identical to RESLO and RESHI, respectively, in usage and access of
calculated results.

The sum extension registers SUMEXT contents depend on the multiply operation and are listed in
Table 10-4. If all operands are 16 bits wide or less the 32-bit result is used to determine sign and carry. If
one of the operands is larger than 16 bits the 64-bit result is used.

The MPYC bit reflects the multiplier's carry as listed in Table 10-4 and, thus, can be used as 33rd or 65th
bit of the result, if fractional or saturation mode is not selected. With MAC or MACS operations, the MPYC
bit reflects the carry of the 32-bit or 64-bit accumulation and is not taken into account for successive MAC
and MACS operations as the 33rd or 65th bit.

Table 10-4. SUMEXT Contents and MPYC Contents
Mode SUMEXT MPYC
MPY SUMEXT is always 0000h. MPYC is always 0.
MPYS SUMEXT contains the extended sign of the result. MPYC contains the sign of the result.

00000h Result was positive or zero 0 Result was positive or zero
0FFFFh Result was negative 1 Result was negative

MAC SUMEXT contains the carry of the result. MPYC contains the carry of the result.
0000h No carry for result 0 No carry for result
0001h Result has a carry 1 Result has a carry

MACS SUMEXT contains the extended sign of the result. MPYC contains the carry of the result.
00000h Result was positive or zero 0 No carry for result
0FFFFh Result was negative 1 Result has a carry

MACS Underflow and Overflow
The multiplier does not automatically detect underflow or overflow in MACS mode. For example working
with 16-bit input data and 32-bit results, i.e. using just RESLO and RESHI, the available range for positive
numbers is 0 to 07FFF FFFFh and for negative numbers is 0FFFF FFFFh to 08000 0000h. An underflow
occurs when the sum of two negative numbers yields a result that is in the range for a positive number. An
overflow occurs when the sum of two positive numbers yields a result that is in the range for a negative
number.

The SUMEXT register contains the sign of the result in both cases described above, 0FFFFh for a 32-bit
overflow and 0000h for a 32-bit underflow. The MPYC bit in MPY32CTL0 can be used to detect the
overflow condition. If the carry is different than the sign reflected by the SUMEXT register an overflow or
underflow occurred. User software must handle these conditions appropriately.

32-Bit Hardware Multiplier (MPY32)316 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.2.3 Software Examples

10.2.4 Fractional Numbers

www.ti.com MACS Underflow and Overflow

Examples for all multiplier modes follow. All 8×8 modes use the absolute address for the registers
because the assembler will not allow .B access to word registers when using the labels from the standard
definitions file.

There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a
signed operation will automatically cause a sign extension of the byte within the multiplier module.
; 32x32 Unsigned Multiply

MOV #01234h,&MPY32L ; Load low word of 1st operand
MOV #01234h,&MPY32H ; Load high word of 1st operand
MOV #05678h,&OP2L ; Load low word of 2nd operand
MOV #05678h,&OP2H ; Load high word of 2nd operand

; ... ; Process results

; 16x16 Unsigned Multiply
MOV #01234h,&MPY ; Load 1st operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.
MOV.B #012h,&MPY_B ; Load 1st operand
MOV.B #034h,&OP2_B ; Load 2nd operand

; ... ; Process results

; 32x32 Signed Multiply
MOV #01234h,&MPYS32L ; Load low word of 1st operand
MOV #01234h,&MPYS32H ; Load high word of 1st operand
MOV #05678h,&OP2L ; Load low word of 2nd operand
MOV #05678h,&OP2H ; Load high word of 2nd operand

; ... ; Process results

; 16x16 Signed Multiply
MOV #01234h,&MPYS ; Load 1st operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply. Absolute addressing.
MOV.B #012h,&MPYS_B ; Load 1st operand
MOV.B #034h,&OP2_B ; Load 2nd operand

; ... ; Process results

The 32-bit multiplier provides support for fixed-point signal processing. In fixed-point signal processing,
fractional number are represented by using a fixed decimal point. To classify different ranges of decimal
numbers, a Q-format is used. Different Q-formats represent different locations of the decimal point.
Figure 10-2 shows the format of a signed Q15 number using 16 bits. Every bit after the decimal point has
a resolution of 1/2, the most significant bit is used as the sign bit. The most negative number is 08000h
and the maximum positive number is 07FFFh. This gives a range from –1.0 to 0.999969482 ≈ 1.0 for the
signed Q15 format with 16 bits.

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 317
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

S
1
2

1
4

1
8

1
16

...

Decimal number equivalent

Decimal point

Sign bit

15 bits

S
1

2

1

4

1

8

1

16
...x

14 bits

Fractional Number Mode www.ti.com

Figure 10-2. Q15 Format Representation

The range can be increased by shifting the decimal point to the right as shown in Figure 10-3. The signed
Q14 format with 16 bits gives a range from –2.0 to 1.999938965 ≈ 2.0.

Figure 10-3. Q14 Format Representation

The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with multiplication is that the product
of two number in the range from -1.0 to 1.0 is always in that same range.

Fractional Number Mode
Multiplying two fractional numbers using the default multiplication mode with MPYFRAC = 0 and
MPYSAT = 0 gives a result with 2 sign bits. For example if two 16-bit Q15 numbers are multiplied a 32-bit
result in Q30 format is obtained. To convert the result into Q15 format manually, the first 15 trailing bits
and the extended sign bit must be removed. However, when the fractional mode of the multiplier is used,
the redundant sign bit is automatically removed yielding a result in Q31 format for the multiplication of two
16-bit Q15 numbers. Reading the result register RES1 gives the result as 16-bit Q15 number. The 32-bit
Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by reading registers RES2 and
RES3.

The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTL0. The actual content of the
result register(s) is not modified when MPYFRAC = 1. When the result is accessed using software, the
value is left-shifted 1 bit resulting in the final Q formatted result. This allows user software to switch
between reading both the shifted (fractional) and the un-shifted result. The fractional mode should only be
enabled when required and disabled after use.

In fractional mode the SUMEXT register contains the sign extended bits 32 and 33 of the shifted result for
16×16-bit operations and bits 64 and 65 for 32×32-bit operations – not only bits 32 or 64, respectively.

The MPYC bit is not affected by the fractional mode. It always reads the carry of the non-fractional result.
; Example using
; Fractional 16x16 multiplication

BIS #MPYFRAC,&MPY32CTL0 ; Turn on fractional mode
MOV &FRACT1,&MPYS ; Load 1st operand as Q15
MOV &FRACT2,&OP2 ; Load 2nd operand as Q15
MOV &RES1,&PROD ; Save result as Q15
BIC #MPYFRAC,&MPY32CTL0 ; Back to normal mode

32-Bit Hardware Multiplier (MPY32)318 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Saturation Mode

Table 10-5. Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0)
Result ready in MCLK cycles

Operation AfterMPYC(OP1 × OP2) RES0 RES1 RES2 RES3 Bit
8/16 × 8/16 3 3 4 4 3 OP2 written

24/32 × 8/16 3 5 6 7 7 OP2 written
8/16 × 24/32 3 5 6 7 7 OP2L written

N/A 3 4 4 4 OP2H written
24/32 × 24/32 3 8 10 11 11 OP2L written

N/A 3 5 6 6 OP2H written

Saturation Mode
The multiplier prevents overflow and underflow of signed operations in saturation mode. The saturation
mode is enabled with MPYSAT = 1 in register MPY32CTL0. If an overflow occurs the result is set to the
most positive value available. If an underflow occurs the result is set to the most negative value available.
This is useful to reduce mathematical artifacts in control systems on overflow and underflow conditions.
The saturation mode should only be enabled when required and disabled after use.

The actual content of the result register(s) is not modified when MPYSAT = 1. When the result is
accessed using software, the value is automatically adjusted providing the most positive or most negative
result when an overflow or underflow has occurred. The adjusted result is also used for successive
multiply-and-accumulate operations. This allows user software to switch between reading the saturated
and the non-saturated result.

With 16×16 operations the saturation mode only applies to the least significant 32 bits, i.e. the result
registers RES0 and RES1. Using the saturation mode in MAC or MACS operations that mix 16×16
operations with 32×32, 16×32 or 32×16 operations will lead to unpredictable results.

With 32×32, 16×32, and 32×16 operations the saturated result can only be calculated when RES3 is
ready. In non-5xx devices, reading RES0 to RES2 prior to the complete result being ready will deliver the
non-saturated results independent of the MPYSAT bit setting.

Enabling the saturation mode does not affect the content of the SUMEXT register nor the content of the
MPYC bit.
; Example using
; Fractional 16x16 multiply accumulate with Saturation

; Turn on fractional and saturation mode:
BIS #MPYSAT+MPYFRAC,&MPY32CTL0
MOV &A1,&MPYS ; Load A1 for 1st term
MOV &K1,&OP2 ; Load K1 to get A1*K1
MOV &A2,&MACS ; Load A2 for 2nd term
MOV &K2,&OP2 ; Load K2 to get A2*K2
MOV &RES1,&PROD ; Save A1*K1+A2*K2 as result
BIC #MPYSAT+MPYFRAC,&MPY32CTL0 ; turn back to normal

Table 10-6. Result Availability in Saturation Mode (MPYSAT = 1)
Result ready in MCLK cycles

Operation AfterMPYC(OP1 × OP2) RES0 RES1 RES2 RES3 Bit
8/16 × 8/16 3 3 N/A N/A 3 OP2 written

24/32 × 8/16 7 7 7 7 7 OP2 written
8/16 × 24/32 7 7 7 7 7 OP2L written

4 4 4 4 4 OP2H written
24/32 × 24/32 11 11 11 11 11 OP2L written

6 6 6 6 6 OP2H written

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 319
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

64-bit Saturation

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

Yes

No

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Yes

No

No

Yes

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

Yes

No

Yes

No

32-bit Saturation
completed

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

64-bit Saturation
completed

32-bit Saturation

MPYC=0 and
unshifted RES3,

bit15=1

MPYC=1 and
unshifted RES3,

bit15=0

MPYFRAC=1

Unshifted RES3,
bit 15=0 and

bit 14=1

Unshifted RES3,
bit 15=1 and

bit 14=0

MPYC=0 and
unshifted RES1,

bit15=1

MPYC=1 and
unshifted RES1,

bit15=0

MPYFRAC=1

Unshifted RES1,
bit 15=0 and

bit 14=1

Unshifted RES1,
bit 15=1 and

bit 14=0

Saturation Mode www.ti.com

Figure 10-4 shows the flow for 32-bit saturation used for 16×16 bit multiplications and the flow for 64-bit
saturation used in all other cases. Primarily, the saturated results depends on the carry bit MPYC and the
most significant bit of the result. Secondly, if the fractional mode is enabled it depends also on the two
most significant bits of the unshift result; i.e., the result that is read with fractional mode disabled.

Figure 10-4. Saturation Flow Chart

Note: Saturation in Fractional Mode

In case of multiplying –1.0 × –1.0 in fractional mode, the result of +1.0 is out of range, thus,
the saturated result gives the most positive result.

When using multiply-and-accumulate operations the accumulated values are saturated as if
MPYFRAC=0 - only during read accesses to the result registers the values are saturated
taking the fractional mode into account. This provides additional dynamic range during the
calculation and only the end-result is then saturated if needed.

320 32-Bit Hardware Multiplier (MPY32) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Saturation Mode

The following example illustrates a special case showing the saturation function in fractional mode. It also
uses the 8-bit functionality of the MPY32 module.

; Turn on fractional and saturation mode,
; clear all other bits in MPY32CTL0:
MOV #MPYSAT+MPYFRAC,&MPY32CTL0
;Pre-load result registers to demonstrate overflow
MOV #0,&RES3 ;
MOV #0,&RES2 ;
MOV #07FFFh,&RES1 ;
MOV #0FA60h,&RES0 ;
MOV.B #050h,&MACS_B ; 8-bit signed MAC operation
MOV.B #012h,&OP2_B ; Start 16x16 bit operation
MOV &RES0,R6 ; R6 = 0FFFFh
MOV &RES1,R7 ; R7 = 07FFFh

The result is saturated because already the result not converted into a fractional number shows an
overflow. The multiplication of the two positive numbers 00050h and 00012h gives 005A0h. 005A0h added
to 07FFF FA60h results in 8000 059Fh without MPYC being set. Since the MSB of the unmodified result
RES1 is 1 and MPYC = 0, the result is saturated according to the saturation flow chart in Figure 10-4.

Note: Validity of Saturated Result

The saturated result is only valid if the registers RES0 to RES3, the size of operands 1 and 2
and MPYC are not modified.

If the saturation mode is used with a preloaded result, user software must ensure that MPYC
in the MPY32CTL0 register is loaded with the sign bit of the written result otherwise the
saturation mode will erroneously saturate the result.

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 321
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.2.5 Putting It All Together

New Multiplication
Started

16×16
?

MAC or MACS
?

MPYSAT=1
?

Clear Result:
RES1 = 00000h
RES0 = 00000h

Perform 16×16
MPY or MPYS

Operation

Yes No

YesNo

Yes

No

MPYFRAC=1

?

non-fractional
32-bit Saturation

Shift 64bit result.

Calculate SUMEXTbased on

MPYC and bit15 of

unshifted RES1.

MPYSAT=1

?

Yes

No

Yes

No

Multiplication
completed

MPYSAT=1
? Clear Result:

RES3 = 00000h

RES2 = 00000h

RES1 = 00000h

RES0 = 00000h

Yes No

Yes

No

MPYFRAC=1

?

non-fractional
64-bit Saturation

MPYSAT=1

?

Yes

No

Yes

No

Shift 64bit result.

Calculate SUMEXTbased on

MPYC and bit15 of

unshifted RES3.

Perform 16×16
MAC or MACS

Operation

Perform
MAC or MACS

Operation

Perform
MPY or MPYS

Operation

MAC or MACS
?

32-bit Saturation 64-bit Saturation

Saturation Mode www.ti.com

Figure 10-5 shows the complete multiplication flow, depending on the various selectable modes for the
MPY32 module.

Figure 10-5. Multiplication Flow Chart

322 32-Bit Hardware Multiplier (MPY32) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Saturation Mode

Given the separation in processing of 16-bit operations (32-bit results) and 32-bit operations (64-bit
results) by the module, it is important to understand the implications when using MAC/MACS operations
and mixing 16-bit operands/results with 32-bit operands/results. User software must address these points
during usage when mixing these operations. The following code snippet illustrates the issue.
; Mixing 32x24 multiplication with 16x16 MACS operation

MOV #MPYSAT,&MPY32CTL0 ; Saturation mode
MOV #052C5h,&MPY32L ; Load low word of 1st operand
MOV #06153h,&MPY32H ; Load high word of 1st operand
MOV #001ABh,&OP2L ; Load low word of 2nd operand
MOV.B #023h,&OP2H_B ; Load high word of 2nd operand

;... 5 NOPs required
MOV &RES0,R6 ; R6 = 00E97h
MOV &RES1,R7 ; R7 = 0A6EAh
MOV &RES2,R8 ; R8 = 04F06h
MOV &RES3,R9 ; R9 = 0000Dh

; Note that MPYC = 0!
MOV #0CCC3h,&MACS ; Signed MAC operation
MOV #0FFB6h,&OP2 ; 16x16 bit operation
MOV &RESLO,R6 ; R6 = 0FFFFh
MOV &RESHI,R7 ; R7 = 07FFFh

The second operation gives a saturated result because the 32-bit value used for the 16×16 bit MACS
operation was already saturated when the operation was started: the carry bit MPYC was 0 from the
previous operation but the most significant bit in result register RES1 is set. As one can see in the flow
chart the content of the result registers are saturated for multiply-and-accumulate operations after starting
a new operation based on the previous results but depending on the size of the result (32-bit or 64-bit) of
the newly initiated operation.

The saturation before the multiplication can cause issues if the MPYC bit is not properly set as the
following code example illustrates.

;Pre-load result registers to demonstrate overflow
MOV #0,&RES3 ;
MOV #0,&RES2 ;
MOV #0,&RES1 ;
MOV #0,&RES0 ;
; Saturation mode and set MPYC:
MOV #MPYSAT+MPYC,&MPY32CTL0
MOV.B #082h,&MACS_B ; 8-bit signed MAC operation
MOV.B #04Fh,&OP2_B ; Start 16x16 bit operation
MOV &RES0,R6 ; R6 = 00000h
MOV &RES1,R7 ; R7 = 08000h

Even though the result registers were loaded with all zeros the final result is saturated. This is because
the MPYC bit was set causing the result used for the multiply-and-accumulate to be saturated to 08000
0000h. Adding a negative number to it would again cause an underflow thus the final result is also
saturated to 08000 0000h.

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 323
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.2.6 Indirect Addressing of Result Registers

10.2.7 Using Interrupts

Saturation Mode www.ti.com

When using indirect or indirect autoincrement addressing mode to access the result registers and the
multiplier requires 3 cycles until result availability according to Table 1-1, at least one instruction is needed
between loading the second operand and accessing the result registers:
; Access multiplier 16x16 results with indirect addressing

MOV #RES0,R5 ; RES0 address in R5 for indirect
MOV &OPER1,&MPY ; Load 1st operand
MOV &OPER2,&OP2 ; Load 2nd operand
NOP ; Need one cycle
MOV @R5+,&xxx ; Move RES0
MOV @R5,&xxx ; Move RES1

In case of a 32×16 multiplication there is also one instruction required between reading the first result
register RES0 and the second result register RES1:
; Access multiplier 32x16 results with indirect addressing

MOV #RES0,R5 ; RES0 address in R5 for indirect
MOV &OPER1L,&MPY32L ; Load low word of 1st operand
MOV &OPER1H,&MPY32H ; Load high word of 1st operand
MOV &OPER2,&OP2 ; Load 2nd operand (16 bits)
NOP ; Need one cycle
MOV @R5+,&xxx ; Move RES0
NOP ; Need one additional cycle
MOV @R5,&xxx ; Move RES1

; No additional cycles required!
MOV @R5,&xxx ; Move RES2

If an interrupt occurs after writing OP1, but before writing OP2, and the multiplier is used in servicing that
interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this,
disable interrupts before using the hardware multiplier, do not use the multiplier in interrupt service
routines, or use the save and restore functionality of the 32-bit multiplier.
; Disable interrupts before using the hardware multiplier

DINT ; Disable interrupts
NOP ; Required for DINT
MOV #xxh,&MPY ; Load 1st operand
MOV #xxh,&OP2 ; Load 2nd operand
EINT ; Interrupts may be enabled before

; processing results if result
; registers are stored and restored in
; interrupt service routines

324 32-Bit Hardware Multiplier (MPY32) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.2.8 Using DMA

www.ti.com Save and Restore

Save and Restore
If the multiplier is used in interrupt service routines its state can be saved and restored using the
MPY32CTL0 register. The following code example shows how the complete multiplier status can be saved
and restored to allow interruptible multiplications together with the usage of the multiplier in interrupt
service routines. Since the state of the MPYSAT and MPYFRAC bits are unknown they should be cleared
before the registers are saved as shown in the code example.
; Interrupt service routine using multiplier
MPY_USING_ISR

PUSH &MPY32CTL0 ; Save multiplier mode, etc.
BIC #MPYSAT+MPYFRAC,&MPY32CTL0

; Clear MPYSAT+MPYFRAC
PUSH &RES3 ; Save result 3
PUSH &RES2 ; Save result 2
PUSH &RES1 ; Save result 1
PUSH &RES0 ; Save result 0
PUSH &MPY32H ; Save operand 1, high word
PUSH &MPY32L ; Save operand 1, low word
PUSH &OP2H ; Save operand 2, high word
PUSH &OP2L ; Save operand 2, low word

;
... ; Main part of ISR

; Using standard MPY routines
;

POP &OP2L ; Restore operand 2, low word
POP &OP2H ; Restore operand 2, high word

; Starts dummy multiplication but
; result is overwritten by
; following restore operations:

POP &MPY32L ; Restore operand 1, low word
POP &MPY32H ; Restore operand 1, high word
POP &RES0 ; Restore result 0
POP &RES1 ; Restore result 1
POP &RES2 ; Restore result 2
POP &RES3 ; Restore result 3
POP &MPY32CTL0 ; Restore multiplier mode, etc.
reti ; End of interrupt service routine

In devices with a DMA controller the multiplier can trigger a transfer when the complete result is available.
The DMA controller needs to start reading the result with MPY32RES0 successively up to MPY32RES3.
Not all registers need to be read. The trigger timing is such that the DMA controller starts reading
MPY32RES0 when its ready and that the MPY32RES3 can be read exactly in the clock cycle when it is
available to allow fastest access via DMA. The signal into the DMA controller is 'Multiplier ready'. Please
refer to the DMA user's guide chapter for details.

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 325
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

10.3 32-Bit Hardware Multiplier Registers
32-Bit Hardware Multiplier Registers www.ti.com

The 32-bit hardware multiplier registers are listed in Table 10-7.

Table 10-7. 32-Bit Hardware Multiplier Registers
Register Short Form Register Type Address Initial State
16-bit operand one – multiply MPY Read/write 0130h Unchanged
8-bit operand one – multiply MPY_B Read/write 0130h Unchanged
16-bit operand one – signed multiply MPYS Read/write 0132h Unchanged
8-bit operand one – signed multiply MPYS_B Read/write 0132h Unchanged
16-bit operand one – multiply accumulate MAC Read/write 0134h Unchanged
8-bit operand one – multiply accumulate MAC_B Read/write 0134h Unchanged
16-bit operand one – signed multiply accumulate MACS Read/write 0136h Unchanged
8-bit operand one – signed multiply accumulate MACS_B Read/write 0136h Unchanged
16-bit operand two OP2 Read/write 0138h Unchanged
8-bit operand two OP2_B Read/write 0138h Unchanged
16x16-bit result low word RESLO Read/write 013Ah Undefined
16x16-bit result high word RESHI Read/write 013Ch Undefined
16x16-bit sum extension register SUMEXT Read 013Eh Undefined
32-bit operand 1 – multiply – low word MPY32L Read/write 0140h Unchanged
32-bit operand 1 – multiply – high word MPY32H Read/write 0142h Unchanged
24-bit operand 1 – multiply – high byte MPY32H_B Read/write 0142h Unchanged
32-bit operand 1 – signed multiply – low word MPYS32L Read/write 0144h Unchanged
32-bit operand 1 – signed multiply – high word MPYS32H Read/write 0146h Unchanged
24-bit operand 1 – signed multiply – high byte MPYS32H_B Read/write 0146h Unchanged
32-bit operand 1 – multiply accumulate – low word MAC32L Read/write 0148h Unchanged
32-bit operand 1 – multiply accumulate – high word MAC32H Read/write 014Ah Unchanged
24-bit operand 1 – multiply accumulate – high byte MAC32H_B Read/write 014Ah Unchanged
32-bit operand 1 – signed multiply accumulate – low word MACS32L Read/write 014Ch Unchanged
32-bit operand 1 – signed multiply accumulate – high word MACS32H Read/write 014Eh Unchanged
24-bit operand 1 – signed multiply accumulate – high byte MACS32H_B Read/write 014Eh Unchanged
32-bit operand 2 – low word OP2L Read/write 0150h Unchanged
32-bit operand 2 – high word OP2H Read/write 0152h Unchanged
24-bit operand 2 – high byte OP2H_B Read/write 0152h Unchanged
32x32-bit result 0 – least significant word RES0 Read/write 0154h Undefined
32x32-bit result 1 RES1 Read/write 0156h Undefined
32x32-bit result 2 RES2 Read/write 0158h Undefined
32x32-bit result 3 – most significant word RES3 Read/write 015Ah Undefined
MPY32 control register 0 MPY32CTL0 Read/write 015Ch Undefined

32-Bit Hardware Multiplier (MPY32)326 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com 32-Bit Hardware Multiplier Registers

The registers listed in Table 10-8 are treated equally.

Table 10-8. Alternative Registers
Register Alternative 1 Alternative 2
16-bit operand one – multiply MPY MPY32L
8-bit operand one – multiply MPY_B MPY32L_B
16-bit operand one – signed multiply MPYS MPYS32L
8-bit operand one – signed multiply MPYS_B MPYS32L_B
16-bit operand one – multiply accumulate MAC MAC32L
8-bit operand one – multiply accumulate MAC_B MAC32L_B
16-bit operand one – signed multiply accumulate MACS MACS32L
8-bit operand one – signed multiply accumulate MACS_B MACS32L_B
16x16-bit result low word RESLO RES0
16x16-bit result high word RESHI RES1

SLAU208–June 2008 32-Bit Hardware Multiplier (MPY32) 327
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

32-Bit Hardware Multiplier Registers www.ti.com

MPY32CTL0, 32-Bit Multiplier Control Register 0

15 14 13 12 11 10 9 8
MPYDLYReserved MPYDLY32 WRTEN

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

7 6 5 4 3 2 1 0

MPYOP2_32 MPYOP1_32 MPYMx MPYSAT MPYFRAC Reserved MPYC
rw rw rw rw rw-0 rw-0 rw-0 rw

Reserved Bits 15-10 Reserved
MPYDLY32 Bit 9 Delayed write mode

0 Writes are delayed until 64-bit result (RES0 to RES3) is available.
1 Writes are delayed until 32-bit result (RES0 to RES1) is available.

MPYDLYWRTEN Bit 8 Delayed write enable
All writes to any MPY32 register are delayed until the 64-bit (MPYDLY32 = 0) or 32-bit (MPYDLY32 = 1)
result is ready.
0 Writes are not delayed.
1 Writes are delayed.

MPYOP2_32 Bit 7 Multiplier bit width of operand 2
0 16 bits
1 32 bits

MPYOP1_32 Bit 6 Multiplier bit width of operand 1
0 16 bits
1 32 bits

MPYMx Bits 5-4 Multiplier mode
00 MPY – Multiply
01 MPYS – Signed multiply
10 MAC – Multiply accumulate
11 MACS – Signed multiply accumulate

MPYSAT Bit 3 Saturation mode
0 Saturation mode disabled
1 Saturation mode enabled

MPYFRAC Bit 2 Fractional mode
0 Fractional mode disabled
1 Fractional mode enabled

Reserved Bit 1 Reserved
MPYC Bit 0 Carry of the multiplier. It can be considered as 33rd or 65th bit of the result if fractional or saturation

mode is not selected because the MPYC bit does not change when switching to saturation or fractional
mode.
It is used to restore the SUMEXT content in MAC mode.
0 No carry for result
1 Result has a carry

32-Bit Hardware Multiplier (MPY32)328 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 11
SLAU208–June 2008

CRC Module

The Cyclic Redundancy Check module provides a signature for a given data sequence.

Topic .. Page

11.1 CRC Module Introduction ... 330
11.2 CRC Checksum Generation .. 331
11.3 CRC Module Registers ... 333

SLAU208–June 2008 CRC Module 329
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

11.1 CRC Module Introduction

Data In

Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D

Bit

15

Bit

12

Bit

11

Bit

10

Bit

6

Bit

5

Bit

4

Bit

3

Bit

1

Bit

0

Shift Clock

CRC Module Introduction www.ti.com

The CRC module produces a signature for a given sequence of memory data bus values. The signature is
generated through a feedback path from data bus bits 0, 4, 11, and 15. See also Figure 11-1. The CRC
signature is based on the polynomial given in the CRC-CCITT-BR polynomial (see Equation 11-1) .

f(x) = x16 + x12 + x5 +1 (11-1)

Figure 11-1. LFSR Implementation of the CRC-CCITT Standard, Bit 0 is the MSB of the result

Identical bus sequences result into identical signatures when the CRC is initialized with a fixed seed value,
whereas different sequences of input data in general result in different signatures.

CRC Module330 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

11.2 CRC Checksum Generation

11.2.1 CRC Implementation

CRC Data In Register CRCDI

Data In

8-bit or 16-bit

Byte MUX

8

CRC Initialization and Result Register

CRCINIRES

8

8 16

Write to CRCINIRES
16

www.ti.com CRC Checksum Generation

The CRC generator is at first initialized by writing a 16-bit word (seed) to the CRC initialization and result
register (CRCINIRES). Any data that should be included into the CRC calculation has to be written to the
CRC data input register (CRCDI) in the same order as the CRC signature was calculated originally. The
actual signature can be read from the initialization and result register (CRCINIRES) to compare the
checksum with the expected checksum.

The signature generation (Check Sum) describes a method how the result of a signature operation can be
calculated. The calculated signature is called Check Sum in the following text. This calculation is done by
an external tool. The Check Sum is stored in the product's memory and is used to check the correctness
of the result of the CRC operation.

To allow parallel processing of the CRC the linear-feedback-shift-register (LFSR) functionality is
implemented with an XOR Tree. This implementation shows the identical behavior as the LFSR approach
after 8-bits of data are shifted in when the LSB is 'shifted' in first. The generation of a signature calculation
has to be started by writing a seed to the initialization and result register CRCINIRES to initialize the
register. Software or hardware (e.g. DMA) can transfer data to the data in register (CRCDI) (e.g. from
memory). The value in the data in register is then included into the signature and the result is available in
the signature result register at the next read access (CRCINIRES). The signature can be generated using
word or byte data. If a word is processed the lower byte at the even address is used at the first clock
(MCLK) cycle. During the second clock cycle the higher byte is processed. Thus it takes two clock cycles
to process word data while it takes only one clock (MCLK) cycle to process byte data. If the Check Sum
itself (with reversed bit order) is included into the CRC operation (as data written to CRCDI) the result in
CRCINIRES register must be zero.

Figure 11-2. Implementation of the CRC-CCITT

SLAU208–June 2008 CRC Module 331
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

11.2.2 Assembler Examples
General Assembler Example www.ti.com

General Assembler Example
An example demonstrates the operation of the on-chip CRC check:

...
PUSH R4 ; Save registers
PUSH R5
MOV #StartAddress,R4 ; StartAddress < EndAddress
MOV #EndAddress,R5
MOV &INIT, &CRCINIRES ; INIT to CRCINIRES

L1 MOV @R4+,&CRCDI ; Item to Data In register
CMP R5,R4 ; End address reached?
JLO L1 ; No
MOV &Check_Sum,&CRCDI ; Yes, Include checksum
TST &CRCINIRES ; Result = 0?
JNZ CRC_ERROR ; No, CRCRES <> 0: error
... ; Yes, CRCRES=0:

; information ok.
POP R5 ; Restore registers
POP R4

Reference Data Sequence
The details of the implemented CRC checking algorithm is shown by the data sequence below:

...
mov #0FFFFh,&CRC16RES ; initialize CRC16
mov.b #00031h,&CRC16DI ; "1"
mov.b #00032h,&CRC16DI ; "2"
mov.b #00033h,&CRC16DI ; "3"
mov.b #00034h,&CRC16DI ; "4"
mov.b #00035h,&CRC16DI ; "5"
mov.b #00036h,&CRC16DI ; "6"
mov.b #00037h,&CRC16DI ; "7"
mov.b #00038h,CRC16DI ; "8"
mov.b #00039h,&CRC16DI ; "9"

cmp #089F6h,&CRC16RES ; compare result
jeq &Success ; no error
br &Error ; to error handler

...

CRC Module332 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

11.3 CRC Module Registers
www.ti.com CRC Module Registers

The CRC module registers are listed in Table 11-1. The base address can be found in the device specific
datasheet. The address offset is given in Table 11-1.

Table 11-1. CRC Module Registers
Register Short Form Register Type Address Initial State
CRC data in register CRCDI Read/write 0000h 0000h
CRC initialization and result register CRCINIRES Read/Write 0004h FFFFh

CRCDI, Data In Register

15 14 13 12 11 10 9 8
CRCDI

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CRCDI
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

CRCDI Bits 15-0 CRC data in. Data written to the CRCDI register will be included to the present signature in the
CRCINIRES register according to the CRC-CCITT standard.

CRCINIRES, Initialization and Result Register

15 14 13 12 11 10 9 8

CRCINIRES
rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1

7 6 5 4 3 2 1 0

CRCINIRES
rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1

CRCINIRES Bits 15-0 CRC initialization and result. This register holds the current CRC result (according to the CRC-CCITT
standard). Writing to this register initializes the CRC calculation with the value written to it. The value
just written can be read from CRCINIRES register.

SLAU208–June 2008 CRC Module 333
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

CRC Module334 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 12
SLAU208–June 2008

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes Timer_A
is used on MSP430x5xx devices.

Topic .. Page

12.1 Timer_A Introduction ... 336
12.2 Timer_A Operation .. 337
12.3 Timer_A Registers ... 349

SLAU208–June 2008 Timer_A 335
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

12.1 Timer_A Introduction

Timer_A Introduction www.ti.com

Timer_A is a 16-bit timer/counter with up to seven capture/compare registers. Timer_A can support
multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:
• Asynchronous 16-bit timer/counter with four operating modes
• Selectable and configurable clock source
• Up to seven configurable capture/compare registers
• Configurable outputs with PWM capability
• Asynchronous input and output latching
• Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 12-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter,
then an associated action will not take place.

336 Timer_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

CCR6

Compararator 6
CCI

15 0

CCISx

OUTMODx

Capture

Mode

CMx

Sync

SCS

COVlogic

Output

Unit4 D Set Q
EQU0

OUT

OUT6 Signal

Reset

GND

VCC

CCI6A

CCI6B

EQU6

Divider

/1/2/4/8

Count

Mode

16-bit Timer

TAR

RC

Set TAIFG

15 0

TASSELx MCxIDx

00

01

10

11

Clear

Timer Clock

EQU0

Timer Clock

Timer Clock

TACCR6

SCCI Y
A

EN

CCR1

POR

TACLR

CCR0

Timer Block

00

01

10

11

Set TACCR6

CCIFG

CAP

1

0

1

0

CCR2

CCR3

ACLK

SMCLK

TACLK

IDEXx

Divider

/1.../8

CCR4

CCR5

s

12.2 Timer_A Operation

12.2.1 16-Bit Timer Counter

www.ti.com Timer_A Operation

Figure 12-1. Timer_A Block Diagram

The Timer_A module is configured with user software. The setup and operation of Timer_A is discussed in
the following sections.

The 16-bit timer/counter register, TAR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TAR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

SLAU208–June 2008 Timer_A 337
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

12.2.2 Starting the Timer

12.2.3 Timer Mode Control

Clock Source Select and Divider www.ti.com

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider and count
direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TACLR) to avoid errant operating conditions.

When the TACLK is asynchronous to the CPU clock, any read from TAR should occur while
the timer is not operating or the results may be unpredictable. Alternatively, the timer may be
read multiple times while operating, and a majority vote taken in software to determine the
correct reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider
The timer clock TACLK can be sourced from ACLK, SMCLK, or externally via TACLK. The clock source is
selected with the TASSELx bits. The selected clock source may be passed directly to the timer or divided
by 2, 4, or 8, using the IDx bits The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8
using the IDEXx bits.The TACLK dividers are reset when TACLR is set.

Note: Timer_A Dividers

Setting the TACLR bit will clear the contents of TAR, as well as, the dividers. When the
TACLR bit is cleared, the Timer Clock will immediately begin clocking at the first rising edge
of the Timer_A clock source selected with the TASSELx bits, and will continue clocking at
the divider settings set by the IDx and IDEXx bits.

The timer may be started, or restarted in the following ways:
• The timer counts when MCx > 0 and the clock source is active.
• When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TACCR0. The

timer may then be restarted by writing a nonzero value to TACCR0. In this scenario, the timer starts
incrementing in the up direction from zero.

The timer has four modes of operation as described in Table 12-1: stop, up, continuous, and up/down.
The operating mode is selected with the MCx bits.

Table 12-1. Timer Modes
MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of TACCR0
10 Continuous The timer repeatedly counts from zero to 0FFFFh.
11 Up/down The timer repeatedly counts from zero up to the value of TACCR0 and backdown to zero.

Up Mode
The up mode is used if the timer period must be different from 0FFFFh counts. The timer repeatedly
counts up to the value of compare register TACCR0, which defines the period, as shown in Figure 12-2.
The number of timer counts in the period is TACCR0+1. When the timer value equals TACCR0 the timer
restarts counting from zero. If up mode is selected when the timer value is greater than TACCR0, the
timer immediately restarts counting from zero.

338 Timer_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

CCR0-1 CCR0 0h

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

1h CCR0-1 CCR0 0h

0h

0FFFFh

FFFEh FFFFh 0h

Timer Clock

Timer

Set TAIFG

1h FFFEh FFFFh 0h

www.ti.com Changing the Period Register TACCR0

Figure 12-2. Up Mode

The TACCR0 CCIFG interrupt flag is set when the timer counts to the TACCR0 value. The TAIFG
interrupt flag is set when the timer counts from TACCR0 to zero. Figure 12-3 shows the flag set cycle.

Figure 12-3. Up Mode Flag Setting

Changing the Period Register TACCR0
When changing TACCR0 while the timer is running, if the new period is greater than or equal to the old
period, or greater than the current count value, the timer counts up to the new period. If the new period is
less than the current count value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

Continuous Mode
In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in
Figure 12-4. The capture/compare register TACCR0 works the same way as the other capture/compare
registers.

Figure 12-4. Continuous Mode

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero. Figure 12-5 shows the flag set
cycle.

Figure 12-5. Continuous Mode Flag Setting

SLAU208–June 2008 Timer_A 339
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0FFFFh

TACCR0a

TACCR0b TACCR0c
TACCR0d

t
1

t
0

t
0

TACCR1a

TACCR1b TACCR1c

TACCR1d

t
1

t
1

t
0

0h

TACCR0

0FFFFh

Use of the Continuous Mode www.ti.com

Use of the Continuous Mode
The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TACCRx
register in the interrupt service routine. Figure 12-6 shows two separate time intervals t0 and t1 being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to n (Timer_An), where n = 0 to 7, independent time
intervals or output frequencies can be generated using capture/compare registers.

Figure 12-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TACCR0 is used as the period register.
Their handling is more complex since the sum of the old TACCRx data and the new period can be higher
than the TACCR0 value. When the previous TACCRx value plus tx is greater than the TACCR0 data, the
TACCR0 value must be subtracted to obtain the correct time interval.

Up/Down Mode
The up/down mode is used if the timer period must be different from 0FFFFh counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TACCR0 and
back down to zero, as shown in Figure 12-7. The period is twice the value in TACCR0.

Figure 12-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the
direction. The TACLR bit also clears the TAR value and the TACLK divider.

In up/down mode, the TACCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set only once during
a period, separated by 1/2 the timer period. The TACCR0 CCIFG interrupt flag is set when the timer
counts from TACCR0-1 to TACCR0, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 12-8 shows the flag set cycle.

340 Timer_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

CCR0-1 CCR0 CCR0-1

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

CCR0-2 1h 0h

Up/Down

0h

0FFFFh

TAIFG

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TACCR0

TACCR1

EQU1
TAIFG Interrupt EventsEQU1

EQU0

EQU1 EQU1

EQU0

TACCR2

EQU2 EQU2EQU2 EQU2

Dead Time

www.ti.com Changing the Period Register TACCR0

Figure 12-8. Up/Down Mode Flag Setting

Changing the Period Register TACCR0
When changing TACCR0 while the timer is running, and counting in the down direction, the timer
continues its descent until it reaches zero. The new period takes affect after the counter counts down to
zero.

When the timer is counting in the up direction, and the new period is greater than or equal to the old
period, or greater than the current count value, the timer counts up to the new period before counting
down. When the timer is counting in the up direction, and the new period is less than the current count
value, the timer begins counting down. However, one additional count may occur before the counter
begins counting down.

Use of the Up/Down Mode
The up/down mode supports applications that require dead times between output signals (see section
Timer_A Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 12-9 the tdead is:

tdead = ttimer × (TACCR1 – TACCR2)

With:
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TACCRx = Content of capture/compare register x

The TACCRx registers are not buffered. They update immediately when written to. Therefore, any
required dead time will not be maintained automatically.

Figure 12-9. Output Unit in Up/Down Mode

SLAU208–June 2008 Timer_A 341
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

12.2.4 Capture/Compare Blocks

Set TACCRx CGIFG

Capture

CCI

Timer

Timer Clock

n–2 n–1 n n+1 n+2 n+3 n+4

Capture Mode www.ti.com

Three or five identical capture/compare blocks, TACCRx, are present in Timer_A. Any of the blocks may
be used to capture the timer data, or to generate time intervals.

Capture Mode
The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input
signal. If a capture occurs:
• The timer value is copied into the TACCRx register
• The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices may have
different signals connected to CCIxA and CCIxB. Refer to the device-specific data sheet for the
connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit will synchronize the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended. This is illustrated in Figure 12-10.

Figure 12-10. Capture Signal (SCS = 1)

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in
Figure 12-11. COV must be reset with software.

342 Timer_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Second
Capture

COV = 1
Taken

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV
in Register TACCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

12.2.4.0.1 Capture Initiated by Software

12.2.5 Output Unit

www.ti.com Compare Mode

Figure 12-11. Capture Cycle

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TACCTLx ; Setup TACCTLx
XOR #CCIS0,&TACCTLx ; TACCTLx = TAR

Compare Mode
The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output
signals or interrupts at specific time intervals. When TAR counts to the value in a TACCRx:
• Interrupt flag CCIFG is set
• Internal signal EQUx = 1
• EQUx affects the output according to the output mode
• The input signal CCI is latched into SCCI

Each capture/compare block contains an output unit. The output unit is used to generate output signals
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUx signals.

Output Modes

The output modes are defined by the OUTMODx bits and are described in Table 12-2. The OUTx signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUx = EQU0.

SLAU208–June 2008 Timer_A 343
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0h

0FFFFh

EQU0
TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 EQU0
TAIFG

EQU1 EQU0
TAIFG

Interrupt Events

Output Example—Timer in Up Mode www.ti.com

Table 12-2. Output Modes
OUTMODx Mode Description

000 Output The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately
when OUTx is updated.

001 Set The output is set when the timer counts to the TACCRx value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer counts to the TACCRx value. It is reset when the
timer counts to the TACCR0 value.

011 Set/Reset The output is set when the timer counts to the TACCRx value. It is reset when the timer
counts to the TACCR0 value.

100 Toggle The output is toggled when the timer counts to the TACCRx value. The output period is
double the timer period.

101 Reset The output is reset when the timer counts to the TACCRx value. It remains reset until
another output mode is selected and affects the output.

110 Toggle/Set The output is toggled when the timer counts to the TACCRx value. It is set when the timer
counts to the TACCR0 value.

111 Reset/Set The output is reset when the timer counts to the TACCRx value. It is set when the timer
counts to the TACCR0 value.

Output Example—Timer in Up Mode
The OUTx signal is changed when the timer counts up to the TACCRx value, and rolls from TACCR0 to
zero, depending on the output mode. An example is shown in Figure 12-12 using TACCR0 and TACCR1.

Figure 12-12. Output Example—Timer in Up Mode

Timer_A344 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: oggle/SetT

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 TAIFG EQU1 EQU0 Interrupt EventsEQU0

www.ti.com Output Example—Timer in Continuous Mode

Output Example—Timer in Continuous Mode
The OUTx signal is changed when the timer reaches the TACCRx and TACCR0 values, depending on the
output mode. An example is shown in Figure 12-13 using TACCR0 and TACCR1.

Figure 12-13. Output Example—Timer in Continuous Mode

SLAU208–June 2008 Timer_A 345
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR2

EQU2

TAIFG
Interrupt Events

EQU2

EQU0

EQU2 EQU2

EQU0

12.2.6 Timer_A Interrupts

Output Example—Timer in Up/Down Mode www.ti.com

Output Example—Timer in Up/Down Mode
The OUTx signal changes when the timer equals TACCRx in either count direction and when the timer
equals TACCR0, depending on the output mode. An example is shown in Figure 12-14 using TACCR0
and TACCR2.

Figure 12-14. Output Example—Timer in Up/Down Mode

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD_7,&TACCTLx ; Set output mode=7
BIC #OUTMODx,&TACCTLx ; Clear unwanted bits

Two interrupt vectors are associated with the 16-bit Timer_A module:
• TACCR0 interrupt vector for TACCR0 CCIFG
• TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the associated TACCRx register.
In compare mode, any CCIFG flag is set if TAR counts to the associated TACCRx value. Software may
also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit
and the GIE bit are set.

346 Timer_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

D
Set

Q
IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

www.ti.com TACCR0 Interrupt

TACCR0 Interrupt
The TACCR0 CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector
as shown in Figure 12-15. The TACCR0 CCIFG flag is automatically reset when the TACCR0 interrupt
request is serviced.

Figure 12-15. Capture/Compare TACCR0 Interrupt Flag

TAIV, Interrupt Vector Generator
The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and combined to source a single
interrupt vector. The interrupt vector register TAIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TACCR2 CCIFG flag will generate another interrupt.

TAIV Software Example
The following software example shows the recommended use of TAIV and the handling overhead. The
TAIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a
Timer_A3 configuration.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:
• Capture/compare block TACCR0: 11 cycles
• Capture/compare blocks TACCR1, TACCR2: 16 cycles
• Timer overflow TAIFG: 14 cycles

; Interrupt handler for TACCR0 CCIFG. Cycles
CCIFG_0_HND
; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TAIFG, TACCR1 and TACCR2 CCIFG.

TA_HND ... ; Interrupt latency 6
ADD &TAIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1_HND ; Vector 2: TACCR1 2
JMP CCIFG_2_HND ; Vector 4: TACCR2 2
RETI ; Vector 6: Reserved 5
RETI ; Vector 8: Reserved 5
RETI ; Vector 10: Reserved 5
RETI ; Vector 12: Reserved 5

SLAU208–June 2008 Timer_A 347
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TAIV Software Example www.ti.com

TAIFG_HND ; Vector 14: TAIFG Flag
... ; Task starts here
RETI 5

CCIFG_2_HND ; Vector 4: TACCR2
... ; Task starts here
RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TACCR1
... ; Task starts here
RETI ; Back to main program 5

Timer_A348 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

12.3 Timer_A Registers
www.ti.com Timer_A Registers

The Timer_A registers are listed in Table 12-3 for Timer_A7, which is the largest configuration available.
The base address can be found in the device specific data sheet. The address offsets are listed in
Table 12-3.

Table 12-3. Timer_A7 Registers
Register Register AddressRegister Short Form Initial StateType Access Offset

Timer_A7 control TACTL Read/write Word 00h 0000h
TACTL_L Read/write Byte 00h 00h
TACTL_H Read/write Byte 01h 00h

Timer_A7 capture/compare control 0 TACCTL0 Read/write Word 02h 0000h
TACCTL0_L Read/write Byte 02h 00h
TACCTL0_H Read/write Byte 03h 00h

Timer_A7 capture/compare control 1 TACCTL1 Read/write Word 04h 0000h
TACCTL1_L Read/write Byte 04h 00h
TACCTL1_H Read/write Byte 05h 00h

Timer_A7 capture/compare control 2 TACCTL2 Read/write Word 06h 0000h
TACCTL2_L Read/write Byte 06h 00h
TACCTL2_H Read/write Byte 07h 00h

Timer_A7 capture/compare control 3 TACCTL3 Read/write Word 08h 0000h
TACCTL3_L Read/write Byte 08h 00h
TACCTL3_H Read/write Byte 09h 00h

Timer_A7 capture/compare control 4 TACCTL4 Read/write Word 0Ah 0000h
TACCTL4_L Read/write Byte 0Ah 00h
TACCTL4_H Read/write Byte 0Bh 00h

Timer_A7 capture/compare control 5 TACCTL5 Read/write Word 0Ch 0000h
TACCTL5_L Read/write Byte 0Ch 00h
TACCTL5_H Read/write Byte 0Dh 00h

Timer_A7 capture/compare control 6 TACCTL6 Read/write Word 0Eh 0000h
TACCTL6_L Read/write Byte 0Eh 00h
TACCTL6_H Read/write Byte 0Fh 00h

Timer_A7 counter TAR Read/write Word 10h 0000h
TAR_L Read/write Byte 10h 00h
TAR_H Read/write Byte 11h 00h

Timer_A7 capture/compare 0 TACCR0 Read/write Word 12h 0000h
TACCR0_L Read/write Byte 12h 00h
TACCR0_H Read/write Byte 13h 00h

Timer_A7 capture/compare 1 TACCR1 Read/write Word 14h 0000h
TACCR1_L Read/write Byte 14h 00h
TACCR1_H Read/write Byte 15h 00h

Timer_A7 capture/compare 2 TACCR2 Read/write Word 16h 0000h
TACCR2_L Read/write Byte 16h 00h
TACCR2_H Read/write Byte 17h 00h

Timer_A7 capture/compare 3 TACCR3 Read/write Word 18h 0000h
TACCR3_L Read/write Byte 18h 00h
TACCR3_H Read/write Byte 19h 00h

Timer_A7 capture/compare 4 TACCR4 Read/write Word 1Ah 0000h
TACCR4_L Read/write Byte 1Ah 00h

SLAU208–June 2008 Timer_A 349
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Timer_A Registers www.ti.com

Table 12-3. Timer_A7 Registers (continued)
Register Register AddressRegister Short Form Initial StateType Access Offset

TACCR4_H Read/write Byte 1Bh 00h
Timer_A7 capture/compare 5 TACCR5 Read/write Word 1Ch 0000h

TACCR5_L Read/write Byte 1Ch 00h
TACCR5_H Read/write Byte 1Dh 00h

Timer_A7 capture/compare 6 TACCR6 Read/write Word 1Eh 0000h
TACCR6_L Read/write Byte 1Eh 00h
TACCR6_H Read/write Byte 1Fh 00h

Timer_A7 Interrupt Vector TAIV Read only Word 2Eh 0000h
TAIV_L Read only Byte 2Eh 00h
TAIV_H Read only Byte 2Fh 00h

Timer_A7 Extension TAEX0 Read/write Word 20h 0000h
TAEX0_L Read/write Byte 20h 00h
TAEX0_H Read/write Byte 21h 00h

Timer_A350 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Timer_A Registers

TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8
Unused TASSELx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TACLR TAIE TAIFG
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Unused Bits 15-10 Unused
TASSELx Bits 9-8 Timer_A clock source select

00 TACLK
01 ACLK
10 SMCLK
11 Inverted TACLK

IDx Bits 7-6 Input divider. These bits along with the IDEXx bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCR0
10 Continuous mode: the timer counts up to 0FFFFh
11 Up/down mode: the timer counts up to TACCR0 then down to 0000h

Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the TACLK divider, and the count direction. The TACLR bit is

automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.

0 Interrupt disabled
1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending

TAR, Timer_A Register

15 14 13 12 11 10 9 8

TARx
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TARx
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TARx Bits 15-0 Timer_A register. The TAR register is the count of Timer_A.

SLAU208–June 2008 Timer_A 351
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Timer_A Registers www.ti.com

TACCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS SCCI Unused CAP
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0) r-(0) rw-(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG
rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CMx Bit 15-14 Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit 13-12 Capture/compare input select. These bits select the TACCRx input signal. See the device-specific data
sheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and
can be read via this bit.

Unused Bit 9 Unused. Read only. Always read as 0.
CAP Bit 8 Capture mode

0 Compare mode
1 Capture mode

OUTMODx Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0 because EQUx = EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG
flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.
OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

352 Timer_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Timer_A Registers

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TAIVx 0
r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

TAIVx Bits 15-0 Timer_A interrupt vector value

InterruptTAIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending
02h Capture/compare 1 TACCR1 CCIFG Highest
04h Capture/compare 2 TACCR2 CCIFG
06h Capture/compare 3 TACCR3 CCIFG
08h Capture/compare 4 TACCR4 CCIFG
0Ah Capture/compare 5 TACCR5 CCIFG
0Ch Capture/compare 6 TACCR6 CCIFG
0Eh Timer overflow TAIFG Lowest

TAEX0, Timer_A Expansion Register 0

15 14 13 12 11 10 9 8

Unused Unused Unused Unused Unused Unused Unused Unused
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Unused Unused Unused Unused Unused IDEX
r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Unused Bits 15-3 Unused. Read only. Always read as 0.
IDEX Bits 2-0 Input divider expansion. These bits along with the IDx bits select the divider for the input clock.

000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

SLAU208–June 2008 Timer_A 353
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Timer_A354 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 13
SLAU208–June 2008

Timer_B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes Timer_B
is used in MSP430x5xx devices.

Topic .. Page

13.1 Timer_B Introduction ... 356
13.2 Timer_B Operation .. 358
13.3 Timer_B Registers ... 370

SLAU208–June 2008 Timer_B 355
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13.1 Timer_B Introduction

13.1.1 Similarities and Differences From Timer_A

Timer_B Introduction www.ti.com

Timer_B is a 16-bit timer/counter with three or seven capture/compare registers. Timer_B can support
multiple capture/compares, PWM outputs, and interval timing. Timer_B also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_B features include :
• Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths
• Selectable and configurable clock source
• Up to seven configurable capture/compare registers
• Configurable outputs with PWM capability
• Double-buffered compare latches with synchronized loading
• Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 13-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter,
then an associated action will not take place.

Timer_B is identical to Timer_A with the following exceptions:
• The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.
• Timer_B TBCCRx registers are double-buffered and can be grouped.
• All Timer_B outputs can be put into a high-impedance state.
• The SCCI bit function is not implemented in Timer_B.

356 Timer_B SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

CCR6

Compararator 6

CCI

15 0

OUTMODx

Capture

Mode

CMx

Sync

COVlogic

Output

Unit6 D Set Q
EQU0

OUT

OUT6 Signal

Reset

POR

EQU6

Count

Mode

16-bit Timer

TBR

Set TBIFG

15 0

MCx

Clear

TBCLR

CCR0

EQU0

Timer Clock

Timer Clock

VCC

TBR=0

UP/DOWN
EQU0

CLLDx

CNTLx

Load

CCR1

CCR2

CCR3

CCR4

CCR5

Timer Block

TBCCR6

RC

10 12 168

TBCLGRPx

CCR5

CCR4

CCR1

Group

Load Logic

Group

Load Logic

TBSSELx

00

01

10

11

GND

VCC

CCI6A

CCI6B

00

01

10

11

CCISx

00

01

10

11

00

01

10

11
CAP

1

0

SCS

1

0

Set TBCCR6
CCIFG

Compare Latch TBCL6

ACLK

SMCLK

TBCLK

Timer Clock

Divider

/1/2/4/8

IDx IDEXx

Divider

/1.../8

www.ti.com Timer_B Introduction

Figure 13-1. Timer_B Block Diagram

SLAU208–June 2008 Timer_B 357
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13.2 Timer_B Operation

13.2.1 16-Bit Timer Counter

13.2.2 Starting the Timer

13.2.3 Timer Mode Control

Timer_B Operation www.ti.com

The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in
the following sections.

The 16-bit timer/counter register, TBR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TBR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider and count
direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions.

When the TBCLK is asynchronous to the CPU clock, any read from TBR should occur while
the timer is not operating or the results may be unpredictable. Alternatively, the timer may be
read multiple times while operating, and a majority vote taken in software to determine the
correct reading. Any write to TBR will take effect immediately.

TBR Length
Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTLx bits. The maximum
count value, TBR(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data
written to the TBR register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider
The timer clock TBCLK can be sourced from ACLK, SMCLK, or externally via TBCLK. The clock source is
selected with the TBSSELx bits. The selected clock source may be passed directly to the timer or divided
by 2,4, or 8, using the IDx bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8
using the IDEXx bits.The TBCLK dividers are reset when TBCLR is set.

Note: Timer_B Dividers

Setting the TBCLR bit will clear the contents of TBR, as well as, the dividers. When the
TBCLR bit is cleared, the Timer Clock will immediately begin clocking at the first rising edge
of the Timer_B clock source selected with the TBSSELx bits, and will continue clocking at
the divider settings set by the IDx and IDEXx bits.

The timer may be started or restarted in the following ways:
• The timer counts when MCx > 0 and the clock source is active.
• When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TBCL0. The

timer may then be restarted by loading a nonzero value to TBCL0. In this scenario, the timer starts
incrementing in the up direction from zero.

The timer has four modes of operation as described in Table 13-1: stop, up, continuous, and up/down.
The operating mode is selected with the MCx bits.

Timer_B358 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13.2.3.1 Up Mode

0h

TBR(max)

TBCL0

TBCL0-1 TBCL0 0h

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

1h TBCL0-1 TBCL0 0h

www.ti.com Changing the Period Register TBCL0

Table 13-1. Timer Modes
MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of compare register TBCL0.
10 Continuous The timer repeatedly counts from zero to the value selected by the TBCNTLx bits.
11 Up/down The timer repeatedly counts from zero up to the value of TBCL0 and then back down to zero.

The up mode is used if the timer period must be different from TBR(max) counts. The timer repeatedly
counts up to the value of compare latch TBCL0, which defines the period, as shown in Figure 13-2. The
number of timer counts in the period is TBCL0+1. When the timer value equals TBCL0 the timer restarts
counting from zero. If up mode is selected when the timer value is greater than TBCL0, the timer
immediately restarts counting from zero.

Figure 13-2. Up Mode

The TBCCR0 CCIFG interrupt flag is set when the timer counts to the TBCL0 value. The TBIFG interrupt
flag is set when the timer counts from TBCL0 to zero. Figure 13-3 shows the flag set cycle.

Figure 13-3. Up Mode Flag Setting

Changing the Period Register TBCL0
When changing TBCL0 while the timer is running and when the TBCL0 load mode is immediate, if the
new period is greater than or equal to the old period, or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.

SLAU208–June 2008 Timer_B 359
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0h

TBR(max)

TBR – 1(max) TBR(max) 0h

Timer Clock

Timer

Set TBIFG

1h 0hTBR – 1(max) TBR(max)

0h

EQU0 Interrupt

TBCL0a

TBCL0b TBCL0c
TBCL0d

t1

t0 t0

TBCL1a

TBCL1b TBCL1c

TBCL1d

t1 t1

t0

EQU1 Interrupt

TBR(max)

Continuous Mode www.ti.com

Continuous Mode
In continuous mode the timer repeatedly counts up to TBR(max) and restarts from zero as shown in
Figure 13-4. The compare latch TBCL0 works the same way as the other capture/compare registers.

Figure 13-4. Continuous Mode

The TBIFG interrupt flag is set when the timer counts from TBR(max) to zero. Figure 13-5 shows the flag
set cycle.

Figure 13-5. Continuous Mode Flag Setting

Use of the Continuous Mode
The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TBCLx latch
in the interrupt service routine. Figure 13-6 shows two separate time intervals t0 and t1 being added to the
capture/compare registers. The time interval is controlled by hardware, not software, without impact from
interrupt latency. Up to n (Timer_Bn), where n = 0 to 7, independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 13-6. Continuous Mode Time Intervals

360 Timer_B SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0h

TBCL0

TBCL0-1 TBCL0 TBCL0-1

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

TBCL0-2 1h 0h 1h

Up/Down

www.ti.com Up/Down Mode

Time intervals can be produced with other modes as well, where TBCL0 is used as the period register.
Their handling is more complex since the sum of the old TBCLx data and the new period can be higher
than the TBCL0 value. When the sum of the previous TBCLx value plus tx is greater than the TBCL0 data,
the old TBCL0 value must be subtracted to obtain the correct time interval.

Up/Down Mode
The up/down mode is used if the timer period must be different from TBR(max) counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare latch TBCL0, and
back down to zero, as shown in Figure 13-7. The period is twice the value in TBCL0.

Note: TBCL0 > TBR(max)

If TBCL0 > TBR(max), the counter operates as if it were configured for continuous mode. It
does not count down from TBR(max) to zero.

Figure 13-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TBCLR bit must be used to clear the
direction. The TBCLR bit also clears the TBR value and the TBCLK divider.

In up/down mode, the TBCCR0 CCIFG interrupt flag and the TBIFG interrupt flag are set only once during
the period, separated by 1/2 the timer period. The TBCCR0 CCIFG interrupt flag is set when the timer
counts from TBCL0-1 to TBCL0, and TBIFG is set when the timer completes counting down from 0001h to
0000h. Figure 13-8 shows the flag set cycle.

Figure 13-8. Up/Down Mode Flag Setting

Changing the Value of Period Register TBCL0
When changing TBCL0 while the timer is running, and counting in the down direction, and when the
TBCL0 load mode is immediate, the timer continues its descent until it reaches zero. The new period
takes effect after the counter counts down to zero.

If the timer is counting in the up direction when the new period is latched into TBCL0, and the new period
is greater than or equal to the old period, or greater than the current count value, the timer counts up to
the new period before counting down. When the timer is counting in the up direction, and the new period
is less than the current count value when TBCL0 is loaded, the timer begins counting down. However, one
additional count may occur before the counter begins counting down.

SLAU208–June 2008 Timer_B 361
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TBIFG

0h

TBR(max)

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TBCL0

TBCL1

EQU1
TBIFG Interrupt EventsEQU1

EQU0

EQU1 EQU1

EQU0

TBCL3

EQU3 EQU3EQU3 EQU3

Dead Time

13.2.4 Capture/Compare Blocks

Use of the Up/Down Mode www.ti.com

Use of the Up/Down Mode
The up/down mode supports applications that require dead times between output signals (see section
Timer_B Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 13-9 the tdead is:

tdead = ttimer × (TBCL1 – TBCL3)

With:
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TBCLx = Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead times.

Figure 13-9. Output Unit in Up/Down Mode

Three or seven identical capture/compare blocks, TBCCRx, are present in Timer_B. Any of the blocks
may be used to capture the timer data or to generate time intervals.

Capture Mode
The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input
signal. If a capture is performed:
• The timer value is copied into the TBCCRx register
• The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices may have
different signals connected to CCIxA and CCIxB. Refer to the device-specific data sheet for the
connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit will synchronize the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended. This is illustrated in Figure 13-10.

362 Timer_B SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

n–2 n 1–

Timer Clock

Timer

Set
TBCCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Second
Capture
Taken

COV = 1

Capture
akenT

No

T
Capture

aken

Read
Taken

Capture

Clear Bit COV
in Register TBCCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

www.ti.com Capture Initiated by Software

Figure 13-10. Capture Signal (SCS = 1)

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in
Figure 13-11. COV must be reset with software.

Figure 13-11. Capture Cycle

Capture Initiated by Software
Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets bit CCIS1=1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TBCCTLx ; Setup TBCCTLx
XOR #CCIS0,&TBCCTLx ; TBCCTLx = TBR

Compare Mode
The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or
interrupts at specific time intervals. When TBR counts to the value in a TBCLx:
• Interrupt flag CCIFG is set
• Internal signal EQUx = 1
• EQUx affects the output according to the output mode

SLAU208–June 2008 Timer_B 363
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13.2.5 Output Unit

13.2.5.1 Output Modes

Compare Latch TBCLx www.ti.com

Compare Latch TBCLx
The TBCCRx compare latch, TBCLx, holds the data for the comparison to the timer value in compare
mode. TBCLx is buffered by TBCCRx. The buffered compare latch gives the user control over when a
compare period updates. The user cannot directly access TBCLx. Compare data is written to each
TBCCRx and automatically transferred to TBCLx. The timing of the transfer from TBCCRx to TBCLx is
user-selectable with the CLLDx bits as described in Table 13-2.

Table 13-2. TBCLx Load Events
CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when TBCCRx is written to.
01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0
10 New data is transferred from TBCCRx to TBCLx when TBR counts to 0 for up and continuous modes. New data is

transferred to from TBCCRx to TBCLx when TBR counts to the old TBCL0 value or to 0 for up/down mode
11 New data is transferred from TBCCRx to TBCLx when TBR counts to the old TBCLx value.

Grouping Compare Latches
Multiple compare latches may be grouped together for simultaneous updates with the TBCLGRPx bits.
When using groups, the CLLDx bits of the lowest numbered TBCCRx in the group determine the load
event for each compare latch of the group, except when TBCLGRP = 3, as shown in Table 13-3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the CLLDx bits of the controlling
TBCCRx are set to zero, all compare latches update immediately when their corresponding TBCCRx is
written - no compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped. First, all TBCCRx registers
of the group must be updated, even when new TBCCRx data = old TBCCRx data. Second, the load event
must occur.

Table 13-3. Compare Latch Operating Modes
TBCLGRPx Grouping Update Control

00 None Individual
01 TBCL1+TBCL2TBCL3+TBCL4TBCL5+TBCL6 TBCCR1TBCCR3TBCCR5
10 TBCL1+TBCL2+TBCL3TBCL4+TBCL5+TBCL6 TBCCR1TBCCR4
11 TBCL0+TBCL1+TBCL2+ TBCL3+TBCL4+TBCL5+TBCL6 TBCCR1

Each capture/compare block contains an output unit. The output unit is used to generate output signals
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUx signals. The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin (corresponding PSEL bit is
set, and port configured as input), and when the pin is pulled high, all Timer_B outputs are in a
high-impedance state.

The output modes are defined by the OUTMODx bits and are described in Table 13-4. The OUTx signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUx = EQU0.

Timer_B364 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0h

TBR(max)

EQU0
TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 EQU0
TBIFG

EQU1 EQU0
TBIFG

Interrupt Events

www.ti.com Output Example—Timer in Up Mode

Table 13-4. Output Modes
OUTMODx Mode Description

000 Output The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately
when OUTx is updated.

001 Set The output is set when the timer counts to the TBCLx value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer counts to the TBCLx value. It is reset when the timer
counts to the TBCL0 value.

011 Set/Reset The output is set when the timer counts to the TBCLx value. It is reset when the timer
counts to the TBCL0 value.

100 Toggle The output is toggled when the timer counts to the TBCLx value. The output period is
double the timer period.

101 Reset The output is reset when the timer counts to the TBCLx value. It remains reset until another
output mode is selected and affects the output.

110 Toggle/Set The output is toggled when the timer counts to the TBCLx value. It is set when the timer
counts to the TBCL0 value.

111 Reset/Set The output is reset when the timer counts to the TBCLx value. It is set when the timer
counts to the TBCL0 value.

Output Example—Timer in Up Mode
The OUTx signal is changed when the timer counts up to the TBCLx value, and rolls from TBCL0 to zero,
depending on the output mode. An example is shown in Figure 13-12 using TBCL0 and TBCL1.

Figure 13-12. Output Example—Timer in Up Mode

SLAU208–June 2008 Timer_B 365
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 TBIFG EQU1 EQU0 Interrupt EventsEQU0

Output Example—Timer in Continuous Mode www.ti.com

Output Example—Timer in Continuous Mode
The OUTx signal is changed when the timer reaches the TBCLx and TBCL0 values, depending on the
output mode, An example is shown in Figure 13-13 using TBCL0 and TBCL1.

Figure 13-13. Output Example—Timer in Continuous Mode

Timer_B366 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

EQU3

TBIFG
Interrupt Events

EQU3

EQU0

EQU3 EQU3

EQU0

0h

TBR(max)

TBCL0

TBCL3

13.2.6 Timer_B Interrupts

www.ti.com Output Example—Timer in Up/Down Mode

Output Example—Timer in Up/Down Mode
The OUTx signal changes when the timer equals TBCLx in either count direction and when the timer
equals TBCL0, depending on the output mode. An example is shown in Figure 13-14 using TBCL0 and
TBCL3.

Figure 13-14. Output Example—Timer in Up/Down Mode

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD_7,&TBCCTLx ; Set output mode=7
BIC #OUTMODx,&TBCCTLx ; Clear unwanted bits

Two interrupt vectors are associated with the 16-bit Timer_B module:
• TBCCR0 interrupt vector for TBCCR0 CCIFG
• TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the associated TBCCRx
register. In compare mode, any CCIFG flag is set when TBR counts to the associated TBCLx value.
Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bit are set.

SLAU208–June 2008 Timer_B 367
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

D
Set

Q
IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

TBCCR0 Interrupt Vector www.ti.com

TBCCR0 Interrupt Vector
The TBCCR0 CCIFG flag has the highest Timer_B interrupt priority and has a dedicated interrupt vector
as shown in Figure 13-15. The TBCCR0 CCIFG flag is automatically reset when the TBCCR0 interrupt
request is serviced.

Figure 13-15. Capture/Compare TBCCR0 Interrupt Flag

TBIV, Interrupt Vector Generator
The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCR0 CCIFG) are prioritized and combined to
source a single interrupt vector. The interrupt vector register TBIV is used to determine which flag
requested an interrupt.

The highest priority enabled interrupt (excluding TBCCR0 CCIFG) generates a number in the TBIV
register (see register description). This number can be evaluated or added to the program counter to
automatically enter the appropriate software routine. Disabled Timer_B interrupts do not affect the TBIV
value.

Any access, read or write, of the TBIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TBCCR2 CCIFG flag will generate another interrupt.

TBIV, Interrupt Handler Examples
The following software example shows the recommended use of TBIV and the handling overhead. The
TBIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:
• Capture/compare block CCR0 11 cycles
• Capture/compare blocks CCR1 to CCR6 16 cycles
• Timer overflow TBIFG 14 cycles

368 Timer_B SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV for Timer_B3.

; Interrupt handler for TBCCR0 CCIFG. Cycles
CCIFG_0_HND

... ; Start of handler Interrupt latency 6
RETI 5

; Interrupt handler for TBIFG, TBCCR1 and TBCCR2 CCIFG.
TB_HND ... ; Interrupt latency 6

ADD &TBIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1_HND ; Vector 2: Module 1 2
JMP CCIFG_2_HND ; Vector 4: Module 2 2
RETI ; Vector 6
RETI ; Vector 8
RETI ; Vector 10
RETI ; Vector 12

TBIFG_HND ; Vector 14: TBIFG Flag
... ; Task starts here
RETI 5

CCIFG_2_HND ; Vector 4: Module 2
... ; Task starts here
RETI ; Back to main program 5

; The Module 1 handler shows a way to look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCIFG_1_HND ; Vector 6: Module 3

... ; Task starts here
JMP TB_HND ; Look for pending ints 2

SLAU208–June 2008 Timer_B 369
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

13.3 Timer_B Registers
Timer_B Registers www.ti.com

The Timer_B registers are listed in Table 13-5. The base address can be found in the device specific data
sheet. The address offset is listed in Table 13-5.

Table 13-5. Timer_B Registers
AddressRegister Short Form Register Type Initial StateOffset

Timer_B control TBCTL Read/write 00h 0000h
Timer_B capture/compare control 0 TBCCTL0 Read/write 02h 0000h
Timer_B capture/compare control 1 TBCCTL1 Read/write 04h 0000h
Timer_B capture/compare control 2 TBCCTL2 Read/write 06h 0000h
Timer_B capture/compare control 3 TBCCTL3 Read/write 08h 0000h
Timer_B capture/compare control 4 TBCCTL4 Read/write 0Ah 0000h
Timer_B capture/compare control 5 TBCCTL5 Read/write 0Ch 0000h
Timer_B capture/compare control 6 TBCCTL6 Read/write 0Eh 0000h
Timer_B counter TBR Read/write 10h 0000h
Timer_B capture/compare 0 TBCCR0 Read/write 12h 0000h
Timer_B capture/compare 1 TBCCR1 Read/write 14h 0000h
Timer_B capture/compare 2 TBCCR2 Read/write 16h 0000h
Timer_B capture/compare 3 TBCCR3 Read/write 18h 0000h
Timer_B capture/compare 4 TBCCR4 Read/write 1Ah 0000h
Timer_B capture/compare 5 TBCCR5 Read/write 1Ch 0000h
Timer_B capture/compare 6 TBCCR6 Read/write 1Eh 0000h
Timer_B Interrupt Vector TBIV Read only 2Eh 0000h
Timer_B Extension TBEX0 Read/write 20h 0000h

370 Timer_B SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Timer_B Registers

Timer_B Control Register, TBCTL

15 14 13 12 11 10 9 8
Unused TBCLGRPx CNTLx Unused TBSSELx
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TBCLR TBIE TBIFG
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Unused Bit 15 Unused
TBCLGRP Bit 14-13 TBCLx group

00 Each TBCLx latch loads independently
01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)

TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCR5 CLLDx bits control the update)
TBCL0 independent

10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCL0 independent

11 TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6 (TBCCR1 CLLDx bits control the update)
CNTLx Bits 12-11 Counter Length

00 16-bit, TBR(max) = 0FFFFh
01 12-bit, TBR(max) = 0FFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = 0FFh

Unused Bit 10 Unused
TBSSELx Bits 9-8 Timer_B clock source select

00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK

IDx Bits 7-6 Input divider. These bits along with the IDEXx bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_B is not in use conserves power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TBCL0
10 Continuous mode: the timer counts up to the value set by TBCNTLx
11 Up/down mode: the timer counts up to TBCL0 and down to 0000h

Unused Bit 3 Unused
TBCLR Bit 2 Timer_B clear. Setting this bit resets TBR, the TBCLK divider, and the count direction. The TBCLR bit is

automatically reset and is always read as zero.
TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.

0 Interrupt disabled
1 Interrupt enabled

TBIFG Bit 0 Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending

SLAU208–June 2008 Timer_B 371
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Timer_B Registers www.ti.com

TBR, Timer_B Register

15 14 13 12 11 10 9 8
TBRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TBRx
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TBRx Bits 15-0 Timer_B register. The TBR register is the count of Timer_B.

372 Timer_B SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Timer_B Registers

TBCCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS CLLDx CAP
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG
rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CMx Bit 15-14 Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit 13-12 Capture/compare input select. These bits select the TBCCRx input signal. See the device-specific data
sheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

CLLDx Bit 10-9 Compare latch load. These bits select the compare latch load event.
00 TBCLx loads on write to TBCCRx
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to 0 (up or continuous mode)

TBCLx loads when TBR counts to TBCL0 or to 0 (up/down mode)
11 TBCLx loads when TBR counts to TBCLx

CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode

OUTMODx Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TBCL0 because EQUx = EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.
OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

SLAU208–June 2008 Timer_B 373
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Timer_B Registers www.ti.com

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TBIV, Timer_B Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TBIVx 0
r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

TBIVx Bits 15-0 Timer_B interrupt vector value

TBIV InterruptInterrupt Source Interrupt FlagContents Priority
00h No interrupt pending
02h Capture/compare 1 TBCCR1 CCIFG Highest
04h Capture/compare 2 TBCCR2 CCIFG
06h Capture/compare 3 TBCCR3 CCIFG
08h Capture/compare 4 TBCCR4 CCIFG
0Ah Capture/compare 5 TBCCR5 CCIFG
0Ch Capture/compare 6 TBCCR6 CCIFG
0Eh Timer overflow TBIFG Lowest

TBEX0, Timer_B Expansion Register 0

15 14 13 12 11 10 9 8

Unused Unused Unused Unused Unused Unused Unused Unused
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Unused Unused Unused Unused Unused IDEX
r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Unused Bits 15-3 Unused. Read only. Always read as 0.
IDEX Bits 2-0 Input divider expansion. These bits along with the IDx bits select the divider for the input clock.

000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

Timer_B374 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 14
SLAU208–June 2008

Real-Time Clock (RTC_A)

The Real-Time Clock module provides clock counters with calendar mode, a flexible programmable alarm,
and calibration. This chapter describes the Real-Time Clock (RTC_A) module. The RTC_A is implemented
in the MSP430x5xx devices.

Topic .. Page

14.1 Real-Time Clock Introduction.. 376
14.2 Real-Time Clock Operation ... 378
14.3 Real-Time Clock Registers ... 383

SLAU208–June 2008 Real-Time Clock (RTC_A) 375
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

14.1 Real-Time Clock Introduction

Real-Time Clock Introduction www.ti.com

The Real-Time Clock module provides a clock with calendar that can also be configured as a general
purpose counter.

Real-Time Clock features include:
• Configurable for Real-Time Clock mode or general purpose counter
• Provides seconds, minutes, hours, day of week, day of month, month and year in calender mode.
• Interrupt capability.
• Selectable BCD or binary format in Real-Time Clock mode
• Programmable alarms in Real-Time Clock mode
• Calibration logic for time offset correction in Real-Time clock mode

The Real-Time Clock block diagram is shown in Figure 14-1.

Note: Real-Time Clock Initialization

Most Real-Time Clock module registers have no initial condition. These registers must be
configured by user software before use.

376 Real-Time Clock (RTC_A) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

078... ...15
RTCNT4/
RTCDOW

16...2324...31

Calendar

RTCMONRTCYEARLRTCYEARH RTCDAY

RTCTEV

00
01
10
11

8-bit overflow/minute changed

RTCSSEL

00
01
10
11

2 RTCBCD

Alarm

RTCAHOURRTCADAYRTCADOW RTCAMIN

Set_RTCTEVIFG

Set_RTCAIFG

2

EN

EN

EN

RTCHOLD

RT1PS

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

RT1SSEL

00
01
10
11

3

2

RT1PSDIV

Set_RT1PSIFG

EN
3

RT1IP

RT1PSHOLD

RT0PS

RT0SSEL

3
RT0PSDIV

Set_RT0PSIFG

EN

110
101
100
011
010
001
000

3

RT0IP

SMCLK

ACLK

RT0PSHOLD

1
0

Keepout

Logic

Set_RTCRDYIFG

Calibration
Logic EN

5

RTCCALS RTCCAL RTCMODE1
1

1

0
1

1

1
0

1

0
0

1

1
1

0

0
1

0

1
0

0

0
0

0

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

111

1
1

1

0
1

1

1
0

1

0
0

1

1
1

0

0
1

0

1
0

0

0
0

0

16-bit overflow/hour changed

24-bit overflow/midnight

32-bit overflow/noon

RTCNT3/
RTCHOUR

RTCNT2/
RTCMIN

RTCNT1/
RTCSEC

110
101
100
011
010
001
000

111

www.ti.com Real-Time Clock Introduction

Figure 14-1. Real-Time Clock

SLAU208–June 2008 Real-Time Clock (RTC_A) 377
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

14.2 Real-Time Clock Operation

14.2.1 Counter Mode

14.2.2 Calendar Mode

14.2.2.1 Real-Time Clock and Prescale Dividers

Real-Time Clock Operation www.ti.com

The Real-Time Clock module can be configured as a real-time clock with calendar function or as a 32-bit
general purpose counter with the RTCMODE bit

Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is
directly accessible by software. Switching from calendar mode to counter mode resets the count value
(RTCNT1, RTCNT2, RTCNT3, RTCNT4), as well as, the prescale counters (RT0PS, RT1PS).

The clock to increment the counter can be sourced from ACLK, SMCLK, or prescaled versions of ACLK or
SMCLK. Prescaled versions of ACLK or SMCLK are sourced from the prescale dividers , RT0PS and
RT1PS. RT0PS and RT1PS output /2, /4, /8, 16, /32, /64, /128, /256 versions of ACLK and SMCLK,
respectively. The output of RT0PS can be cascaded with RT1PS. The cascaded output can be used as a
clock source input to the 32-bit counter.

Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit,
or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An
RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter RTCNT1 through
RTCNT4 is individually accessible and may be written to.

RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter.
RT0PS and RT1PS can be halted on an individual basis by setting their respective RT0PSHOLD and
RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting RT0PSHOLD will cause both RT0PS
and RT1PS to be halted. The 32-bit counter can be halted several ways depending on the configuration. If
the 32-bit counter is sourced directly from ACLK or SMCLK, it can be halted by setting RTCHOLD. If it is
sourced from the output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is
sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting RT0PSHOLD,
RT1PSHOLD, or RTCHOLD.

Note: Accessing the RTCNTx registers

When the counter clock is asynchronous to theCPUclock, any read from any RTCNTx,
RT0PS, or RT1PS registers should occur while the counter is not operating. Otherwise, the
results may be unpredictable. Alternatively, the counter may be read multiple times while
operating, and a majority vote taken in software to determine the correct reading. Anywrite to
anyRTCNTx, RT0PS, or RT1PS registers takes effect immediately.

Calendar mode is selected when RTCMODE is set. In calendar mode, the Real-Time Clock module
provides seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or
hexadecimal format. The calendar includes a leap year algorithm that considers all years evenly divisible
by 4 as leap years. This algorithm is accurate from the year 1901 through 2099.

The prescale dividers, RT0PS and RT1PS are automatically configured to provide a one second clock
interval for the Real-Time Clock. RT0PS is sourced from ACLK. ACLK must be set to 32768 Hz, nominal
for proper Real-Time Clock calendar operation. RT1PS is cascaded with the output ACLK/256 of RT0PS.
The Real-Time Clock is sourced with the /128 output of RT1PS, thereby providing the required one
second interval. Switching from counter to calendar mode clears the seconds, minutes, hours,
day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, the RT0PS and
RT1PS are cleared.

When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be selected
before the time is set. Changing the state of RTCBCD clears the seconds, minutes, hours, day-of-week,
and year counts and sets day-of-month and month counts to 1. In addition, RT0PS and RT1PS are
cleared.

378 Real-Time Clock (RTC_A) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

14.2.2.2 Real-Time Clock Alarm Function

www.ti.com Real-Time Clock Operation

In calendar mode, the RT0SSEL, RT1SSEL, RT0PSDIV, RT1PSDIV, RT0PSHOLD, RT1PSHOLD, and
RTCSSEL bits are do not care. Setting RTCHOLD halts the real-time counters and prescale counters,
RT0PS and RT1PS.

The Real-Time Clock module provides for a flexible alarm system. There is a single, user programmable
alarm that can be programmed based on the settings contained in the alarm registers for minutes, hours,
day of week, and day of month. The user programmable alarm function is only available in calendar mode
of operation.

Each alarm register contains an alarm enable bit, AE that can be used to enable the respective alarm
register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated.

For example, a user wishes to set an alarm every hour at 15 minutes past the hour i.e. 00:15:00,
01:15:00, 02:15:00, etc. This is possible by setting RTCAMIN to 15. By setting the AE bit of the RTCAMIN,
and clearing all other AE bits of the alarm registers, the alarm will be enabled. When enabled, the AF will
be set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00,
etc.

For example, a user wishes to set an alarm every day at 04:00:00. This is possible by setting RTCAHOUR
to 4. By setting the AE bit of the RTCHOUR, and clearing all other AE bits of the alarm registers, the
alarm will be enabled. When enabled, the AF will be set when the count transitions from 03:59:59 to
04:00:00.

For example, a user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN
would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm will be enabled. Once
enabled, the AF will be set when the the time count transitions from 06:29:59 to 06:30:00. In this case, the
alarm event will occur every day at 06:30:00.

For example, a user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2,
RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADOW,
RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled, the AF will be set when the the
time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2.

For example, a user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be
set to 5, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of
RTCADAY, RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled, the AF will be set when
the the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5.

Note: Invalid Alarm Settings

Invalid alarm settings are not checked via hardware. It is the user responsibility that valid
alarm settings are entered.

Note: Invalid Time and Date Values

Writing of invalid date and/or time information or data values outside the legal ranges
specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH,
RTCYEARL, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in
unpredictable behavior.

Note: Setting the Alarm

In order to prevent potential erroneous alarm conditions from occurring, the alarms should be
disabled be clearing the RTCAIE, RTCAIFG, and AE bits prior to writing new time values to
the RTC time registers.

SLAU208–June 2008 Real-Time Clock (RTC_A) 379
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

14.2.2.3 Reading or Writing Real-Time Clock Registers in Calendar Mode

14.2.3 Real-Time Clock Interrupts

14.2.3.1 Real-Time Clock Interrupts in Calendar Mode

Real-Time Clock Operation www.ti.com

Since the system clock may in fact be asynchronous to the Real-Time Clock clock source, special care
must be used when accessing the Real-Time Clock registers.

In calendar mode, the real-time clock registers are updated once per second. In order to prevent reading
any real-time clock register at the time of an update that could result in an invalid time being read, a
keepout window is provided. The keepout window is centered approximately - 128/32768 seconds around
the update transition. The read only RTCRDY bit is reset during the keepout window period and set
outside the keepout the window period. Any read of the clock registers while RTCRDY is reset, is
considered to be potentially invalid, and the time read should be ignored.

An easy way to safely read the real-time clock registers is to utilize the RTCRDYIFG interrupt flag. Setting
RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt will be generated based on the
rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has
nearly a complete second to safely read any or all of the real-time clock registers. This synchronization
process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically
when the interrupt is serviced, or can be reset with software.

In counter mode, the RTCRDY bit remains reset. The RTCRDYIE is a do not care and the RTCRDYIFG
remains reset.

Note: Reading or Writing Real-Time Clock Registers

When the counter clock is asynchronous to theCPUclock, any read from any RTCSEC,
RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, RTCYEARH registers
while the RTCRDY is resetmay result in invalid data being read. To safely read the counting
registers, either polling of the RTCRDY bit or the synchronization procedure described above
can be used. Alternatively, the counter register can be read multiple times while operating,
and a majority vote taken in software to determine the correct reading. Reading theRT0PS
andRT1PS can only be handled by reading the registers multiple times and a majority vote
taken in software to determine the correct reading or by halting the counters.

Any write to any counting register takes effect immediately. However, the clock is stopped
during the write. In addition, RT0PS and RT1PS registers are reset. This could result in
losing up to one second during a write.Writing of data outside the legal ranges or invalid time
stamp combinations results in unpredictable behavior.

The Real-Time Clock module has five interrupt sources available, each with independent enables and
flags.

In calendar mode, five sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG,
RTCTEVIFG, and RTCAIFG. These flags are prioritized and combined to source a single interrupt vector.
The interrupt vector register RTCIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the RTCIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled RTC interrupts do not affect the RTCIV value.

Any access, read or write, of the RTCIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
In addition, all flags can be cleared via software.

The user programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting the RTCAIE
enables the interrupt. In addition to the user programmable alarm, The Real-Time Clock Module provides
for an interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be
selected to cause an alarm event when RTCMIN changed, RTCHOUR changed, every day at midnight
(00:00:00), or every day at noon (12:00:00). The event is selectable with the RTCTEV bits Setting the
RTCTEVIE bit enables the interrupt.

380 Real-Time Clock (RTC_A) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

14.2.3.2 Real-Time Clock Interrupts in Counter Mode

www.ti.com RTCIV Software Example

The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG and is useful in synchronizing the
read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt.

The RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In calendar
mode, RT0PS is sourced with ACLK at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz,
1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt.

The RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In calendar
mode, RT1PS is sourced with the output of RT0PS, which is 128Hz (32768/256 Hz). Therefore, intervals
of 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables
the interrupt.

In counter mode, a three interrupt sources are available, namely RT0PSIFG, RT1PSIFG, and
RTCTEVIFG. The RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are do not care.

The RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In counter mode,
RT0PS is sourced with ACLK or SMCLK so divide ratios of /2, /4, /8, /16, /32, /64, /128, /256 of the
respective clock source are possible. Setting the RT0PSIE bit enables the interrupt.

The RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode,
RT1PS is sourced with ACLK, SMCLK, or the output of RT0PS so divide ratios of /2, /4, /8, /16, /32, /64,
/128, /256 of the respective clock source are possible. Setting the RT1PSIE bit enables the interrupt.

The Real-Time Clock Module provides for an interval timer that sources real-time clock interrupt,
RTCTEVIFG. The interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-bit,
or 32-bit overflow occurs within the 32-bit counter. The event is selectable with the RTCTEV bits Setting
the RTCTEVIE bit enables the interrupt.

RTCIV Software Example
The following software example shows the recommended use of RTCIV and the handling overhead. The
RTCIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

; Interrupt handler for RTC interrupt flags.

RTC_HND ; Interrupt latency 6
ADD &RTCIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP RTCRDYIFG_HND ; Vector 2: RTCRDYIFG 2
JMP RTCTEVIFG_HND ; Vector 4: RTCTEVIFG 2
JMP RTCAIFG ; Vector 6: RTCAIFG 5
JMP RT0PSIFG ; Vector 8: RT0PSIFG 5
JMP RT1PSIFG ; Vector A: RT1PSIFG 5
RETI ; Vector C: Reserved 5

RTCRDYIFG_HND ; Vector 2: RTCRDYIFG Flag
to ; Task starts here
RETI 5

RTCTEVIFG_HND ; Vector 4: RTCTEVIFG
to ; Task starts here
RETI ; Back to main program 5

RTCAIFG_HND ; Vector 6: RTCAIFG
to ; Task starts here

RT0PSIFG_HND ; Vector 8: RT0PSIFG

SLAU208–June 2008 Real-Time Clock (RTC_A) 381
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

14.2.4 Real-Time Clock Calibration

RTCIV Software Example www.ti.com

to ; Task starts here

RT1PSIFG_HND ; Vector A: RT1PSIFG
to ; Task starts here

The Real-Time Clock module has calibration logic that allows for adjusting the crystal frequency in +4 ppm
or –2 ppm steps allowing for higher time keeping accuracy from standard crystals.

The RTCCALx bits are used to adjust the frequency. When RTCCALS is set, each RTCCALx LSB will
cause a +4 ppm adjustment. When RTCCALS is cleared, each RTCCALx LSB will cause a –2 ppm
adjustment.

To calibrate the frequency, the RTCCLK output signal is available at a pin. The RTCCALF bits can be
used to select the frequency rate of the output signal. During calibration, the RTCCLK can be measured.
The result of this measurement can be applied to the RTCCALS and RTCCALx bits to effectively reduce
the initial offset of the clock. For example, say the RTCCLK is output at a frequency of 512 Hz. The
measured RTCCLK is 511.9658 Hz. This frequency error is approximately 67 ppm too low. In order to
increase the frequency by 67 ppm, RTCCALS would be set, and RTCCALx would be set to 17 (67/4).

In counter mode (RTCMODE = 0), the calibration logic is disabled.

Note: Calibration Output Frequency

The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not effected by
changes in the calibration settings. The 1-Hz output frequency is affected by changes in the
calibration settings.

Real-Time Clock (RTC_A)382 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

14.3 Real-Time Clock Registers
www.ti.com Real-Time Clock Registers

The Real-Time Clock module registers are listed in and Table 14-1. Some of the registers can be
accessed word-wise as shown in Table 14-2. The base register for the Real-Time Clock module registers
can be found in the device specific data sheet. The address offsets are given in Table 14-1 and
Table 14-2.

Table 14-1. Real-Time Clock Registers
AddressRegister Short Form Register Type Initial StateOffset

Real-Time Clock control register 0 RTCCTL0 Read/write 00h 00h
Real-Time Clock control register 1 RTCCTL1 Read/write 01h 40h
Real-Time Clock control register 2 RTCCTL2 Read/write 02h 00h
Real-Time Clock control register 3 RTCCTL3 Read/write 03h 00h
Real-Time Prescale Timer 0 control register RTCPS0CTL Read/write 08h 10h
Real-Time Prescale Timer 1 control register RTCPS1CTL Read/write 0Ah 10h
Real-Time Prescale Timer 0 RTCPS0 Read/write 0Ch Unchanged
Real-Time Prescale Timer 1 RTCPS1 Read/write 0Dh Unchanged
Real Time Clock Interrupt vector RTCIV Read 0Eh 00h
Real-Time Clock Second Real-Time Counter RTCSEC/RTCNT1 Read/write 10h Unchangedregister 1
Real-Time Clock Minute Real-Time Counter RTCMIN/RTCNT2 Read/write 11h Unchangedregister 2
Real-Time Clock Hour Real-Time Counter RTCHOUR/RTCNT3 Read/write 12h Unchangedregister 3
Real-Time Clock Day of Week Real-Time RTCDOW/RTCNT4 Read/write 13h UnchangedCounter register 4
Real-Time Clock Day of Month RTCDAY Read/write 14h Unchanged
Real-Time Clock Month RTCMON Read/write 15h Unchanged
Real-Time Clock Year (Low Byte) RTCYEARL Read/write 16h Unchanged
Real-Time Clock Year (High Byte) RTCYEARH Read/write 17h Unchanged
Real-Time Clock Minute Alarm RTCAMIN Read/write 18h Unchanged
Real-Time Clock Hour Alarm RTCAHOUR Read/write 19h Unchanged
Real-Time Clock Day of Week Alarm RTCADOW Read/write 1Ah Unchanged
Real-Time Clock Day of Month Alarm RTCADAY Read/write 1Bh Unchanged

SLAU208–June 2008 Real-Time Clock (RTC_A) 383
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Real-Time Clock Registers www.ti.com

Table 14-2. Word Access to Registers in Counter Mode
High-Byte Low-ByteWord Register Short Form Address OffsetRegister Register

Real-Time control registers 0, 1 RTCCTL01 RTCCTL1 RTCCTL0 00h
Real-Time control registers 2, 3 RTCCTL23 RTCCTL3 RTCCTL2 02h
Real-Time Prescale Timer 0 control RTCPS0CTL RTCPS0CTLH RTCPS0CTLL 08h
Real-Time Prescale Timer 1 control RTCPS1CTL RTCPS1CTLH RTCPS1CTLL 0Ah
Real-Time Prescale Timer RTCPS RTCPS1 RTCPS0 0Ch
Real Time Clock Interrupt vector RTCIV 0Eh
Real-Time Clock Time 0 Real-Time RTCMIN/ RTCSEC/RTCTIM0/RTCNT12 10hCounter registers 1, 2 RTCNT2 RTCNT1
Real-Timer Clock Time 1 Real-Time RTCDOW/ RTCHOUR/RTCTIM1/RTCNT34 12hCounter registers 3, 4 RTCNT4 RTCNT3
Real-Timer Clock Date RTCDATE RTCMON RTCDAY 14h
Real-Timer Clock Year RTCYEAR RTCYEARH RTCYEARL 16h
Real-Timer Clock Alarm min/hour RTCAMINHR RTCAHOUR RTCAMIN 18h
Real-Timer Clock Alarm day of week/day RTCADOWDAY RTCADAY RTCADOW 1Ah

Real-Time Clock (RTC_A)384 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Real-Time Clock Registers

RTCCTL0, Real-Time Clock Control Register 0

7 6 5 4 3 2 1 0
Reserved RTCTEVIE RTCAIE RTCRDYIE Reserved RTCTEVIFG RTCAIFG RTCRDYIFG

r0 rw-0 rw-0 rw-0 r0 rw-(0) rw-(0) rw-(0)

Reserved Bit 7 Reserved. Always read as 0.
RTCTEVIE Bit 6 Real-time clock time event interrupt enable

0 Interrupt not enabled
1 Interrupt enabled

RTCAIE Bit 5 Real-time clock alarm interrupt enable. This bit remains cleared when in counter mode (RTCMODE = 0).
0 Interrupt not enabled
1 Interrupt enabled

RTCRDYIE Bit 4 Real-time clock alarm interrupt enable
0 Interrupt not enabled
1 Interrupt enabled

Reserved Bit 3 Reserved. Always read as 0.
RTCTEVIFG Bit 2 Real-time clock time event flag

0 No time event occurred.
1 Time event occurred.

RTCAIFG Bit 1 Real-time clock alarm flag. This bit remains cleared when in counter mode (RTCMODE = 0).
0 No time event occurred.
1 Time event occurred.

RTCRDYIFG Bit 0 Real-time clock alarm flag
0 RTC can not be read safely
1 RTC can be read safely

SLAU208–June 2008 Real-Time Clock (RTC_A) 385
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Real-Time Clock Registers www.ti.com

RTCCTL1, Real-Time Clock Control Register 1

7 6 5 4 3 2 1 0

RTCBCD RTCHOLD RTCMODE RTCRDY RTCSSEL RTCTEV
rw-(0) rw-(1) rw-(0) r-(0) rw-0 rw-0 rw-(0) rw-(0)

RTCBCD Bit 7 Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to calendar mode
(RTCMODE = 1) only - setting will be ignored in counter mode. Changing this bit will clear seconds,
minutes, hours, day of week, and year are to 0 and sets day of month and month to 1. The real-time
clock registers need to be set by software afterwards.
0 Binary/hexadecimal code selected
1 BCD (Binary Coded Decimal) code selected

RTCHOLD Bit 6 Real-time clock hold
0 Real-Time Clock (32-bit counter or calendar mode) is operational
1 In counter mode (RTCMODE = 0) only the 32-bit counter is stopped. In calendar mode

(RTCMODE = 1) the calendar is stopped as well as the Prescale counters, RT0PS and RT1PS.
RT0PSHOLD and RT1PSHOLD are do not care.

RTCMODE Bit 5 Real-time clock mode
0 32-bit counter mode
1 Calendar modeSwitching between counter and calendar mode will reset the real-time

clock/counter registers. Switching to calendar mode clears seconds, minutes, hours, day of
week, and year are to 0 and sets day of month and month to 1. The real-time clock registers
need to be set by software afterwards. The Basic Timer counters, BT0CNT and BT1CNT, are
also cleared.

RTCRDY Bit 4 Real-time clock ready
0 RTC time values in transition (calendar mode only).
1 RTC time values safe for reading (calendar mode only)This bit indicates when the RTC time

values are safe for reading (calendar mode only). In counter mode, RTCRDY signal remains
cleared.

RTCSSEL Bits 3-2 Real-time clock source select. Selects clock input source to the RTC/32-bit counter. In Real-Time Clock
calendar mode, these bits are do not care. The clock input is automatically set to the output of RT1PS.
00 ACLK
01 SMCLK
10 Output from RT1PS
11 Output from RT1PS

RTCTEV Bits 1-0 Real-time clock time event

RTC Mode RTCTEVx Interrupt Interval
Counter Mode (RTCMODE = 0) 00 8-bit overflow

01 16-bit overflow
10 24-bit overflow
11 32-bit overflow

Calendar Mode (RTCMODE = 1) 00 Minute changed
01 Hour changed
10 Every day at midnight (00:00)
11 Every day at noon (12:00)

386 Real-Time Clock (RTC_A) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Real-Time Clock Registers

RTCCTL2, Real-Time Clock Control Register 2

7 6 5 4 3 2 1 0
RTCCALS Reserved RTCCAL

rw-(0) r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

RTCCALS Bit 7 Real-time clock calibration sign
0 Frequency adjusted down
1 Frequency adjusted up

Reserved Bit 6 Reserved. Always read as 0.
RTCCAL Bits 5-0 Real-time clock calibration bits

Each LSB represents approximately +4 ppm (RTCCALS = 1) or a -2 ppm (RTCCALS = 0) adjustment in
frequency.

RTCCTL3, Real-Time Clock Control Register 3

7 6 5 4 3 2 1 0

Reserved RTCCALF
r0 r0 r0 r0 r0 r0 rw-0 rw-0

Reserved Bits 7-2 Reserved. Always read as 0.
RTCCALF Bits 1-0 Real-time clock calibration frequency

Selects frequency output to RTCCLK pin for calibration measurement. The corresponding port must be
configured for the peripheral module function. The RTCCLK is not available in counter mode and
remains low and the RTCCALF bits are do not care.
00 No frequency output to RTCCLK pin
01 512 Hz
10 256 Hz
11 1 Hz

RTCNT1, RTC Counter Register 1, Counter Mode

7 6 5 4 3 2 1 0

RTCNT1x
rw rw rw rw rw rw rw rw

RTCNT1x Bits 7-0 The RTCNT1 register is the count of RTCNT1

RTCNT2, RTC Counter Register 2, Counter Mode

7 6 5 4 3 2 1 0

RTCNT2x
rw rw rw rw rw rw rw rw

RTCNT2x Bits 7-0 The RTCNT2 register is the count of RTCNT2

RTCNT3, RTC Counter Register 3, Counter Mode

7 6 5 4 3 2 1 0

RTCNT3x
rw rw rw rw rw rw rw rw

RTCNT3x Bits 7-0 The RTCNT3 register is the count of RTCNT3

SLAU208–June 2008 Real-Time Clock (RTC_A) 387
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Real-Time Clock Registers www.ti.com

RTCNT4, RTC Counter Register 4, Counter Mode

7 6 5 4 3 2 1 0
RTCNT4x

rw rw rw rw rw rw rw rw

RTCNT4x Bits 7-0 The RTCNT4 register is the count of RTCNT4

RTCSEC, RTC Seconds Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 Seconds (0 to 59)
r-0 r-0 rw rw rw rw rw rw

RTCSEC, RTC Seconds Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 Seconds – high digit (0 to 5) Seconds – low digit (0 to 9)
r-0 rw rw rw rw rw rw rw

RTCMIN, RTC Minutes Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 Minutes (0 to 59)
r-0 r-0 rw rw rw rw rw rw

RTCMIN, RTC Minutes Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 Minutes – high digit (0 to 5) Minutes – low digit (0 to 9)
r-0 rw rw rw rw rw rw rw

RTCHOUR, RTC Hours Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 Hours (0 to 24)
r-0 r-0 r-0 rw rw rw rw rw

RTCHOUR, RTC Hours Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 0 Hours – high digit (0 to 2) Hours – low digit (0 to 9)
r-0 r-0 rw rw rw rw rw rw

RTCDOW, RTC Day of Week Register, Calendar Mode

7 6 5 4 3 2 1 0

0 0 0 0 0 Day of week (0 to 6)
r-0 r-0 r-0 r-0 r-0 rw rw rw

RTCDAY, RTC Day of Month Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 Day of month (1 to 28, 29, 30, 31)
r-0 r-0 r-0 rw rw rw rw rw

Real-Time Clock (RTC_A)388 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Real-Time Clock Registers

RTCDAY, RTC Day of Month Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0
0 0 Day of month – high digit Day of month – low digit (0 to 9)

(0 to 3)
r-0 r-0 rw rw rw rw rw rw

RTCMON, RTC Month Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 0 Month (1 to 12)
r-0 r-0 r-0 r-0 rw rw rw rw

RTCMON, RTC Month Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 0 0 Month – high Month – low digit (0 to 9)
digit (0 to 3)

r-0 r-0 r-0 rw rw rw rw rw

RTCYEARL, RTC Year Low-Byte Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

Year – low byte of 0 to 4095
rw rw rw rw rw rw rw rw

RTCYEARL, RTC Year Low-Byte Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

Decade (0 to 9) Year – lowest digit (0 to 9)
rw rw rw rw rw rw rw rw

RTCYEARH, RTC Year High-Byte Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 0 Year – high byte of 0 to 4095
r-0 r-0 r-0 r-0 rw rw rw rw

RTCYEARH, RTC Year High-Byte Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 Century – high digit (0 to 4) Century – low digit (0 to 9)
r-0 rw rw rw rw rw rw rw

RTCAMIN, RTC Minutes Alarm Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

AE 0 Minutes (0 to 59)
rw-0 r-0 rw rw rw rw rw rw

RTCAMIN, RTC Minutes Alarm Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

AE Minutes – high digit (0 to 5) Minutes – low digit (0 to 9)
rw-0 rw rw rw rw rw rw rw

SLAU208–June 2008 Real-Time Clock (RTC_A) 389
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Real-Time Clock Registers www.ti.com

RTCAHOUR, RTC Hours Alarm Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0
AE 0 0 Hours (0 to 24)
rw-0 r-0 r-0 rw rw rw rw rw

RTCAHOUR, RTC Hours Alarm Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

AE 0 Hours – high digit (0 to 2) Hours – low digit (0 to 9)
rw-0 r-0 rw rw rw rw rw rw

RTCADOW, RTC Day of Week Alarm Register, Calendar Mode

7 6 5 4 3 2 1 0

AE 0 0 0 0 Day of week (0 to 6)
rw-0 r-0 r-0 r-0 r-0 rw rw rw

RTCADAY, RTC Day of Month Alarm Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

AE 0 0 Day of month (1 to 28, 29, 30, 31)
rw-0 r-0 r-0 rw rw rw rw rw

RTCADAY, RTC Day of Month Alarm Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

AE 0 Day of month – high digit Day of month – low digit (0 to 9)
(0 to 3)

rw-0 r-0 rw rw rw rw rw rw

390 Real-Time Clock (RTC_A) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Real-Time Clock Registers

RTCPS0CTL, Prescale Timer 0 Control Register

15 14 13 12 11 10 9 8
Reserved RT0SSEL RT0PSDIV Reserved Reserved RT0PSHOLD

r0 rw-0 rw-0 rw-0 rw-0 r0 r0 rw-1

7 6 5 4 3 2 1 0

Reserved Reserved Reserved RT0IP RT0PSIE RT0PSIFG
r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-(0)

Reserved Bits 15 Reserved. Always read as 0.
RT0SSEL Bits 14 Prescale Timer 0 clock source select. Selects clock input source to the RT0PS counter. In Real-Time

Clock calendar mode, these bits are do not care. RT0PS clock input is automatically set to ACLK.
RT1PS clock input is automatically set to the output of RT0PS.
0 ACLK
1 SMCLK

RT0PSDIV Bits 13-11 Prescale Timer 0 clock divide. These bits control the divide ratio of the RT0PS counter. In Real-Time
Clock calendar mode, these bits are do not care for RT0PS and RT1PS. RT0PS clock output is
automatically set to /256. RT1PS clock output is automatically set to /128.
000 /2
001 /4
010 /8
011 /16
100 /32
101 /64
110 /128
111 /256

Reserved Bits 10-9 Reserved. Always read as 0.
RT0PSHOLD Bit 8 Prescale Timer 0 Hold. In Real-Time Clock calendar mode, this bit is do not care. RT0PS is stopped via

the RTCHOLD bit.
0 RT0PS is operational
1 RT0PS is held

Reserved Bits 7-5 Reserved. Always read as 0.
RT0IP Bits 4-2 Prescale Timer 0 interrupt interval

000 /2
001 /4
010 /8
011 /16
100 /32
101 /64
110 /128
111 /256

RT0IE Bit 1 Prescale Timer 0 interrupt enable
0 Interrupt not enabled
1 Interrupt enabled

RT0IFG Bit 0 Prescale Timer 0 interrupt flag
0 No time event occurred
1 Time event occurred

SLAU208–June 2008 Real-Time Clock (RTC_A) 391
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Real-Time Clock Registers www.ti.com

RTCPS1CTL, Prescale Timer 1 Control Register

15 14 13 12 11 10 9 8
RT1SSEL RT1PSDIV Reserved Reserved RT1PSHOLD

rw-0 rw-0 rw-0 rw-0 rw-0 r0 r0 rw-1

7 6 5 4 3 2 1 0

Reserved Reserved Reserved RT1IP RT1PSIE RT1PSIFG
r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-(0)

RT1SSEL Bits 15-14 Prescale Timer 1 clock source select. Selects clock input source to the RT1PS counter. In Real-Time
Clock calendar mode, these bits are do not care. RT1PS clock input is automatically set to the output of
RT0PS.
00 ACLK
01 SMCLK
10 Output from RT0PS
11 Output from RT0PS

RT1PSDIV Bits 13-11 Prescale Timer 1 clock divide. These bits control the divide ratio of the RT0PS counter. In Real-Time
Clock calendar mode, these bits are do not care for RT0PS and RT1PS. RT0PS clock output is
automatically set to /256. RT1PS clock output is automatically set to /128.
000 /2
001 /4
010 /8
011 /16
100 /32
101 /64
110 /128
111 /256

Reserved Bits 10-9 Reserved. Always read as 0.
RT1PSHOLD Bit 8 Prescale Timer 1 hold. In Real-Time Clock calendar mode, this bit is do not care. RT1PS is stopped via

the RTCHOLD bit.
0 RT1PS is operational
1 RT1PS is held

Reserved Bits 7-5 Reserved. Always read as 0.
RT1IP Bits 4-2 Prescale Timer 1 interrupt interval

000 /2
001 /4
010 /8
011 /16
100 /32
101 /64
110 /128
111 /256

RT1PSIE Bit 1 Prescale Timer 1 interrupt enable
0 Interrupt not enabled
1 Interrupt enabled

RT1PSIFG Bit 0 Prescale Timer 1 interrupt flag
0 No time event occurred
1 Time event occurred

Real-Time Clock (RTC_A)392 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Real-Time Clock Registers

RTCPS0, Prescale Timer 0 Counter Register

7 6 5 4 3 2 1 0
RT0PS

rw rw rw rw rw rw rw rw

RT0PS Bits 7-0 Prescale Timer 0 counter value

RTCPS1, Prescale Timer 1 Counter Register

7 6 5 4 3 2 1 0

RT1PS
rw rw rw rw rw rw rw rw

RT1PS Bits 7-0 Prescale Timer 1 counter value

RTCIV, RTC Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 RTCIVx 0
r0 r0 r0 r-(0) r-(0) r-(0) r-(0) r0

RTCIVx Bits 15-0 RTC interrupt vector value

RTCIV InterruptInterrupt Source Interrupt FlagContents Priority
00h No interrupt pending
02h RTC ready RTCRDYIFG Highest
04h RTC interval timer RTCTEVIFG
06h RTC user alarm RTCAIFG
08h RTC prescaler 0 RT0PSIFG
0Ah RTC prescaler 1 RT1PSIFG
0Ch Reserved
0Eh Reserved
10h Reserved Lowest

SLAU208–June 2008 Real-Time Clock (RTC_A) 393
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Real-Time Clock (RTC_A)394 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 15
SLAU208–June 2008

Universal Serial Communication Interface, UART Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes
with one hardware module. This chapter discusses the operation of the asynchronous UART mode.

Topic .. Page

15.1 USCI Overview .. 396
15.2 USCI Introduction: UART Mode ... 397
15.3 USCI Operation: UART Mode .. 399
15.4 USCI Registers: UART Mode... 416

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 395
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.1 USCI Overview

USCI Overview www.ti.com

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the
device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:
• UART mode
• Pulse shaping for IrDA communications
• Automatic baud rate detection for LIN communications
• SPI mode

The USCI_Bx modules support:
• I2C mode
• SPI mode

Universal Serial Communication Interface, UART Mode396 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.2 USCI Introduction: UART Mode
www.ti.com USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an external system via two
external pins, UCAxRXD and UCAxTXD. UART mode is selected when the UCSYNC bit is cleared.

UART mode features include:
• 7- or 8-bit data with odd, even, or non-parity
• Independent transmit and receive shift registers
• Separate transmit and receive buffer registers
• LSB-first or MSB-first data transmit and receive
• Built-in idle-line and address-bit communication protocols for multiprocessor systems
• Receiver start-edge detection for auto-wake up from LPMx modes
• Programmable baud rate with modulation for fractional baud rate support
• Status flags for error detection and suppression
• Status flags for address detection
• Independent interrupt capability for receive and transmit

Figure 15-1 shows the USCI_Ax when configured for UART mode.

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 397
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Modulator

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC0CLK

Prescaler/Divider

Receive Baudrate Generator

UC0BRx

16

UCBRFx

4

UCBRSx

3

UCOS16

UCRXERRError Flags

Set Flags

UCPE

UCFE

UCOE

UCABEN

Receive Shift Register

Receive Buffer UCAxRXBUF

Receive State Machine

1

0

UCIREN

UCPEN UCPAR UCMSB UC7BIT

UCDORMUCMODEx

2

UCSPB

Set UCBRK

Set UCADDR /UCIDLE

0

1

UCLISTEN

UCAxRXD

1

0

UCIRRXPL

IrDA Decoder

UCIRRXFE
UCIRRXFLx

6

Transmit Buffer UCAxTXBUF

Transmit State Machine

UCTXADDR

UCTXBRK

Transmit Shift Register

UCPEN UCPAR UCMSB UC7BIT UCIREN

UCIRTXPLx

6

0

1

IrDA Encoder
UCAxTXD

Transmit Clock

Receive Clock

BRCLK

UCMODEx

2

UCSPB

UCRXEIE

UCRXBRKIE

Set UCRXIFG

Set UCTXIFG

Set RXIFG

USCI Introduction: UART Mode www.ti.com

Figure 15-1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

Universal Serial Communication Interface, UART Mode398 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3 USCI Operation: UART Mode

15.3.1 USCI Initialization and Reset

15.3.2 Character Format

[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEx = 10]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, UCSPB = 1]

[8th Data Bit, UC7BIT = 0]

ST

15.3.3 Asynchronous Communication Formats

www.ti.com USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another device.
Timing for each character is based on the selected baud rate of the USCI. The transmit and receive
functions use the same baud rate frequency.

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE,
UCTXIE, UCRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and UCBTOE bits and sets the
UCTXIFG bit. Clearing UCSWRST releases the USCI for operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCAxCTL1)
2. Initialize all USCI registers with UCSWRST = 1 (including UCAxCTL1)
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCAxCTL1)
5. Enable interrupts (optional) via UCRXIE and/or UCTXIE

The UART character format, shown in Figure 15-2, consists of a start bit, seven or eight data bits, an
even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit
controls the direction of the transfer and selects LSB or MSB first. LSB-first is typically required for UART
communication.

Figure 15-2. Character Format

When two devices communicate asynchronously, no multiprocessor format is required for the protocol.
When three or more devices communicate, the USCI supports the idle-line and address-bit multiprocessor
communication formats.

Idle-Line Multiprocessor Format
When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an
idle time on the transmit or receive lines as shown in Figure 15-3. An idle receive line is detected when 10
or more continuous ones (marks) are received after the one or two stop bits of a character. The baud rate
generator is switched off after reception of an idle line until the next start edge is detected. When an idle
line is detected the UCIDLE bit is set.

The first character received after an idle period is an address character. The UCIDLE bit is used as an
address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received
character is an address

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 399
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Transmitting an Idle Frame www.ti.com

Figure 15-3. Idle-Line Format

The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When
UCDORM = 1, all non-address characters are assembled but not transferred into the UCAxRXBUF, and
interrupts are not generated. When an address character is received, the character is transferred into
UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE
= 0 and an address character is received but has a framing error or parity error, the character is not
transferred into UCAxRXBUF and UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters will be received. When UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception
completed. The UCDORM bit is not modified by the USCI hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the
USCI to generate address character identifiers on UCAxTXD. The double-buffered UCTXADDR flag
indicates if the next character loaded into UCAxTXBUF is preceded by an idle line of 11 bits. UCTXADDR
is automatically cleared when the start bit is generated.

Transmitting an Idle Frame
The following procedure sends out an idle frame to indicate an address character followed by associated
data:
1. Set UCTXADDR, then write the address character to UCAxTXBUF. UCAxTXBUF must be ready for

new data (UCTXIFG = 1).
This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset
automatically when the address character is transferred from UCAxTXBUF into the shift register.

2. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG =
1).
The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.
The idle-line time must not be exceeded between address and data transmission or between data
transmissions. Otherwise, the transmitted data will be misinterpreted as an address.

Universal Serial Communication Interface, UART Mode400 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ST Address SP ST Data SP ST Data SP

Blocks of

Characters

Idle Periods of No Significance

UCAxTXD/UCAxRXD

Expanded

UCAxTXD/UCAxRXD

First Character Within Block

Is an Address. AD Bit Is 1

AD Bit Is 0 for

Data Within Block. Idle Time Is of No Significance

UCAxTXD/UCAxRXD 1 0 0

www.ti.com Address-Bit Multiprocessor Format

Address-Bit Multiprocessor Format
When UCMODEx = 10, the address-bit multiprocessor format is selected. Each processed character
contains an extra bit used as an address indicator shown in Figure 15-4. The first character in a block of
characters carries a set address bit which indicates that the character is an address. The USCI UCADDR
bit is set when a received character has its address bit set and is transferred to UCAxRXBUF.

The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When
UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not
transferred to UCAxRXBUF and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is
received, but has a framing error or parity error, the character is not transferred into UCAxRXBUF and
UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters with address bit = 1 will be received. The
UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception is
completed.

For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled
by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character
transferred from UCAxTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the
start bit is generated.

Figure 15-4. Address-Bit Multiprocessor Format

Break Reception and Generation
When UCMODEx = 00, 01, or 10 the receiver detects a break when all data, parity, and stop bits are low,
regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK
bit is set. If the break interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCRXIFG will also be
set. In this case, the value in UCAxRXBUF is 0h since all data bits were zero.

To transmit a break set the UCTXBRK bit, then write 0h to UCAxTXBUF. UCAxTXBUF must be ready for
new data (UCTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared
when the start bit is generated.

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 401
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.4 Automatic Baud Rate Detection

Break Delimiter Synch

Synch

Start

Bit

Stop

Bit
0 1 2 3 4 5 6 7

8 Bit Times

Break Reception and Generation www.ti.com

When UCMODEx = 11 UART mode with automatic baud rate detection is selected. For automatic baud
rate detection, a data frame is preceded by a synchronization sequence that consists of a break and a
synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length of
the break exceeds 21 bit times the break timeout error flag UCBTOE is set. The USCI can not transmit
data while receiving the break/sync field. The synch field follows the break as shown in Figure 15-5.

Figure 15-5. Auto Baud Rate Detection – Break/Synch Sequence

For LIN conformance the character format should be set to 8 data bits, LSB first, no parity and one stop
bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in Figure 15-6. The synchronization
is based on the time measurement between the first falling edge and the last falling edge of the pattern.
The transmit baud rate generator is used for the measurement if automatic baud rate detection is enabled
by setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the
measurement is transferred into the baud rate control registers UCAxBR0, UCAxBR1, and UCAxMCTL. If
the length of the synch field exceeds the measurable time the synch timeout error flag UCSTOE is set.

Figure 15-6. Auto Baud Rate Detection – Synch Field

The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are
received but not transferred into the UCAxRXBUF, and interrupts are not generated. When a break/synch
field is detected the UCBRK flag is set. The character following the break/synch field is transferred into
UCAxRXBUF and the UCRXIFG interrupt flag is set. Any applicable error flag is also set. If the UCBRKIE
bit is set, reception of the break/synch sets the UCRXIFG. The UCBRK bit is reset by user software or by
reading the receive buffer UCAxRXBUF.

When a break/synch field is received, user software must reset UCDORM to continue receiving data. If
UCDORM remains set, only the character after the next reception of a break/synch field will be received.
The UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception is
complete.

The counter used to detect the baud rate is limited to 07FFFh (32767) counts. This means the minimum
baud rate detectable is 488 Baud in oversampling mode and 30 Baud in low-frequency mode.

The automatic baud rate detection mode can be used in a full-duplex communication system with some
restrictions. The USCI can not transmit data while receiving the break/sync field and if a 0h byte with
framing error is received any data transmitted during this time gets corrupted. The latter case can be
discovered by checking the received data and the UCFE bit.

402 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Transmitting a Break/Synch Field

Transmitting a Break/Synch Field
The following procedure transmits a break/synch field:
1. Set UCTXBRK with UMODEx = 11.
2. Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1).

This generates a break field of 13 bits followed by a break delimiter and the synch character. The
length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically
when the synch character is transferred from UCAxTXBUF into the shift register.

3. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data
(UCTXIFG = 1).
The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 403
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.5 IrDA Encoding and Decoding

15.3.5.1 IrDA Encoding

UART

Start

Bit Data Bits

Stop

Bit

IrDA

IrDA Decoding www.ti.com

When UCIREN is set the IrDA encoder and decoder are enabled and provide hardware bit shaping for
IrDA communication.

The encoder sends a pulse for every zero bit in the transmit bit stream coming from the UART as shown
in Figure 15-7. The pulse duration is defined by UCIRTXPLx bits specifying the number of half clock
periods of the clock selected by UCIRTXCLK.

Figure 15-7. UART vs IrDA Data Format

To set the pulse time of 3/16 bit period required by the IrDA standard the BITCLK16 clock is selected with
UCIRTXCLK = 1 and the pulse length is set to 6 half clock cycles with UCIRTXPLx = 6 - 1 = 5.

When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is calculated as follows:
UCIRTXPLx = tPULSE × 2 × fBRCLK – 1

When UCIRTXCLK = 0 the prescaler UCBRx must to be set to a value greater or equal to 5.

IrDA Decoding
The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects low pulses. In addition to the
analog deglitch filter an additional programmable digital filter stage can be enabled by setting UCIRRXFE.
When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses
are discarded. The equation to program the filter length UCIRRXFLx is:

UCIRRXFLx = (tPULSE – tWAKE) × 2 × fBRCLK – 4

where:
tPULSE = Minimum receive pulse width
tWAKE = Wake time from any low power mode. Zero when MSP430 is in active mode.

Universal Serial Communication Interface, UART Mode404 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.6 Automatic Error Detection
www.ti.com IrDA Decoding

Glitch suppression prevents the USCI from being accidentally started. Any pulse on UCAxRXD shorter
than the deglitch time tt (approximately 150 ns) will be ignored. See the device-specific datasheet for
parameters.

When a low period on UCAxRXD exceeds tt a majority vote is taken for the start bit. If the majority vote
fails to detect a valid start bit the USCI halts character reception and waits for the next low period on
UCAxRXD. The majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun errors, and break conditions
when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their respective
condition is detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is also set. The
error conditions are described in Table 15-1.

Table 15-1. Receive Error Conditions
Error Condition Error Flag Description
Framing error UCFE A framing error occurs when a low stop bit is detected. When two stop bits are

used, both stop bits are checked for framing error. When a framing error is
detected, the UCFE bit is set.

Parity error UCPE A parity error is a mismatch between the number of 1s in a character and the value
of the parity bit. When an address bit is included in the character, it is included in
the parity calculation. When a parity error is detected, the UCPE bit is set.

Receive overrun UCOE An overrun error occurs when a character is loaded into UCAxRXBUF before the
prior character has been read. When an overrun occurs, the UCOE bit is set.

Break condition UCBRK When not using automatic baud rate detection, a break is detected when all data,
parity, and stop bits are low. When a break condition is detected, the UCBRK bit is
set. A break condition can also set the interrupt flag UCRXIFG if the break interrupt
enable UCBRKIE bit is set.

When UCRXEIE = 0 and a framing error, or parity error is detected, no character is received into
UCAxRXBUF. When UCRXEIE = 1, characters are received into UCAxRXBUF and any applicable error
bit is set.

When any of the UCFE, UCPE, UCOE, UCBRK, or UCRXERR bit is set, the bit remains set until user
software resets it or UCAxRXBUF is read. UCOE must be reset by reading UCAxRXBUF. Otherwise it will
not function properly. To detect overflows reliably the following flow is recommended. After a character
was received and UCAxRXIFG is set, first read UCAxSTAT to check the error flags including the overflow
flag UCOE. Read UCAxRXBUF next. This will clear all error flags except UCOE if UCAxRXBUF was
overwritten between the read access to UCAxSTAT and to UCAxRXBUF. So the UCOE flag should be
checked after reading UCAxRXBUF to detect this condition. Note, in this case the UCRXERR flag is not
set.

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 405
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.7 USCI Receive Enable

t
t

UCAxRXD

URXS

URXS

Majority Vote Taken

t
t

15.3.8 USCI Transmit Enable

Receive Data Glitch Suppression www.ti.com

The USCI module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle state.
The receive baud rate generator is in a ready state but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a
valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud
rate generator is turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEx = 01 the UART state machine checks
for an idle line after receiving a character. If a start bit is detected another character is received. Otherwise
the UCIDLE flag is set after 10 ones are received and the UART state machine returns to its idle state and
the baud rate generator is turned off.

Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any glitch on UCAxRXD shorter
than the deglitch time tt (approximately 150 ns) will be ignored by the USCI and further action will be
initiated as shown in Figure 15-8. See the device-specific datasheet for parameters.

Figure 15-8. Glitch Suppression, USCI Receive Not Started

When a glitch is longer than tt, or a valid start bit occurs on UCAxRXD, the USCI receive operation is
started and a majority vote is taken as shown in Figure 15-9. If the majority vote fails to detect a start bit
the USCI halts character reception.

Figure 15-9. Glitch Suppression, USCI Activated

The USCI module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle
state. The transmit baud rate generator is ready but is not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAxTXBUF. When this occurs, the baud rate generator is
enabled and the data in UCAxTXBUF is moved to the transmit shift register on the next BITCLK after the
transmit shift register is empty. UCTXIFG is set when new data can be written into UCAxTXBUF.

Transmission continues as long as new data is available in UCAxTXBUF at the end of the previous byte
transmission. If new data is not in UCAxTXBUF when the previous byte has transmitted, the transmitter
returns to its idle state and the baud rate generator is turned off.

Universal Serial Communication Interface, UART Mode406 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.9 UART Baud Rate Generation

N/2

Bit Start

BRCLK

Counter

BITCLK

N/2-1 N/2-2
1 N/2 N/2-1 1 N/2 N/2-1N/2-2

0 N/2 N/2-11

INT(N/2) + m(= 0)

INT(N/2) + m(= 1)

1 0 N/2

Bit Period

NEVEN: INT(N/2)

NODD: INT(N/2) + R(= 1)

m: corresponding modulation bit

R: Remainder from N/2 division

Majority Vote: (m= 0)

(m= 1)

www.ti.com Low-Frequency Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates from non-standard source
frequencies. It provides two modes of operation selected by the UCOS16 bit.

Low-Frequency Baud Rate Generation
The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from
low frequency clock sources (e.g. 9600 baud from a 32768Hz crystal). By using a lower input frequency
the power consumption of the module is reduced. Using this mode with higher frequencies and higher
prescaler settings will cause the majority votes to be taken in an increasingly smaller window and thus
decrease the benefit of the majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one modulator to generate bit
clock timing. This combination supports fractional divisors for baud rate generation. In this mode, the
maximum USCI baud rate is one-third the UART source clock frequency BRCLK.

Timing for each bit is shown in Figure 15-10. For each bit received, a majority vote is taken to determine
the bit value. These samples occur at the N/2 – 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the
number of BRCLKs per BITCLK.

Figure 15-10. BITCLK Baud Rate Timing with UCOS16 = 0

Modulation is based on the UCBRSx setting as shown in Table 15-2. A 1 in the table indicates that m = 1
and the corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m = 0. The
modulation wraps around after 8 bits but restarts with each new start bit.

Table 15-2. BITCLK Modulation Pattern
Bit 0UCBRSx Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7(Start Bit)

0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0
3 0 1 0 1 0 1 0 0
4 0 1 0 1 0 1 0 1
5 0 1 1 1 0 1 0 1
6 0 1 1 1 0 1 1 1
7 0 1 1 1 1 1 1 1

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 407
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Oversampling Baud Rate Generation www.ti.com

Oversampling Baud Rate Generation
The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bit stream
with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period
apart. This mode also easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and decoder
are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster
than the BITCLK. An additional divider and modulator stage generates BITCLK from BITCLK16. This
combination supports fractional divisions of both BITCLK16 and BITCLK for baud rate generation. In this
mode, the maximum USCI baud rate is 1/16 the UART source clock frequency BRCLK. When UCBRx is
set to 0 or 1 the first prescaler and modulator stage is bypassed and BRCLK is equal to BITCLK16 - in
this case no modulation for the BITCLK16 is possible and thus the UCBRFx bits are ignored.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in Table 15-3. A 1 in the table
indicates that the corresponding BITCLK16 period is one BRCLK period longer than the periods m=0. The
modulation restarts with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting as shown in Table 15-2 as previously described.

Table 15-3. BITCLK16 Modulation Pattern
No. of BITCLK16 Clocks after last falling BITCLK edge

UCBRFx
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1
05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0Eh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0Fh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

408 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.10 Setting a Baud Rate

15.3.11 Transmit Bit Timing

T [i] =bit,TX

1
fBRCLK

(((16 + m [i]) × UCBRx + [j]UCBRSx UCBR xm FS
15

j = 0

mUCBR xF [j]
15

j = 0
S

= Sum of ones from the corresponding row in Table 15-3

www.ti.com Low-Frequency Baud Rate Mode Setting

For a given BRCLK clock source, the baud rate used determines the required division factor N:
N = fBRCLK/Baudrate

The division factor N is often a non-integer value thus at least one divider and one modulator stage is
used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode can be chosen by setting
UCOS16.

Low-Frequency Baud Rate Mode Setting
In the low-frequency mode, the integer portion of the divisor is realized by the prescaler:

UCBRx = INT(N)

and the fractional portion is realized by the modulator with the following nominal formula:
UCBRSx = round((N – INT(N)) × 8)

Incrementing or decrementing the UCBRSx setting by one count may give a lower maximum bit error for
any given bit. To determine if this is the case, a detailed error calculation must be performed for each bit
for each UCBRSx setting.

Oversampling Baud Rate Mode Setting
In the oversampling mode the prescaler is set to:

UCBRx = INT(N/16)

and the first stage modulator is set to:
UCBRFx = round(((N/16) – INT(N/16)) × 16)

When greater accuracy is required, the UCBRSx modulator can also be implemented with values from 0
to 7. To find the setting that gives the lowest maximum bit error rate for any given bit, a detailed error
calculation must be performed for all settings of UCBRSx from 0 to 7 with the initial UCBRFx setting and
with the UCBRFx setting incremented and decremented by one.

The timing for each character is the sum of the individual bit timings. Using the modulation features of the
baud rate generator reduces the cumulative bit error. The individual bit error can be calculated using the
following steps.

Low-Frequency Baud Rate Mode Bit Timing
In low-frequency mode, calculate the length of bit i Tbit,TX[i] based on the UCBRx and UCBRSx settings:

Tbit,TX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i])

where:
mUCBRSx[i] = Modulation of bit i from Table 15-2

Oversampling Baud Rate Mode Bit Timing
In oversampling baud rate mode calculate the length of bit i Tbit,TX[i] based on the baud rate generator
UCBRx, UCBRFx and UCBRSx settings:

where:

mUCBRSx[i] = Modulation of bit i from Table 15-2

This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and the current bit times:

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 409
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Tbit,TX[j]
i

j = 0
STbit,TX[i] =

15.3.12 Receive Bit Timing

1 2 3 4 5 6

0i

t0tideal

7 8

1 2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7

ST D0 D1

D0 D1ST

Synchronization Error ± 0.5x BRCLK

Majority Vote Taken Majority Vote Taken Majority Vote Taken

BRCLK

UCAxRXD

RXD synch.

tactual

Sample

RXD synch.

t0

t1

t1 t2

T [j] +bit,RX

i – 1

j = 0
S

1
fBRCLK

t [i] = t +bit,RX SYNC INT(½UCBRx) + m [i]UCBRSx((

t [i] = t +bit,RX SYNC (8 + m [i]) × UCBRx +UCBRSx
T [j] +bit,RX

i – 1

j = 0
S

1
fBRCLK

((m [j]UCBRFx

7 + m [i]UCBRSx

j = 0
S

Oversampling Baud Rate Mode Bit Timing www.ti.com

To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]:
tbit,ideal,TX[i] = (1/Baudrate)(i + 1)

This results in an error normalized to one ideal bit time (1/baudrate):
ErrorTX[i] = (tbit,TX[i] – tbit,ideal,TX[i]) × Baudrate × 100%

Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the
transmit bit timing error. The second is the error between a start edge occurring and the start edge being
accepted by the USCI module. Figure 15-11 shows the asynchronous timing errors between data on the
UCAxRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The
synchronization error tSYNC is between –0.5 BRCLKs and +0.5 RCLKs, independent of the selected baud
rate generation mode.

Figure 15-11. Receive Error

The ideal sampling time tbit,ideal,RX[i] is in the middle of a bit period:
tbit,ideal,RX[i] = (1/Baudrate)(i + 0.5)

The real sampling time tbit,RX[i] is equal to the sum of all previous bits according to the formulas shown in
the transmit timing section, plus one half BITCLK for the current bit i, plus the synchronization error tSYNC.

This results in the following tbit,RX[i] for the low-frequency baud rate mode:

where:
Tbit,RX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i])
mUCBRSx[i] = Modulation of bit i from Table 15-2

For the oversampling baud rate mode, the sampling time tbit,RX[i] of bit i is calculated by:

where:

410 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

(16 + m [i]) × UCBRx +UCBRSx
T [i] =bit,RX

1
fBRCLK

((m [j]UCBRFx

15

j = 0
S

m [j]UCBRFx

7 + m [i]UCBRSx

j = 0
S

= Sum of ones from columns 0 to (7 + mUCBRSx[i]) from the corresponding row in

www.ti.com Oversampling Baud Rate Mode Bit Timing

Table 15-3.
mUCBRSx[i] = Modulation of bit i from Table 15-2

This results in an error normalized to one ideal bit time (1/baudrate) according to the following formula:
ErrorRX[i] = (tbit,RX[i] – tbit,ideal,RX[i]) × Baudrate × 100%

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 411
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.13 Typical Baud Rates and Errors
Oversampling Baud Rate Mode Bit Timing www.ti.com

Standard baud rate data for UCBRx, UCBRSx, and UCBRFx are listed in Table 15-4 and Table 15-5 for a
32,768-Hz crystal sourcing ACLK and typical SMCLK frequencies. Please ensure that the selected
BRCLK frequency does not exceed the device specific maximum USCI input frequency. Please refer to
the device-specific datasheet.

The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The
worst case error is given for the reception of an 8-bit character with parity and one stop bit including
synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst case
error is given for the transmission of an 8-bit character with parity and stop bit.

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0
BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(Baud) (%) (%)(Hz)
32,768 1200 27 2 0 -2.8 1.4 -5.9 2.0
32,768 2400 13 6 0 -4.8 6.0 -9.7 8.3
32,768 4800 6 7 0 -12.1 5.7 -13.4 19.0
32,768 9600 3 3 0 -21.1 15.2 -44.3 21.3

1,000,000 9600 104 1 0 -0.5 0.6 -0.9 1.2
1,000,000 19200 52 0 0 -1.8 0 -2.6 0.9
1,000,000 38400 26 0 0 -1.8 0 -3.6 1.8
1,000,000 57600 17 3 0 -2.1 4.8 -6.8 5.8
1,000,000 115200 8 6 0 -7.8 6.4 -9.7 16.1
1,048,576 9600 109 2 0 -0.2 0.7 -1.0 0.8
1,048,576 19200 54 5 0 -1.1 1.0 -1.5 2.5
1,048,576 38400 27 2 0 -2.8 1.4 -5.9 2.0
1,048,576 57600 18 1 0 -4.6 3.3 -6.8 6.6
1,048,576 115200 9 1 0 -1.1 10.7 -11.5 11.3
4,000,000 9600 416 6 0 -0.2 0.2 -0.2 0.4
4,000,000 19200 208 3 0 -0.2 0.5 -0.3 0.8
4,000,000 38400 104 1 0 -0.5 0.6 -0.9 1.2
4,000,000 57600 69 4 0 -0.6 0.8 -1.8 1.1
4,000,000 115200 34 6 0 -2.1 0.6 -2.5 3.1
4,000,000 230400 17 3 0 -2.1 4.8 -6.8 5.8
4,194,304 9600 436 7 0 -0.3 0 -0.3 0.2
4,194,304 19200 218 4 0 -0.2 0.2 -0.3 0.6
4,194,304 57600 72 7 0 -1.1 0.6 -1.3 1.9
4,194,304 115200 36 3 0 -1.9 1.5 -2.7 3.4
8,000,000 9600 833 2 0 -0.1 0 -0.2 0.1
8,000,000 19200 416 6 0 -0.2 0.2 -0.2 0.4
8,000,000 38400 208 3 0 -0.2 0.5 -0.3 0.8
8,000,000 57600 138 7 0 -0.7 0 -0.8 0.6
8,000,000 115200 69 4 0 -0.6 0.8 -1.8 1.1
8,000,000 230400 34 6 0 -2.1 0.6 -2.5 3.1
8,000,000 460800 17 3 0 -2.1 4.8 -6.8 5.8
8,388,608 9600 873 7 0 -0.1 0.06 -0.2 0,1
8,388,608 19200 436 7 0 -0.3 0 -0.3 0.2
8,388,608 57600 145 5 0 -0.5 0.3 -1.0 0.5
8,388,608 115200 72 7 0 -1.1 0.6 -1.3 1.9

412 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com Oversampling Baud Rate Mode Bit Timing

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (continued)
BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(Baud) (%) (%)(Hz)

12,000,000 9600 1250 0 0 0 0 -0.05 0.05
12,000,000 19200 625 0 0 0 0 -0.2 0
12,000,000 38400 312 4 0 -0.2 0 -0.2 0.2
12,000,000 57600 208 2 0 -0.5 0.2 -0.6 0.5
12,000,000 115200 104 1 0 -0.5 0.6 -0.9 1.2
12,000,000 230400 52 0 0 -1.8 0 -2.6 0.9
12,000,000 460800 26 0 0 -1.8 0 -3.6 1.8
16,000,000 9600 1666 6 0 -0.05 0.05 -0.05 0.1
16,000,000 19200 833 2 0 -0.1 0.05 -0.2 0.1
16,000,000 38400 416 6 0 -0.2 0.2 -0.2 0.4
16,000,000 57600 277 7 0 -0.3 0.3 -0.5 0.4
16,000,000 115200 138 7 0 -0.7 0 -0.8 0.6
16,000,000 230400 69 4 0 -0.6 0.8 -1.8 1.1
16,000,000 460800 34 6 0 -2.1 0.6 -2.5 3.1
16,777,216 9600 1747 5 0 -0.04 0.03 -0.08 0.05
16,777,216 19200 873 7 0 -0.09 0.06 -0.2 0.1
16,777,216 57600 291 2 0 -0.2 0.2 -0.5 0.2
16,777,216 115200 145 5 0 -0.5 0.3 -1.0 0.5
20,000,000 9600 2083 2 0 -0.05 0.02 -0.09 0.02
20,000,000 19200 1041 6 0 -0.06 0.06 -0.1 0.1
20,000,000 38400 520 7 0 -0.2 0.06 -0.2 0.2
20,000,000 57600 347 2 0 -0.06 0.2 -0.3 0.3
20,000,000 115200 173 5 0 -0.4 0.3 -0.8 0.5
20,000,000 230400 86 7 0 -1.0 0.6 -1.0 1.7
20,000,000 460800 43 3 0 -1.4 1.3 -3.3 1.8

Table 15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1
BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(Baud) (%) (%)(Hz)

1,000,000 9600 6 0 8 -1.8 0 -2.2 0.4
1,000,000 19200 3 0 4 -1.8 0 -2.6 0.9
1,048,576 9600 6 0 13 -2.3 0 -2.2 0.8
1,048,576 19200 3 1 6 -4.6 3.2 -5.0 4.7
4,000,000 9600 26 0 1 0 0.9 0 1.1
4,000,000 19200 13 0 0 -1.8 0 -1.9 0.2
4,000,000 38400 6 0 8 -1.8 0 -2.2 0.4
4,000,000 57600 4 5 3 -3.5 3.2 -1.8 6.4
4,000,000 115200 2 3 2 -2.1 4.8 -2.5 7.3
4,194,304 9600 27 0 5 0 0.2 0 0.5
4,194,304 19200 13 0 10 -2.3 0 -2.4 0.1
4,194,304 57600 4 4 7 -2.5 2.5 -1.3 5.1
4,194,304 115200 2 6 3 -3.9 2.0 -1.9 6.7
8,000,000 9600 52 0 1 -0.4 0 -0.4 0.1
8,000,000 19200 26 0 1 0 0.9 0 1.1

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 413
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Oversampling Baud Rate Mode Bit Timing www.ti.com

Table 15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 (continued)
BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(Baud) (%) (%)(Hz)

8,000,000 38400 13 0 0 -1.8 0 -1.9 0.2
8,000,000 57600 8 0 11 0 0.88 0 1.6
8,000,000 115200 4 5 3 -3.5 3.2 -1.8 6.4
8,000,000 230400 2 3 2 -2.1 4.8 -2.5 7.3
8,388,608 9600 54 0 10 0 0.2 -0.05 0.3
8,388,608 19200 27 0 5 0 0.2 0 0.5
8,388,608 57600 9 0 2 0 2.8 -0.2 3.0
8,388,608 115200 4 4 7 -2.5 2.5 -1.3 5.1
12,000,000 9600 78 0 2 0 0 -0.05 0.05
12,000,000 19200 39 0 1 0 0 0 0.2
12,000,000 38400 19 0 8 -1.8 0 -1.8 0.1
12,000,000 57600 13 0 0 -1.8 0 -1.9 0.2
12,000,000 115200 6 0 8 -1.8 0 -2.2 0.4
12,000,000 230400 3 0 4 -1.8 0 -2.6 0.9
16,000,000 9600 104 0 3 0 0.2 0 0.3
16,000,000 19200 52 0 1 -0.4 0 -0.4 0.1
16,000,000 38400 26 0 1 0 0.9 0 1.1
16,000,000 57600 17 0 6 0 0.9 -0.1 1.0
16,000,000 115200 8 0 11 0 0.9 0 1.6
16,000,000 230400 4 5 3 -3.5 3.2 -1.8 6.4
16,000,000 460800 2 3 2 -2.1 4.8 -2.5 7.3
16,777,216 9600 109 0 4 0 0.2 -0.02 0.3
16,777,216 19200 54 0 10 0 0.2 -0.05 0.3
16,777,216 57600 18 0 3 -1.0 0 -1.0 0.3
16,777,216 115200 9 0 2 0 2.8 -0.2 3.0
20,000,000 9600 130 0 3 -0.2 0 -0.2 0.04
20,000,000 19200 65 0 2 0 0.4 -0.03 0.4
20,000,000 38400 32 0 9 0 0.4 0 0.5
20,000,000 57600 21 0 11 -0.7 0 -0.7 0.3
20,000,000 115200 10 0 14 0 2.5 -0.2 2.6
20,000,000 230400 5 0 7 0 2.5 0 3.5
20,000,000 460800 2 6 10 -3.2 1.8 -2.8 4.6

414 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.3.14 Using the USCI Module in UART Mode with Low Power Modes

15.3.15 USCI Interrupts

www.ti.com USCI Transmit Interrupt Operation

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and
USC_Bx do not share the same interrupt vector.

USCI Transmit Interrupt Operation
The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAxTXBUF is ready to accept
another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCAxTXBUF.

UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST =
1.

USCI Receive Interrupt Operation
The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAxRXBUF is
read.

Additional interrupt control features include:
• When UCAxRXEIE = 0 erroneous characters will not set UCRXIFG.
• When UCDORM = 1, non-address characters will not set UCRXIFG in multiprocessor modes.
• When UCBRKIE = 1 a break condition will set the UCBRK bit and the UCRXIFG flag.

UCAxIV, Interrupt Vector Generator
The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCAxIV is used to determine which flag requested an interrupt. The highest priority
enabled interrupt generates a number in the UCAxIV register that can be evaluated or added to the
program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect
the UCAxIV value.

Any access, read or write, of the UCAxIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCAxIV Software Example
The following software example shows the recommended use of UCAxIV. The UCAxIV value is added to
the PC to automatically jump to the appropriate routine. The following example is given for USCI_A0.

USCI_UART_ISR

ADD &UCA0IV, PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP RXIFG_ISR ; Vector 2: RXIFG

TXIFG_ISR ; Vector 4: TXIFG
... ; Task starts here
RETI ; Return

RXIFG_ISR ; Vector 2
... ; Task starts here
RETI ; Return

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 415
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

15.4 USCI Registers: UART Mode
USCI Registers: UART Mode www.ti.com

The USCI registers applicable in UART mode listed in Table 15-6. The word accessible registers are listed
in Table 15-7.

Table 15-6. USCI_Ax Registers
AddressRegister Short Form Register Type Initial StateOffset

USCI_Ax control register 0 UCAxCTL0 Byte - R/W +01h Reset with PUC
USCI_Ax control register 1 UCAxCTL1 Byte - R/W +00h 001h with PUC
USCI_Ax Baud rate control register 0 UCAxBR0 Byte - R/W +06h Reset with PUC
USCI_Ax Baud rate control register 1 UCAxBR1 Byte - R/W +07h Reset with PUC
USCI_Ax modulation control register UCAxMCTL Byte - R/W +08h Reset with PUC
Reserved - reads zero Byte - R only +09h 000h
USCI_Ax status register UCAxSTAT Byte - R/W +0Ah Reset with PUC
Reserved - reads zero Byte - R only +0Bh 000h
USCI_Ax Receive buffer register UCAxRXBUF Byte - R/W +0Ch Reset with PUC
Reserved - reads zero Byte - R only +0Dh 000h
USCI_Ax Transmit buffer register UCAxTXBUF Byte - R/W +0Eh Reset with PUC
Reserved - reads zero Byte - R only +0Fh 000h
USCI_Ax Auto Baud control register UCAxABCTL Byte - R/W +10h Reset with PUC
Reserved - reads zero Byte - R only +11h 000h
USCI_Ax IrDA Transmit control register UCAxIRTCTL Byte - R/W +12h Reset with PUC
USCI_Ax IrDA Receive control register UCAxIRRCTL Byte - R/W +13h Reset with PUC
USCI_Ax interrupt enable register UCAxIE Byte - R/W +1Ch Reset with PUC
USCI_Ax interrupt flag register UCAxIFG Byte - R/W +1Dh Reset with PUC
USCI_Ax interrupt vector register UCAxIV Word - R +1Eh Reset with PUC

Table 15-7. Word Access to USCI_Ax Registers
High-Byte Low-ByteWord Register Short Form Address OffsetRegister Register

USCI_Ax control word register 0 UCAxCTLW0 UCAxCTL0 UCAxCTL1 +00h
USCI_Ax Baud rate control word register UCAxBRW UCAxBR1 UCAxBR0 +06h
USCI_Ax IrDA control register UCAxIRCTL UCAxIRRCTL UCAxIRTCTL +12h
USCI_Ax interrupt control register UCAxICTL UCAxIFG UCAxIE +1Ch

416 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: UART Mode

UCAxCTL0, USCI_Ax Control Register 0

7 6 5 4 3 2 1 0
UCPEN UCPAR UCMSB UC7BIT UCSPB UCMODEx UCSYNC=0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCPEN Bit 7 Parity enable
0 Parity disabled
1 Parity enabled. Parity bit is generated (UCAxTXD) and expected (UCAxRXD). In address-bit

multiprocessor mode, the address bit is included in the parity calculation.
UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.

0 Odd parity
1 Even parity

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.
0 LSB first
1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data

UCSPB Bit 3 Stop bit select. Number of stop bits.
0 One stop bit
1 Two stop bits

UCMODEx Bits 2-1 USCI mode. The UCMODEx bits select the asynchronous mode when UCSYNC = 0.
00 UART mode
01 Idle-line multiprocessor mode
10 Address-bit multiprocessor mode
11 UART mode with automatic baud rate detection

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous mode

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 417
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: UART Mode www.ti.com

UCAxCTL1, USCI_Ax Control Register 1

7 6 5 4 3 2 1 0
UCSSELx UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock.
00 UCLK
01 ACLK
10 SMCLK
11 SMCLK

UCRXEIE Bit 5 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and UCRXIFG is not set
1 Erroneous characters received will set UCRXIFG

UCBRKIE Bit 4 Receive break character interrupt-enable
0 Received break characters do not set UCRXIFG.
1 Received break characters set UCRXIFG.

UCDORM Bit 3 Dormant. Puts USCI into sleep mode.
0 Not dormant. All received characters will set UCRXIFG.
1 Dormant. Only characters that are preceded by an idle-line or with address bit set will set UCRXIFG. In

UART mode with automatic baud rate detection only the combination of a break and synch field will set
UCRXIFG.

UCTXADDR Bit 2 Transmit address. Next frame to be transmitted will be marked as address depending on the selected
multiprocessor mode.
0 Next frame transmitted is data
1 Next frame transmitted is an address

UCTXBRK Bit 1 Transmit break. Transmits a break with the next write to the transmit buffer.In UART mode with automatic
baud rate detection 055h must be written into UCAxTXBUF to generate the required break/synch fields.
Otherwise 0h must be written into the transmit buffer.
0 Next frame transmitted is not a break
1 Next frame transmitted is a break or a break/synch

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

418 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: UART Mode

UCAxBR0, USCI_Ax Baud Rate Control Register 0

7 6 5 4 3 2 1 0
UCBRx

rw rw rw rw rw rw rw rw

UCAxBR1, USCI_Ax Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx
rw rw rw rw rw rw rw rw

UCBRx Clock prescaler setting of the Baud rate generator.

UCAxMCTL, USCI_Ax Modulation Control Register

7 6 5 4 3 2 1 0

UCBRFx UCBRSx UCOS16
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCBRFx Bits 7-4 First modulation stage select. These bits determine the modulation pattern for BITCLK16 when UCOS16 = 1.
Ignored with UCOS16 = 0. Table 15-3 shows the modulation pattern.

UCBRSx Bits 3-1 Second modulation stage select. These bits determine the modulation pattern for BITCLK. Table 15-2 shows
the modulation pattern.

UCOS16 Bit 0 Oversampling mode enabled
0 Disabled
1 Enabled

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 419
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: UART Mode www.ti.com

UCAxSTAT, USCI_Ax Status Register

7 6 5 4 3 2 1 0
UCADDRUCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCBUSYUCIDLE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UCAxTXD is internally fed back to the receiver.

UCFE Bit 6 Framing error flag
0 No error
1 Character received with low stop bit

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCAxRXBUF before the previous
character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred

UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.
0 No error
1 Character received with parity error

UCBRK Bit 3 Break detect flag
0 No break condition
1 Break condition occurred

UCRXERR Bit 2 Receive error flag. This bit indicates a character was received with error(s). When UCRXERR = 1, on or more
error flags (UCFE, UCPE, UCOE) is also set. UCRXERR is cleared when UCAxRXBUF is read.
0 No receive errors detected
1 Receive error detected

UCADDR Bit 1 Address received in address-bit multiprocessor mode.
0 Received character is data
1 Received character is an address

UCIDLE Idle line detected in idle-line multiprocessor mode.
0 No idle line detected
1 Idle line detected

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.
0 USCI inactive
1 USCI transmitting or receiving

UCAxRXBUF, USCI_Ax Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx
r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In
7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset.

420 Universal Serial Communication Interface, UART Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: UART Mode

UCAxTXBUF, USCI_Ax Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx
rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCTXIFG. The MSB of
UCAxTXBUF is not used for 7-bit data and is reset.

UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register

7 6 5 4 3 2 1 0
UCIRTXPLx UCIRTXCLK UCIREN

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCIRTXPLx Bits 7-2 Transmit pulse length
Pulse Length tPULSE = (UCIRTXPLx + 1) / (2 × fIRTXCLK)

UCIRTXCLK Bit 1 IrDA transmit pulse clock select
0 BRCLK
1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK.

UCIREN Bit 0 IrDA encoder/decoder enable.
0 IrDA encoder/decoder disabled
1 IrDA encoder/decoder enabled

UCAxIRRCTL, USCI_Ax IrDA Receive Control Register

7 6 5 4 3 2 1 0

UCIRRXFLx UCIRRXPL UCIRRXFE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCIRRXFLx Bits 7-2 Receive filter length. The minimum pulse length for receive is given by:
tMIN = (UCIRRXFLx + 4) / (2 × fIRTXCLK)

UCIRRXPL Bit 1 IrDA receive input UCAxRXD polarity
0 IrDA transceiver delivers a high pulse when a light pulse is seen.
1 IrDA transceiver delivers a low pulse when a light pulse is seen.

UCIRRXFE Bit 0 IrDA receive filter enabled
0 Receive filter disabled
1 Receive filter enabled

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 421
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: UART Mode www.ti.com

UCAxABCTL, USCI_Ax Auto Baud Rate Control Register

7 6 5 4 3 2 1 0

Reserved UCDELIMx UCSTOE UCBTOE Reserved UCABDEN
r-0 r-0 rw-0 rw-0 rw-0 rw-0 r-0 rw-0

Reserved Bits 7-6 Reserved
UCDELIMx Bits 5-4 Break/synch delimiter length

00 1 bit time
01 2 bit times
10 3 bit times
11 4 bit times

UCSTOE Bit 3 Synch field time out error
0 No error
1 Length of synch field exceeded measurable time.

UCBTOE Bit 2 Break time out error
0 No error
1 Length of break field exceeded 22 bit times.

Reserved Bit 1 Reserved
UCABDEN Bit 0 Automatic baud rate detect enable

0 Baud rate detection disabled. Length of break and synch field is not measured.
1 Baud rate detection enabled. Length of break and synch field is measured and baud rate settings are

changed accordingly.

UCAxIE, USCI_Ax Interrupt Enable Register

7 6 5 4 3 2 1 0
Reserved UCTXIE UCRXIE

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

Reserved Bits 7-2 Reserved
UCTXIE Bit 1 Transmit interrupt enable

0 Interrupt disabled
1 Interrupt enabled

UCRXIE Bit 0 Receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCAxIFG, USCI_Ax Interrupt Flag Register

7 6 5 4 3 2 1 0

Reserved UCTXIFG UCRXIFG
r-0 r-0 r-0 r-0 r-0 r-0 rw-1 rw-0

Reserved Bits 7-2 Reserved
UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty.

0 No interrupt pending
1 Interrupt pending

UCRXIFG Bit 0 Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a complete character.
0 No interrupt pending
1 Interrupt pending

Universal Serial Communication Interface, UART Mode422 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: UART Mode

UCAxIV, USCI_Ax Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 UCIVx 0
r0 r0 r0 r-0 r-0 r-0 r-0 r0

UCIVx Bits 15-0 USCI
interrupt
vector value

UCAxIV Interrupt Source Interrupt Flag Interrupt PriorityContents
000h No interrupt pending
002h Data received UCRXIFG Highest
004h Transmit buffer empty UCTXIFG Lowest

SLAU208–June 2008 Universal Serial Communication Interface, UART Mode 423
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Universal Serial Communication Interface, UART Mode424 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 16
SLAU208–June 2008

Universal Serial Communication Interface, SPI Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes
with one hardware module. This chapter discusses the operation of the synchronous peripheral interface
or SPI mode.

Topic .. Page

16.1 USCI Overview .. 426
16.2 USCI Introduction: SPI Mode .. 427
16.3 USCI Operation: SPI Mode.. 429
16.4 USCI Registers: SPI Mode .. 434

SLAU208–June 2008 Universal Serial Communication Interface, SPI Mode 425
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.1 USCI Overview

USCI Overview www.ti.com

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the
device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:
• UART mode
• Pulse shaping for IrDA communications
• Automatic baud rate detection for LIN communications
• SPI mode

The USCI_Bx modules support:
• I2C mode
• SPI mode

Universal Serial Communication Interface, SPI Mode426 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.2 USCI Introduction: SPI Mode
www.ti.com USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system via three or four pins:
UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set and SPI
mode (3-pin or 4-pin) is selected with the UCMODEx bits.

SPI mode features include:
• 7- or 8-bit data length
• LSB-first or MSB-first data transmit and receive
• 3-pin and 4-pin SPI operation
• Master or slave modes
• Independent transmit and receive shift registers
• Separate transmit and receive buffer registers
• Continuous transmit and receive operation
• Selectable clock polarity and phase control
• Programmable clock frequency in master mode
• Independent interrupt capability for receive and transmit
• Slave operation in LPM4

Figure 16-1 shows the USCI when configured for SPI mode.

SLAU208–June 2008 Universal Serial Communication Interface, SPI Mode 427
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

N/A

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

Receive Shift Register

Receive Buffer UCxRXBUF

Receive State Machine

UCMSB UC7BIT

1

0

UCMST

UCxSOMI

Transmit Buffer UC xTXBUF

Transmit State Machine

Transmit Shift Register

UCMSB UC7BIT

BRCLK

Set UCxRXIFG

Set UCxTXIFG

0

1

UCLISTEN

Clock Direction,

Phase and Polarity

UCCKPH UCCKPL

UCxSIMO

UCxCLK

Set UCOE

Transmit Enable

Control

2

UCMODEx

UCxSTE

Set UCFE

USCI Introduction: SPI Mode www.ti.com

Figure 16-1. USCI Block Diagram: SPI Mode

Universal Serial Communication Interface, SPI Mode428 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.3 USCI Operation: SPI Mode

16.3.1 USCI Initialization and Reset

16.3.2 Character Format

www.ti.com USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by
the master. An additional pin, UCxSTE, is provided to enable a device to receive and transmit data and is
controlled by the master.

Three or four signals are used for SPI data exchange:
• UCxSIMO Slave in, master out Master mode: UCxSIMO is the data output line. Slave mode: UCxSIMO

is the data input line.
• UCxSOMI Slave out, master in Master mode: UCxSOMI is the data input line. Slave mode: UCxSOMI

is the data output line.
• UCxCLK USCI SPI clock Master mode: UCxCLK is an output. Slave mode: UCxCLK is an input.
• UCxSTE Slave transmit enable. Used in 4-pin mode to allow multiple masters on a single bus. Not

used in 3-pin mode. Table 16-1 describes the UCxSTE operation.

Table 16-1. UCxSTE Operation
UCMODEx UCxSTE Active State UCxSTE Slave Master

0 Inactive Active
01 High

1 Active Inactive
0 Active Inactive

10 Low
1 Inactive Active

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set,
keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE,
UCRXIFG, UCOE, and UCFE bits and sets the UCTXIFG flag. Clearing UCSWRST releases the USCI for
operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1).
2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1).
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1).
5. Enable interrupts (optional) via UCRXIE and/or UCTXIE.

The USCI module in SPI mode supports 7- and 8-bit character lengths selected by the UC7BIT bit. In 7-bit
data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the
direction of the transfer and selects LSB or MSB first.

Note: Default Character Format

The default SPI character transmission is LSB first. For communication with other SPI
interfaces it MSB-first mode may be required.

Note: Character Format for Figures

Figures throughout this chapter use MSB first format.

SLAU208–June 2008 Universal Serial Communication Interface, SPI Mode 429
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.3.3 Master Mode

Receive Buffer

UCxRXBUF

Receive Shift Register

Transmit Buffer

UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register (DSR)

UCx

SOMI SOMI

UCxSIMO SIMOMASTER SLAVE

Px.x STE

UCxSTE
SS

Port.x

UCxCLK SCLK
MSP430 USCI COMMON SPI

Four-Pin SPI Master Mode www.ti.com

Figure 16-2. USCI Master and External Slave

Figure 16-2 shows the USCI as a master in both 3-pin and 4-pin configurations. The USCI initiates data
transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the
TX shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting with
either the most-significant or least-significant bit depending on the UCMSB setting. Data on UCxSOMI is
shifted into the receive shift register on the opposite clock edge. When the character is received, the
receive data is moved from the RX shift register to the received data buffer UCxRXBUF and the receive
interrupt flag, UCRXIFG, is set, indicating the RX/TX operation is complete.

A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCxTXBUF to the TX shift
register and UCxTXBUF is ready for new data. It does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to UCxTXBUF because receive and
transmit operations operate concurrently.

Four-Pin SPI Master Mode
In 4-pin master mode, UCxSTE is used to prevent conflicts with another master and controls the master
as described in Table 16-1. When UCxSTE is in the master-inactive state:
• UCxSIMO and UCxCLK are set to inputs and no longer drive the bus
• The error bit UCFE is set indicating a communication integrity violation to be handled by the user.
• The internal state machines are reset and the shift operation is aborted.

If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it will be transmit as soon
as UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE transitioning
to the master-inactive state, the data must be re-written into UCxTXBUF to be transferred when UCxSTE
transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin master mode.

Universal Serial Communication Interface, SPI Mode430 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.3.4 Slave Mode

Receive Buffer

UCxRXBUF

Receive Shift Register

Transmit Buffer UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register DSR

UCx

SOMISOMI

UCxSIMOSIMOMASTER SLAVE

Px.x UCxSTE

STE
SS

Port.x

UCxCLKSCLK
MSP430 USCICOMMON SPI

16.3.5 SPI Enable

www.ti.com Four-Pin SPI Slave Mode

Figure 16-3. USCI Slave and External Master

Figure 16-3 shows the USCI as a slave in both 3-pin and 4-pin configurations. UCxCLK is used as the
inputfor the SPI clock and must be supplied by the external master. The data-transfer rate is determined
by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX
shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the
receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of
bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCRXIFG interrupt
flag is set, indicating that data has been received. The overrun error bit, UCOE, is set when the previously
received data is not read from UCxRXBUF before new data is moved to UCxRXBUF.

Four-Pin SPI Slave Mode
In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and receive operations and is
provided by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally.
When UCxSTE is in the slave- inactive state:
• Any receive operation in progress on UCxSIMO is halted
• UCxSOMI is set to the input direction
• The shift operation is halted until the UCxSTE line transitions into the slave transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

When the USCI module is enabled by clearing the UCSWRST bit it is ready to receive and transmit. In
master mode the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode
the bit clock generator is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active transfer is terminated.
Transmit Enable

In master mode, writing to UCxTXBUF activates the bit clock generator and the data will begin to transmit.

In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the
UCxSTE is in the slave-active state.

Receive Enable
The SPI receives data when a transmission is active. Receive and transmit operations operate
concurrently.

SLAU208–June 2008 Universal Serial Communication Interface, SPI Mode 431
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.3.6 Serial Clock Control

16.3.6.1 Serial Clock Polarity and Phase

CKPH CKPL
Cycle#

UCxCLK

UCxCLK

UCxCLK

UCxCLK

UCxSIMO/
UCxSOMI

UCxSIMO
UCxSOMI

Move to UCxTXBUF

RX Sample Points

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

1 2 3 4 5 6 7 8

LSB

LSB

TX Data Shifted Out

UCxSTE

UC UC

16.3.7 Using the SPI Mode with Low Power Modes

Receive Enable www.ti.com

UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the
USCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with the
UCSSELx bits. When UCMST = 0, the USCI clock is provided on the UCxCLK pin by the master, the bit
clock generator is not used, and the UCSSELx bits are don't care. The SPI receiver and transmitter
operate in parallel and use the same clock source for data transfer.

The 16-bit value of UCBRx in the bit rate control registers UCxxBR1 and UCxxBR0 is the division factor of
the USCI clock source, BRCLK. The maximum bit clock that can be generated in master mode is BRCLK.
Modulation is not used in SPI mode and UCAxMCTL should be cleared when using SPI mode for
USCI_A. The UCAxCLK/UCBxCLK frequency is given by:

fBitClock = fBRCLK/UCBRx

The polarity and phase of UCxCLK are independently configured via the UCCKPL and UCCKPH control
bits of the USCI. Timing for each case is shown in Figure 16-4.

Figure 16-4. USCI SPI Timing with UCMSB = 1

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

In SPI slave mode no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in SPI slave mode while the device is in LPM4 and all clock
sources are disabled. The receive or transmit interrupt can wake up the CPU from any low power mode.

Universal Serial Communication Interface, SPI Mode432 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.3.8 SPI Interrupts
www.ti.com SPI Transmit Interrupt Operation

The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and
USC_Bx do not share the same interrupt vector.

SPI Transmit Interrupt Operation
The UCTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept another
character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically
reset if a character is written to UCxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1.
UCTXIE is reset after a PUC or when UCSWRST = 1.

Note: Writing to UCxTXBUF in SPI Mode

Data written to UCxTXBUFwhen UCTXIFG = 0 may result in erroneous data transmission.

SPI Receive Interrupt Operation
The UCRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is
read.

UCxIV, Interrupt Vector Generator
The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCxIV is used to determine which flag requested an interrupt. The highest priority enabled
interrupt generates a number in the UCxIV register that can be evaluated or added to the program counter
to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV value.

Any access, read or write, of the UCxIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCxIV Software Example
The following software example shows the recommended use of UCxIV. The UCxIV value is added to the
PC to automatically jump to the appropriate routine. The following example is given for USCI_B0.

USCI_SPI_ISR

ADD &UCB0IV, PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP RXIFG_ISR ; Vector 2: RXIFG

TXIFG_ISR ; Vector 4: TXIFG
... ; Task starts here
RETI ; Return

RXIFG_ISR ; Vector 2
... ; Task starts here
RETI ; Return

SLAU208–June 2008 Universal Serial Communication Interface, SPI Mode 433
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

16.4 USCI Registers: SPI Mode
USCI Registers: SPI Mode www.ti.com

The USCI registers applicable in SPI mode listed in Table 16-2. The word accessible registers are listed in
Table 16-3.

Table 16-2. USCI_xx Registers
AddressRegister Short Form Register Type Initial StateOffset

USCI_Ax control register 0 UCAxCTL0 Byte - R/W +01h Reset with PUC
USCI_Bx control register 0 UCBxCTL0 Byte - R/W +01h 001h with PUC
USCI_xx control register 1 UCxxCTL1 Byte - R/W +00h 001h with PUC
USCI_xx Bit rate control register 0 UCxxBR0 Byte - R/W +06h Reset with PUC
USCI_xx Bit rate control register 1 UCxxBR1 Byte - R/W +07h Reset with PUC
USCI_Ax modulation control register UCAxMCTL Byte - R/W +08h Reset with PUC
USCI_xx status register UCxxSTAT Byte - R/W +0Ah Reset with PUC
Reserved - reads zero Byte - R only +0Bh 000h
USCI_xx Receive buffer register UCxxRXBUF Byte - R/W +0Ch Reset with PUC
Reserved - reads zero Byte - R only +0Dh 000h
USCI_xx Transmit buffer register UCxxTXBUF Byte - R/W +0Eh Reset with PUC
Reserved - reads zero Byte - R only +0Fh 000h
USCI_xx interrupt enable register UCxxIE Byte - R/W +1Ch Reset with PUC
USCI_xx interrupt flag register UCxxIFG Byte - R/W +1Dh 002h with PUC
USCI_xx interrupt vector register UCxxIV Word - R +1Eh Reset with PUC

Table 16-3. Word Access to USCI_xx Registers
High-Byte Low-ByteWord Register Short Form Address OffsetRegister Register

USCI_xx control word register 0 UCxxCTLW0 UCxxCTL0 UCxxCTL1 +00h
USCI_xx bit rate control word register UCxxBRW UCxxBR1 UCxxBR0 +06h
USCI_xx interrupt control register UCxxICTL UCxxIFG UCxxIE +1Ch

434 Universal Serial Communication Interface, SPI Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: SPI Mode

UCAxCTL0, USCI_Ax Control Register 0
UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0
UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEx UCSYNC=1

rw-0 (1)
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 (2)

UCCKPH Bit 7 Clock phase select.
0 Data is changed on the first UCLK edge and captured on the following edge.
1 Data is captured on the first UCLK edge and changed on the following edge.

UCCKPL Bit 6 Clock polarity select.
0 The inactive state is low.
1 The inactive state is high.

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.
0 LSB first
1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data

UCMST Bit 3 Master mode select
0 Slave mode
1 Master mode

UCMODEx Bits 2-1 USCI Mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1.
00 3-pin SPI
01 4-pin SPI with UCxSTE active high: slave enabled when UCxSTE = 1
10 4-pin SPI with UCxSTE active low: slave enabled when UCxSTE = 0
11 I2C mode

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous mode

(1) UCAxCTL0 (USCI_Ax)
(2) UCBxCTL0 (USCI_Bx)

UCAxCTL1, USCI_Ax Control Register 1
UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0
UCSSELx Unused UCSWRST

rw-0 (1)
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1r0 (2)

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock in master mode. UCxCLK is
always used in slave mode.
00 NA
01 ACLK
10 SMCLK
11 SMCLK

Unused Bits 5-1 Unused
UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

(1) UCAxCTL1 (USCI_Ax)
(2) UCBxCTL1 (USCI_Bx)

SLAU208–June 2008 Universal Serial Communication Interface, SPI Mode 435
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: SPI Mode www.ti.com

UCAxBR0, USCI_Ax Bit Rate Control Register 0
UCBxBR1, USCI_Bx Bit Rate Control Register 0

7 6 5 4 3 2 1 0
UCBRx

rw rw rw rw rw rw rw rw

UCAxBR1, USCI_Ax Bit Rate Control Register 1
UCBxBR1, USCI_Bx Bit Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx
rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler. The 16-bit value of {UCxxBR0 + UCxxBR1} forms the prescaler value.

UCAxMCTL, USCI_Ax Modulation Control Register

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Bits 7-0 Write as 0.

436 Universal Serial Communication Interface, SPI Mode SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: SPI Mode

UCAxSTAT, USCI_Ax Status Register
UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0
UCLISTEN UCFE UCOE Unused UCBUSY

rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1)
rw-0 rw-0 rw-0 r-0r0 (2) r0 (2) r0 (2) r0 (2)

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. The transmitter output is internally fed back to the receiver.

UCFE Bit 6 Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire
master or any slave mode.
0 No error
1 Bus conflict occurred

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous
character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared
by software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred

Unused Bits 4-1 Unused
UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.

0 USCI inactive
1 USCI transmitting or receiving

(1) UCAxSTAT (USCI_Ax)
(2) UCBxSTAT (USCI_Bx)

UCAxRXBUF, USCI_Ax Receive Buffer Register
UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0
UCRXBUFx

r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCxRXBUF resets the receive-error bits, and UCRXIFG. In 7-bit data mode,
UCxRXBUF is LSB justified and the MSB is always reset.

UCAxTXBUF, USCI_Ax Transmit Buffer Register
UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx
rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCxTXBUF is
not used for 7-bit data and is reset.

SLAU208–June 2008 Universal Serial Communication Interface, SPI Mode 437
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: SPI Mode www.ti.com

UCAxIE, USCI_Ax Interrupt Enable Register
UCBxIE, USCI_Bx Interrupt Enable Register

7 6 5 4 3 2 1 0
Reserved UCTXIE UCRXIE

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

Reserved Bits 7-2 Reserved
UCTXIE Bit 1 Transmit interrupt enable

0 Interrupt disabled
1 Interrupt enabled

UCRXIE Bit 0 Receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCAxIFG, USCI_Ax Interrupt Flag Register
UCBxIFG, USCI_Bx Interrupt Flag Register

7 6 5 4 3 2 1 0

Reserved UCTXIFG UCRXIFG
r-0 r-0 r-0 r-0 r-0 r-0 rw-1 rw-0

Reserved Bits 7-2 Reserved
UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCxxTXBUF empty.

0 No interrupt pending
1 Interrupt pending

UCRXIFG Bit 0 Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a complete character.
0 No interrupt pending
1 Interrupt pending

UCAxIV, USCI_Ax Interrupt Vector Register
UCBxIV, USCI_Bx Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 UCIVx 0
r0 r0 r0 r-0 r-0 r-0 r-0 r0

UCIVx Bits 15-0 USCI interrupt vector value

UCAxIV/ InterruptUCBxIV Interrupt Source Interrupt Flag PriorityContents
000h No interrupt pending –
002h Data received UCRXIFG Highest
004h Transmit buffer empty UCTXIFG Lowest

Universal Serial Communication Interface, SPI Mode438 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 17
SLAU208–June 2008

Universal Serial Communication Interface, I2C Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes
with one hardware module. This chapter discusses the operation of the I2C mode.

Topic .. Page

17.1 USCI Overview .. 440
17.2 USCI Introduction: I2C Mode ... 441
17.3 USCI Operation: I2C Mode .. 443
17.4 USCI Registers: I2C Mode ... 458

SLAU208–June 2008 439Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.1 USCI Overview

USCI Overview www.ti.com

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the
device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:
• UART mode
• Pulse shaping for IrDA communications
• Automatic baud rate detection for LIN communications
• SPI mode

The USCI_Bx modules support:
• I2C mode
• SPI mode

440 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.2 USCI Introduction: I2C Mode
www.ti.com USCI Introduction: I2C Mode

In I2C mode, the USCI module provides an interface between the MSP430 and I2C-compatible devices
connected by way of the two-wire I2C serial bus. External components attached to the I2C bus serially
transmit and/or receive serial data to/from the USCI module through the 2-wire I2C interface.

The I2C mode features include:
• Compliance to the Philips Semiconductor I2C specification v2.1
• J 7-bit and 10-bit device addressing modes
• J General call
• J START/RESTART/STOP
• J Multi-master transmitter/receiver mode
• J Slave receiver/transmitter mode
• J Standard mode up to 100 kbps and fast mode up to 400 kbps support
• Programmable UCxCLK frequency in master mode
• Designed for low power
• Slave receiver START detection for auto-wake up from LPMx modes
• Slave operation in LPM4

Figure 17-1 shows the USCI when configured in I2C mode.

SLAU208–June 2008 441Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC1CLK

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

BRCLK

Slave Address UC1SA

Transmit Shift Register

UCMST

Transmit Buffer UC 1TXBUF

I2C State Machine

Own Address UC1OA

Receive Shift Register

UCA10

Receive Buffer UC1RXBUF

UCGCEN

UCxSDA

UCxSCL

UCSLA10

USCI Introduction: I2C Mode www.ti.com

Figure 17-1. USCI Block Diagram: I2C Mode

442 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.3 USCI Operation: I2C Mode

MSP430

VCC

Serial Data (SDA)

Serial Clock (SCL)

Device A

Device B Device C

17.3.1 USCI Initialization and Reset

www.ti.com USCI Operation: I2C Mode

The I2C mode supports any slave or master I2C-compatible device. Figure 17-2 shows an example of an
I2C bus. Each I2C device is recognized by a unique address and can operate as either a transmitter or a
receiver. A device connected to the I2C bus can be considered as the master or the slave when
performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any
device addressed by a master is considered a slave.

I2C data is communicated using the serial data pin (SDA) and the serial clock pin (SCL). Both SDA and
SCL are bidirectional, and must be connected to a positive supply voltage using a pull-up resistor.

Figure 17-2. I2C Bus Connection Diagram

Note: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430 VCC level.

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. To select I2C operation the UCMODEx bits must
be set to 11. After module initialization, it is ready for transmit or receive operation. Clearing UCSWRST
releases the USCI for operation.

Configuring and re-configuring the USCI module should be done when UCSWRST is set to avoid
unpredictable behavior. Setting UCSWRST in I2C mode has the following effects:
• I2C communication stops
• SDA and SCL are high impedance
• UCBxI2CSTAT, bits 6-0 are cleared
• UCTXIE and UCRXIE are cleared
• UCTXIFG and UCRXIFG are cleared
• All other bits and register remain unchanged.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)
2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)
5. Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

SLAU208–June 2008 443Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.3.2 I2C Serial Data

SDA

SCL

MSB Acknowledgement
Signal From Receiver

Acknowledgement
Signal From Receiver

1 2 7 8 9 1 2 8 9

ACK ACK
START

Condition (S)
STOP

Condition (P)R/W

Data Line
Stable Data

Change of Data Allowed

SDA

SCL

USCI Operation: I2C Mode www.ti.com

One clock pulse is generated by the master device for each data bit transferred. The I2C mode operates
with byte data. Data is transferred most significant bit first as shown in Figure 17-3.

The first byte after a START condition consists of a 7-bit slave address and the R/W bit. When R/W = 0,
the master transmits data to a slave. When R/W = 1, the master receives data from a slave. The ACK bit
is sent from the receiver after each byte on the 9th SCL clock.

Figure 17-3. I2C Module Data Transfer

START and STOP conditions are generated by the master and are shown in Figure 17-3. A START
condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high
transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

Data on SDA must be stable during the high period of SCL as shown in Figure 17-4. The high and low
state of SDA can only change when SCL is low, otherwise START or STOP conditions will be generated.

Figure 17-4. Bit Transfer on the I2C Bus

444 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.3.3 I2C Addressing Modes

S Slave Address R/W ACK Data ACK Data ACK P

7 8 81 1 1 1 1 1

S

1

Slave Address 1st byte

7

Slave Address 2nd byteACKR/W

11 8

ACK

1

Data

8

ACK

1

P

1

1 1 1 1 0 X X

1 7 8 7 81 1 1 1 1 1 1 1

S Slave Address R/W ACK Data ACK S Slave Address ACK Data ACK P

1 Any
Number

1 Any Number

R/W

www.ti.com 7-Bit Addressing

The I2C mode supports 7-bit and 10-bit addressing modes.
7-Bit Addressing

In the 7-bit addressing format, shown in Figure 17-5, the first byte is the 7-bit slave address and the R/W
bit. The ACK bit is sent from the receiver after each byte.

Figure 17-5. I2C Module 7-Bit Addressing Format

10-Bit Addressing

In the 10-bit addressing format, shown in Figure 17-6, the first byte is made up of 11110b plus the two
MSBs of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte.
The next byte is the remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the 8-bit
data.

Figure 17-6. I2C Module 10-Bit Addressing Format

Repeated Start Conditions
The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by
issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave
address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 17-7.

Figure 17-7. I2C Module Addressing Format with Repeated START Condition

SLAU208–June 2008 445Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.3.4 I2C Module Operating Modes

...

USCI Master

USCI Slave

Other Master

Other Slave

... Bits set or reset by software

Bits set or reset by hardware

Slave Mode www.ti.com

In I2C mode the USCI module can operate in master transmitter, master receiver, slave transmitter, or
slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate
the modes.

Figure 17-8 shows how to interpret the time line figures. Data transmitted by the master is represented by
grey rectangles, data transmitted by the slave by white rectangles. Data transmitted by the USCI module,
either as master or slave, is shown by rectangles that are taller than the others.

Actions taken by the USCI module are shown in grey rectangles with an arrow indicating where in the the
data stream the action occurs. Actions that must be handled with software are indicated with white
rectangles with an arrow pointing to where in the data stream the action must take place.

Figure 17-8. I2C Time Line Legend

Slave Mode
The USCI module is configured as an I2C slave by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and clearing the UCMST bit.

Initially the USCI module must to be configured in receiver mode by clearing the UCTR bit to receive the
I2C address. Afterwards, transmit and receive operations are controlled automatically depending on the
R/W bit received together with the slave address.

The USCI slave address is programmed with the UCBxI2COA register. When UCA10 = 0, 7-bit addressing
is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave
responds to a general call.

When a START condition is detected on the bus, the USCI module will receive the transmitted address
and compare it against its own address stored in UCBxI2COA. The UCSTTIFG flag is set when address
received matches the USCI slave address.

I2C Slave Transmitter Mode
Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own
address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses
that are generated by the master device. The slave device does not generate the clock, but it will hold
SCL low while intervention of the CPU is required after a byte has been transmitted.

If the master requests data from the slave the USCI module is automatically configured as a transmitter
and UCTR and UCTXIFG become set. The SCL line is held low until the first data to be sent is written into
the transmit buffer UCBxTXBUF. Then the address is acknowledged, the UCSTTIFG flag is cleared, and
the data is transmitted. As soon as the data is transferred into the shift register the UCTXIFG is set again.

446 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

S SLA/R A DATA A P

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=?0
UCBxTXBUF discarded

Reception of own
address and
transmission of data

bytes

Bus stalled (SCL held low)
until data available

DATADATA A

UCSTPIFG=1
UCSTTIFG=0

A

A

DATA A S SLA/R

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCBxTXBUF discarded

DATA A S SLA/W

UCTR=0 (Receiver)
UCSTTIFG=1

Arbitration lost as
master and

addressed as slave

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCBxTXIFG=0

Repeated start-
continue as
slave transmitter

Repeated start-
continue as

slave receiver

Write data to UCBxTXBUF

UCBxTXIFG=1

UCBxTXIFG=0

UCBxTXIFG=0

Write data to UCBxTXBUF

www.ti.com I2C Slave Receiver Mode

After the data is acknowledged by the master the next data byte written into UCBxTXBUF is transmitted or
if the buffer is empty the bus is stalled during the acknowledge cycle by holding SCL low until new data is
written into UCBxTXBUF. If the master sends a NACK succeeded by a STOP condition the UCSTPIFG
flag is set. If the NACK is succeeded by a repeated START condition the USCI I2C state machine returns
to its address-reception state.

Figure 17-9 illustrates the slave transmitter operation.

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-9. I2C Slave Transmitter Mode

I2C Slave Receiver Mode
Slave receiver mode is entered when the slave address transmitted by the master is identical to its own
address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are
shifted in with the clock pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been
received.

If the slave should receive data from the master the USCI module is automatically configured as a receiver
and UCTR is cleared. After the first data byte is received the receive interrupt flag UCRXIFG is set. The
USCI module automatically acknowledges the received data and can receive the next data byte.

If the previous data wasn not read from the receive buffer UCBxRXBUF at the end of a reception, the bus
is stalled by holding SCL low. As soon as UCBxRXBUF is read the new data is transferred into
UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received.

SLAU208–June 2008 447Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

S SLA/W A DATA A P or SReception of own
address and data
bytes. All are

acknowledged.

UCBxRXIFG=1

DATADATA A A

UCTXNACK=1

Refer to:
”Slave Transmitter”
Timing Diagram

Bus not stalled even if
UCBxRXBUF not read

P or SDATA A

A
Arbitration lost as
master and

addressed as slave

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

Last byte is not
acknowledged.

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the
general call
address.

UCTXNACK=0

Bus stalled
(SCL held low)
if UCBxRXBUF not read

Read data from UCBxRXBUF

I2C Slave 10-bit Addressing Mode www.ti.com

Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next
acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the
UCTXNACK bit is set while SCL is held low the bus will be released, a NACK is transmitted immediately,
and UCBxRXBUF is loaded with the last received data. Since the previous data was not read that data will
be lost. To avoid loss of data the UCBxRXBUF needs to be read before UCTXNACK is set.
When the master generates a STOP condition the UCSTPIFG flag is set.

If the master generates a repeated START condition the USCI I2C state machine returns to its address
reception state.

Figure 17-10 illustrates the the I2C slave receiver operation.

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-10. I2C Slave Receiver Mode

I2C Slave 10-bit Addressing Mode
The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 17-11. In 10-bit
addressing mode, the slave is in receive mode after the full address is received. The USCI module
indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode the master sends a repeated START condition together with the first byte of the address
but with the R/W bit set. This will set the UCSTTIFG flag if it was previously cleared by software and the
USCI modules switches to transmitter mode with UCTR = 1.

448 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

S

S 11110 xx/W A SLA (2.) A P or SReception of own
address and data

bytes. All are
acknowledged.

UCBxRXIFG=1

DATA DATAA A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the

general call
address.

P or S

UCBxRXIFG=1

DATA DATAA A

S 11110 xx/W A SLA (2.) A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

11110 xx/R A

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCSTTIFG=0

DATA A P or SReception of own
address and
transmission of data
bytes

Slave Transmitter

Slave Receiver

www.ti.com I2C Slave 10-bit Addressing Mode

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-11. I2C Slave 10-bit Addressing Mode

SLAU208–June 2008 449Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Master Mode www.ti.com

Master Mode
The USCI module is configured as an I2C master by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must
be set and its own address must be programmed into the UCBxI2COA register. When UCA10 = 0, 7-bit
addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the
USCI module responds to a general call.

I2C Master Transmitter Mode
After initialization, master transmitter mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for
transmitter mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. The UCTXIFG bit is set when the START condition is generated and the first data to be
transmitted can be written into UCBxTXBUF. As soon as the slave acknowledges the address the
UCTXSTT bit is cleared.

The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave
address. UCTXIFG is set again as soon as the data is transferred from the buffer into the shift register. If
there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the
acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is
held as long as the UCTXSTP bit or UCTXSTT bit is not set.

Setting UCTXSTP will generate a STOP condition after the next acknowledge from the slave. If UCTXSTP
is set during the transmission of the slave's address or while the USCI module waits for data to be written
into UCBxTXBUF, a STOP condition is generated even if no data was transmitted to the slave. When
transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted, or
anytime after transmission begins, without writing new data into UCBxTXBUF. Otherwise, only the
address will be transmitted. When the data is transferred from the buffer to the shift register, UCTXIFG will
become set indicating data transmission has begun and the UCTXSTP bit may be set.

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data the not-acknowledge interrupt flag UCNACKIFG is
set. The master must react with either a STOP condition or a repeated START condition. If data was
already written into UCBxTXBUF it will be discarded. If this data should be transmitted after a repeated
START it must be written into UCBxTXBUF again. Any set UCTXSTT is discarded, too. To trigger a
repeated start, UCTXSTT needs to be set again.

Figure 17-12 illustrates the I2C master transmitter operation.

450 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Other master continues

S SLA/W A DATA A P
Successful
transmission to a
slave receiver

UCBxTXIFG=1

DATADATA A A

UCTXSTP=1
UCBxTXIFG=0

Next transfer started
with a repeated start

condition

DATA A S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA A S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1
3) UCBxTXIFG=0

Not acknowledge
received after slave

address

P

S SLA/W

S SLA/R

UCTXSTP=1

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or

data byte

A

A

Other master continues

Arbitration lost and

addressed as slave
Other master continuesA

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

USCI continues as Slave Receiver

Not acknowledge

received after a data
byte

UCTXSTT=0 UCTXSTP=0

UCTXSTP=0

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Bus stalled (SCL held low)
until data available

Write data to UCBxTXBUF

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

UCBxTXIFG=1
UCBxTXBUF discarded

UCTXSTT=0
UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCBxTXIFG=1
UCBxTXBUF discarded

UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

www.ti.com I2C Master Transmitter Mode

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-12. I2C Master Transmitter Mode

SLAU208–June 2008 451Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

I2C Master Receiver Mode www.ti.com

I2C Master Receiver Mode
After initialization, master receiver mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for
receiver mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. As soon as the slave acknowledges the address the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave the first data byte from the slave is received and
acknowledged and the UCRXIFG flag is set. Data is received from the slave ss long as UCTXSTP or
UCTXSTT is not set. If UCBxRXBUF is not read the master holds the bus during reception of the last data
bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address the not-acknowledge interrupt flag
UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit will generate a STOP condition. After setting UCTXSTP, a NACK followed by a
STOP condition is generated after reception of the data from the slave, or immediately if the USCI module
is currently waiting for UCBxRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set while the byte is being
received. For this case, the UCTXSTT may be polled to determine when it is cleared:

BIS.B #UCTXSTT, &UCBOCTL1 ;Transmit START cond.
POLL_STT BIT.B #UCTXSTT, &UCBOCTL1 ;Poll UCTXSTT bit

JC POLL_STT ;When cleared,
BIS.B #UCTXSTP, &UCB0CTL1 ;transmit STOP cond.

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

Figure 17-13 illustrates the I2C master receiver operation.

Note: Consecutive Master Transactions Without Repeated Start

When performing multiple consecutive I2C master transactions without the repeated start
feature, the current transaction must be completed before the next one is initiated. This can
be done by ensuring that the transmit stop condition flag UCTXSTP is cleared before the
next I2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction
might be affected.

452 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Other master continues

S SLA/R A DATA A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

UCBxRXIFG=1

DATADATA A

UCTXSTP=1

Next transfer started
with a repeated start
condition

DATA S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Not acknowledge
received after slave
address

UCTXSTT=0
UCNACKIFG=1

P

S SLA/W

S SLA/R

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or
data byte

A

Other master continues

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Arbitration lost and
addressed as slave

Other master continuesA

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

USCI continues as Slave Transmitter

A

A

A

UCTXSTT=0 UCTXSTP=0

UCBxTXIFG=1

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

UCTXSTP=1

UCTXSTP=0

www.ti.com I2C Master Receiver Mode

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-13. I2C Master Receiver Mode

SLAU208–June 2008 453Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Master Transmitter

S A A P

1) UCTR=1(Transmitter)
2) UCTXSTT=1

Successful
transmission to a
slave receiver

UCBxTXIFG=1
UCBxTXIFG=1

DATADATA A A

UCTXSTP=1

UCTXSTT=0 UCTXSTP=0

11110xx/W SLA(2.)

S A P

1) UCTR=0(Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

DA ATDATA A

UCTXSTP=1

A

UCTXSTT=0 UCTXSTP=0

A A11110xx W/ SLA(2.) 11110xx/R

Master Receiver

S

UCBxRXIFG=1

1

0 0 0

1

0 0 0

1 1

111

n

Device #1 Lost Arbitration

and Switches Off

Bus Line

SCL

Data From

Device #1

Data From

Device #2

Bus Line

SDA

I2C Master 10-bit Addressing Mode www.ti.com

I2C Master 10-bit Addressing Mode
The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 17-14.

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-14. I2C Master 10-bit Addressing Mode

Arbitration
If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure
is invoked. Figure 17-15 illustrates the arbitration procedure between two devices. The arbitration
procedure uses the data presented on SDA by the competing transmitters. The first master transmitter
that generates a logic high is overruled by the opposing master generating a logic low. The arbitration
procedure gives priority to the device that transmits the serial data stream with the lowest binary value.
The master transmitter that lost arbitration switches to the slave receiver mode, and sets the arbitration
lost flag UCALIFG. If two or more devices send identical first bytes, arbitration continues on the
subsequent bytes.

Figure 17-15. Arbitration Procedure Between Two Master Transmitters

If the arbitration procedure is in progress when a repeated START condition or STOP condition is
transmitted on SDA, the master transmitters involved in arbitration must send the repeated START
condition or STOP condition at the same position in the format frame. Arbitration is not allowed between:

454 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.3.5 I2C Clock Generation and Synchronization

Wait

State
Start HIGH

Period

SCL From

Device #1

SCL From

Device #2

Bus Line

SCL

www.ti.com Clock Stretching

• A repeated START condition and a data bit
• A STOP condition and a data bit
• A repeated START condition and a STOP condition

The I2C clock SCL is provided by the master on the I2C bus. When the USCI is in master mode, BITCLK
is provided by the USCI bit clock generator and the clock source is selected with the UCSSELx bits. In
slave mode the bit clock generator is not used and the UCSSELx bits are don't care.

The 16-bit value of UCBRx in registers UCBxBR1 and UCBxBR0 is the division factor of the USCI clock
source, BRCLK. The maximum bit clock that can be used in single master mode is fBRCLK/4. In
multi-master mode the maximum bit clock is fBRCLK/8. The BITCLK frequency is given by:

fBitClock = fBRCLK/UCBRx

The minimum high and low periods of the generated SCL are:
tLOW,MIN = tHIGH,MIN = (UCBRx/2)/fBRCLK when UCBRx is even
tLOW,MIN = tHIGH,MIN = (UCBRx – 1/2)/fBRCLK when UCBRx is odd

The USCI clock source frequency and the prescaler setting UCBRx must to be chosen such that the
minimum low and high period times of the I2C specification are met.

During the arbitration procedure the clocks from the different masters must be synchronized. A device that
first generates a low period on SCL overrules the other devices forcing them to start their own low periods.
SCL is then held low by the device with the longest low period. The other devices must wait for SCL to be
released before starting their high periods. Figure 17-16 illustrates the clock synchronization. This allows a
slow slave to slow down a fast master.

Figure 17-16. Synchronization of Two I2C Clock Generators During Arbitration

Clock Stretching
The USCI module supports clock stretching and also makes use of this feature as described in the
operation mode sections.

The UCSCLLOW bit can be used to observe if another device pulls SCL low while the USCI module
already released SCL due to the following conditions:
• USCI is acting as master and a connected slave drives SCL low.
• USCI is acting as master and another master drives SCL low during arbitration.

The UCSCLLOW bit is also active if the USCI holds SCL low because it is waiting as transmitter for data
being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF.

The UCSCLLOW bit might get set for a short time with each rising SCL edge because the logic observes
the external SCL and compares it to the internally generated SCL.

SLAU208–June 2008 455Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.3.6 Using the USCI Module in I2C Mode with Low Power Modes

17.3.7 USCI Interrupts in I2C Mode

I2C Transmit Interrupt Operation www.ti.com

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

In I2C slave mode no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in I2C slave mode while the device is in LPM4 and all internal
clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any low power
mode.

The USCI has only one interrupt vector that is shared for transmission, for reception, and for the state
change. USCI_Ax and USC_Bx do not share the same interrupt vector.

Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled, and the GIE bit is set,
the interrupt flag will generate an interrupt request. DMA transfers are controlled by the UCTXIFG and
UCRXIFG flags on devices with a DMA controller.

I2C Transmit Interrupt Operation
The UCTXIFG interrupt flag is set by the transmitter to indicate that UCBxTXBUF is ready to accept
another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCBxTXBUF or if a NACK is received. UCTXIFG is set
when UCSWRST = 1 and the I2C mode is selected. UCTXIE is reset after a PUC or when UCSWRST = 1.

I2C Receive Interrupt Operation
The UCRXIFG interrupt flag is set when a character is received and loaded into UCBxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset after a
PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read.

I2C State Change Interrupt Operation
Table 17-1 describes the I2C state change interrupt flags.

Table 17-1. I2C State Change Interrupt Flags
Interrupt Flag Interrupt Condition
UCALIFG Arbitration-lost. Arbitration can be lost when two or more transmitters start a transmission

simultaneously, or when the USCI operates as master but is addressed as a slave by another master in
the system. The UCALIFG flag is set when arbitration is lost. When UCALIFG is set the UCMST bit is
cleared and the I2C controller becomes a slave.

UCNACKIFG Not-acknowledge interrupt. This flag is set when an acknowledge is expected but is not received.
UCNACKIFG is automatically cleared when a START condition is received.

UCSTTIFG Start condition detected interrupt. This flag is set when the I2C module detects a START condition
together with its own address while in slave mode. UCSTTIFG is used in slave mode only and is
automatically cleared when a STOP condition is received.

UCSTPIFG Stop condition detected interrupt. This flag is set when the I2C module detects a STOP condition while in
slave mode. UCSTPIFG is used in slave mode only and is automatically cleared when a START
condition is received.

UCBxIV, Interrupt Vector Generator
The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCBxIV is used to determine which flag requested an interrupt. The highest priority
enabled interrupt generates a number in the UCBxIV register that can be evaluated or added to the
program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect
the UCBxIV value.

Any access, read or write, of the UCBxIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

456 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com UCBxIV Software Example

UCBxIV Software Example
The following software example shows the recommended use of UCBxIV. The UCBxIV value is added to
the PC to automatically jump to the appropriate routine. The example is given for USCI_B0.

USCI_I2C_ISR

ADD &UCB0IV, PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP ALIFG_ISR ; Vector 2: ALIFG
JMP NACKIFG_ISR ; Vector 4: NACKIFG
JMP STTIFG_ISR ; Vector 6: STTIFG
JMP STPIFG_ISR ; Vector 8: STPIFG
JMP RXIFG_ISR ; Vector 10: RXIFG

TXIFG_ISR ; Vector 12
... ; Task starts here
RETI ; Return

ALIFG_ISR ; Vector 2
... ; Task starts here
RETI ; Return

NACKIFG_ISR ; Vector 4
... ; Task starts here
RETI ; Return

STTIFG_ISR ; Vector 6
... ; Task starts here
RETI ; Return

STPIFG_ISR ; Vector 8
... ; Task starts here
RETI ; Return

RXIFG_ISR ; Vector 10
... ; Task starts here
RETI ; Return

SLAU208–June 2008 457Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

17.4 USCI Registers: I2C Mode
USCI Registers: I2C Mode www.ti.com

The USCI registers applicable in I2C mode listed in Table 17-2. The word accessible registers are listed in
Table 17-3.

Table 17-2. USCI_Bx Registers
AddressRegister Short Form Register Type Initial StateOffset

USCI_Bx control register 0 UCBxCTL0 Byte - R/W +01h 001h with PUC
USCI_Bx control register 1 UCBxCTL1 Byte - R/W +00h 001h with PUC
USCI_Bx Bit rate control register 0 UCBxBR0 Byte - R/W +06h Reset with PUC
USCI_Bx Bit rate control register 1 UCBxBR1 Byte - R/W +07h Reset with PUC
USCI_Bx status register UCBxSTAT Byte - R/W +0Ah Reset with PUC
Reserved - reads zero Byte - R only +0Bh 000h
USCI_Bx Receive buffer register UCBxRXBUF Byte - R/W +0Ch Reset with PUC
Reserved - reads zero Byte - R only +0Dh 000h
USCI_Bx Transmit buffer register UCBxTXBUF Byte - R/W +0Eh Reset with PUC
Reserved - reads zero Byte - R only +0Fh 000h
USCI_Bx I2C Own Address register UCBxI2COA Word - R/W +10h Reset with PUC
USCI_Bx I2C Slave Address register UCBxI2CSA Word - R/W +12h Reset with PUC
USCI_Bx interrupt enable register UCBxIE Byte - R/W +1Ch Reset with PUC
USCI_Bx interrupt flag register UCBxIFG Byte - R/W +1Dh 002h with PUC
USCI_Bx interrupt vector register UCBxIV Word - R +1Eh Reset with PUC

Table 17-3. Word Access to USCI_Bx Registers
High-Byte Low-ByteWord Register Short Form Address OffsetRegister Register

USCI_Bx control word register 0 UCBxCTLW0 UCBxCTL0 UCBxCTL1 +00h
USCI_Bx bit rate control word register UCBxBRW UCBxBR1 UCBxBR0 +06h
USCI_Bx interrupt control register UCBxICTL UCBxIFG UCBxIE +1Ch

458 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: I2C Mode

UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0
UCA10 UCSLA10 UCMM Unused UCMST UCMODEx=11 UCSYNC=1
R/W-0
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-1

UCA10 Bit 7 Own addressing mode select
0 Own address is a 7-bit address
1 Own address is a 10-bit address

UCSLA10 Bit 6 Slave addressing mode select
0 Address slave with 7-bit address
1 Address slave with 10-bit address

UCMM Bit 5 Multi-master environment select
0 Single master environment. There is no other master in the system. The address compare unit is

disabled.
1 Multi master environment

Unused Bit 4 Unused
UCMST Bit 3 Master mode select. When a master looses arbitration in a multi-master environment (UCMM = 1) the

UCMST bit is automatically cleared and the module acts as slave.
0 Slave mode
1 Master mode

UCMODEx Bits 2-1 USCI Mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1.
00 3-pin SPI
01 4-pin SPI (master/slave enabled if STE = 1)
10 4-pin SPI (master/slave enabled if STE = 0)
11 I2C mode

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous Mode

SLAU208–June 2008 459Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: I2C Mode www.ti.com

UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0

UCSSELx Unused UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST
rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 rw-1

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock.
00 UCLKI
01 ACLK
10 SMCLK
11 SMCLK

Unused Bit 5 Unused
UCTR Bit 4 Transmitter/Receiver

0 Receiver
1 Transmitter

UCTXNACK Bit 3 Transmit a NACK. UCTXNACK is automatically cleared after a NACK is transmitted.
0 Acknowledge normally
1 Generate NACK

UCTXSTP Bit 2 Transmit STOP condition in master mode. Ignored in slave mode. In master receiver mode the STOP
condition is preceded by a NACK. UCTXSTP is automatically cleared after STOP is generated.
0 No STOP generated
1 Generate STOP

UCTXSTT Bit 1 Transmit START condition in master mode. Ignored in slave mode. In master receiver mode a repeated
START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and
address information is transmitted.Ignored in slave mode.
0 Do not generate START condition
1 Generate START condition

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

UCBxBR0, USCI_Bx Baud Rate Control Register 0

7 6 5 4 3 2 1 0
UCBRx

rw rw rw rw rw rw rw rw

UCBxBR1, USCI_Bx Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx
rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler. The 16-bit value of {UCxxBR0 + UCxxBR1} forms the prescaler value.

460 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: I2C Mode

UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0
Unused UCSCLLOW UCGC UCBBUSY Unused

rw-0 r-0 rw-0 r-0 r0 r0 r0 r0

Unused Bit 7 Unused
UCSCLLOW Bit 6 SCL low

0 SCL is not held low
1 SCL is held low

UCGC Bit 5 General call address received. UCGC is automatically cleared when a START condition is received.
0 No general call address received
1 General call address received

UCBBUSY Bit 4 Bus busy
0 Bus inactive
1 Bus busy

Unused Bits 3-0 Unused

UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx
r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCBxRXBUF resets UCRXIFG.

UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx
rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted. Writing to the transmit data buffer clears UCTXIFG.

SLAU208–June 2008 461Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: I2C Mode www.ti.com

UCBxI2COA, USCIBx I2C Own Address Register

15 14 13 12 11 10 9 8
UCGCEN 0 0 0 0 0 I2COAx

rw-0 r0 r0 r0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

I2COAx
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCGCEN Bit 15 General call response enable
0 Do not respond to a general call
1 Respond to a general call

I2COAx Bits 9-0 I2C own address. The I2COAx bits contain the local address of the USCI_Bx I2C controller. The address
is right-justified. In 7-bit addressing mode, Bit 6 is the MSB and Bits 9-7 are ignored. In 10-bit
addressing mode, Bit 9 is the MSB.

UCBxI2CSA, USCI_Bx I2C Slave Address Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 I2CSAx
r0 r0 r0 r0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

I2CSAx
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

I2CSAx Bits 9-0 I2C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by
the USCI_Bx module. It is only used in master mode. The address is right-justified. In 7-bit slave
addressing mode Bit 6 is the MSB, Bits 9-7 are ignored. In 10-bit slave addressing mode Bit 9 is the
MSB.

462 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com USCI Registers: I2C Mode

UCBxIE, USCI_Bx I2C Interrupt Enable Register

7 6 5 4 3 2 1 0
Reserved UCNACKIE UCALIE UCSTPIE UCSTTIE UCTXIE UCRXIE

r-0 r-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 7-6 Reserved
UCNACKIE Bit 5 Not-acknowledge interrupt enable

0 Interrupt disabled
1 Interrupt enabled

UCALIE Bit 4 Arbitration lost interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCSTPIE Bit 3 Stop condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCSTTIE Bit 2 Start condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCTXIE Bit 1 Transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCRXIE Bit 0 Receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCBxIFG, USCI_Bx I2C Interrupt Flag Register

7 6 5 4 3 2 1 0

Reserved UCNACKIFG UCALIFG UCSTPIFG UCSTTIFG UCTXIFG UCRXIFG
r-0 r-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

Reserved Bits 7-6 Reserved
UCNACKIFG Bit 5 Not-acknowledge received interrupt flag. UCNACKIFG is automatically cleared when a START condition

is received.
0 No interrupt pending
1 Interrupt pending

UCALIFG Bit 4 Arbitration lost interrupt flag
0 No interrupt pending
1 Interrupt pending

UCSTPIFG Bit 3 Stop condition interrupt flag. UCSTPIFG is automatically cleared when a START condition is received.
0 No interrupt pending
1 Interrupt pending

UCSTTIFG Bit 2 Start condition interrupt flag. UCSTTIFG is automatically cleared if a STOP condition is received.
0 No interrupt pending
1 Interrupt pending

UCTXIFG Bit 1 USCI transmit interrupt flag. UCTXIFG is set when UCBxTXBUF is empty.
0 No interrupt pending
1 Interrupt pending

UCRXIFG Bit 0 USCI receive interrupt flag. UCRXIFG is set when UCBxRXBUF has received a complete character.
0 No interrupt pending
1 Interrupt pending

SLAU208–June 2008 463Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

USCI Registers: I2C Mode www.ti.com

UCBxIV, USCI_Bx Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 UCIVx 0
r0 r0 r0 r0 r-0 r-0 r-0 r0

UCIVx Bits 15-0 USCI interrupt vector value

UCBxIV InterruptInterrupt Source Interrupt FlagContents Priority
000h No interrupt pending –
002h Arbitration lost UCALIFG Highest
004h Not acknowledgement UCNACKIFG
006h Start condition received UCSTTIFG
008h Stop condition received UCSTPIFG
00Ah Data received UCRXIFG
00Ch Transmit buffer empty UCTXIFG Lowest

464 SLAU208–June 2008Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 18
SLAU208–June 2008

ADC12_A

The ADC12_A module is a high-performance 12-bit analog-to-digital converter (ADC). This chapter
describes the ADC12_A of the MSP430 5xx devices.

Topic .. Page

18.1 ADC12_A Introduction ... 466
18.2 ADC12_A Operation... 468
18.3 ADC12_A Registers ... 481

SLAU208–June 2008 ADC12_A 465
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

18.1 ADC12_A Introduction

ADC12_A Introduction www.ti.com

The ADC12_A module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit
SAR core, sample select control, reference generator (MSP430F54xx only in other devices separate REF
module) and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16
independent ADC samples to be converted and stored without any CPU intervention.

ADC12_A features include:
• Greater than 200-ksps maximum conversion rate
• Monotonic 12-bit converter with no missing codes
• Sample-and-hold with programmable sampling periods controlled by software or timers.
• Conversion initiation by software, Timer_A, or Timer_B
• Software selectable on-chip reference voltage generation (MSP430F54xx: 1.5 V or 2.5 V, other

devices: 1.5 V, 2.0 V or 2.5 V)
• Software selectable internal or external reference
• Twelve individually configurable external input channels
• Conversion channels for internal temperature sensor, AVCC, and external references
• Independent channel-selectable reference sources for both positive and negative references
• Selectable conversion clock source
• Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
• ADC core and reference voltage can be powered down separately (MSP430F54xx only. Other devices

see REF module specification for details)
• Interrupt vector register for fast decoding of 18 ADC interrupts
• 16 conversion-result storage registers

The block diagram of ADC12_A is shown in Figure 18-1. The reference generation is in the MSP430F54xx
devices located in the ADC12_A module. In other devices the reference generator is located in the
reference module. See also the device specific datasheet.

466 ADC12_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000

INCHx

4

Sample
and
Hold

S/H

12-bit ADC Core

VR- VR+

Convert

1 0SREF2

0

REFOUT

A0
A1
A2
A3
A4
A5
A6
A7

Ve +REF

V /V- eREF-REF

VREF+

11 10 01 00

AVCC

SREF1
SREF0

ADC12SR

REBURST

ADC12ON

SAMPCON

Sample Timer
/4 ../1024

BUSY

0

1

ISSH

SHI

ADC12SHTx MSC

Divider
/1 .. /8

ADC12CLK

ADC12DIVx

Ref_x

on
1.5V or2.5 V
Reference

VCC

REF2_5V

1

00

01

10

11

ACLK

MCLK

SMCLK

ADC12OSC

(see Note A)

ADC12SSELx

Sync

REFON

INCHx = 0Ah

R

R

VCC

VSS

Ref_x

INCHx = 0Bh

-
16 x 8

Memory
Control

-

00

01

10

11

TA1

TB0

TB1

SHSx

ADC12SC

ADC12MCTL0

ADC12MCTL15

-
16 x 12
Memory
Buffer

-

ADC12MEM0

ADC12MEM15

4

CSTARTADDx

CONSEQx

1

0

SHP
SHT0x

4
A12
A13
A14
A15

:1
:4

0

1

ADC12DIV4

AVSS

www.ti.com ADC12_A Introduction

A The MODOSC is part of the UCS. See the UCS chapter for more information.

Figure 18-1. ADC12_A Block Diagram

SLAU208–June 2008 ADC12_A 467
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

18.2 ADC12_A Operation

18.2.1 12-Bit ADC Core

N = 4095 ×
ADC

Vin – V
R–

V – V
R+ R–

18.2.2 ADC12_A Inputs and Multiplexer

ESD Protection

R ~ 100 W ADC12MCTLx.0–3

Input
Ax

ADC12_A Operation www.ti.com

The ADC12_A module is configured with user software. The setup and operation of the ADC12_A is
discussed in the following sections.

The ADC core converts an analog input to its 12-bit digital representation and stores the result in
conversion memory. The core uses two programmable/selectable voltage levels (VR+ and VR-) to define
the upper and lower limits of the conversion. The digital output (NADC) is full scale (0FFFh) when the input
signal is equal to or higher than VR+, and zero when the input signal is equal to or lower than VR-. The
input channel and the reference voltage levels (VR+ and VR-) are defined in the conversion-control
memory. The conversion formula for the ADC result NADC is:

The ADC12_A core is configured by two control registers, ADC12CTL0 and ADC12CTL1. The core is
enabled with the ADC12ON bit. The ADC12_A can be turned off when not in use to save power. With few
exceptions the ADC12_A control bits can only be modified when ADC12ENC = 0. ADC12ENC must be set
to 1 before any conversion can take place.

Conversion Clock Selection
The ADC12CLK is used both as the conversion clock and to generate the sampling period when the pulse
sampling mode is selected. The ADC12_A source clock is selected using the pre-divider controlled by the
ADC12DIV4 bit and the divider using the ADC12SSELx bits. The input clock can be divided from 1-32
using both the ADC12DIVx bits and the ADC12DIV4 bit. Possible ADC12CLK sources are SMCLK, MCLK,
ACLK, and the MODOSC.

The ADC12OSC, generated internally, is in the 5-MHz range, but varies with individual devices, supply
voltage, and temperature. See the device-specific datasheet for the ADC12OSC specification.

The user must ensure that the clock chosen for ADC12CLK remains active until the end of a conversion. If
the clock is removed during a conversion, the operation will not complete and any result will be invalid.

The twelve external and four internal analog signals are selected as the channel for conversion by the
analog input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise
injection resulting from channel switching as shown in Figure 18-2. The input multiplexer is also a T-switch
to minimize the coupling between channels. Channels that are not selected are isolated from the A/D and
the intermediate node is connected to analog ground (AVSS) so that the stray capacitance is grounded to
help eliminate crosstalk.

The ADC12_A uses the charge redistribution method. When the inputs are internally switched, the
switching action may cause transients on the input signal. These transients decay and settle before
causing errant conversion.

Figure 18-2. Analog Multiplexer

ADC12_A468 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

18.2.3 Voltage Reference Generator

18.2.4 Auto Power-Down

www.ti.com Analog Port Selection

Analog Port Selection
The ADC12_A inputs are multiplexed with digital port pins. When analog signals are applied to digital
gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is near
the transition level of the gate. Disabling the digital pat of the port pin eliminates the parasitic current flow
and therefore reduces overall current consumption. The PySELx bits provide the ability to disable the port
pin input and output buffers.

; Py.0 and Py.1 configured for analog input

BIS.B #3h,&PySEL ; Py.1 and Py.0 ADC12_A function

The ADC12_A module of the MSP430F54xx contains a built-in voltage reference with two selectable
voltage levels, 1.5 V and 2.5 V. Either of these reference voltages may be used internally and externally
on pin VREF+.

The ADC12_A modules of other devices have a separate reference module which supplies three
selectable voltage levels, 1.5V, 2.0V and 2.5V to the ADC12_A. Either of these voltages may be used
internally and externally on pin VREF+.

Setting ADC12REFON = 1 enables the reference voltage of the ADC12_A module. When
ADC12REF2_5V = 1, the internal reference is 2.5 V; when ADC12REF2_5V = 0, the reference is 1.5 V .
The reference can be turned off to save power when not in use. Devices with the REF module can use the
control bits located in the ADC12_A module or the control registers located in the REF module to control
the reference voltage supplied to the ADC. Per default the register settings of the REF module define the
reference voltage settings. The control bit REFMSTR in the REF module is used to hand over control to
the ADC12_A reference control register settings. If the register bit REFMSTR is set to 1 (default) then the
REF module registers control the reference settings. If REFMSTR is set to 0 then the ADC12_A reference
setting define the reference voltage of the ADC12_A module.

External references may be supplied for VR+ and VR- through pins VREF+/VeREF+ and VREF-/VeREF-
respectively.

External storage capacitors are only requied if REFOUT = 1 and the reference voltage is made available
at the pins.

Internal Reference Low-Power Features
The ADC12_A internal reference generator is designed for low power applications. The reference
generator includes a band-gap voltage source and a separate buffer. The current consumption of each is
specified separately in the device-specific datasheet. When ADC12REFON = 1, both are enabled and if
ADC12REFON = 0 both are disabled. The total settling time when ADC12REFON gets set is ≤ 30 µs.

When ADC12REFON = 1 and REFBURST = 1, but no conversion is active, the buffer is automatically
disabled and automatically re-enabled when needed. When the buffer is disabled, it consumes no current.
In this case, the band-gap voltage source remains enabled.

The REFBURST bit controls the operation of the reference buffer. When REFBURST = 1, the buffer is
automatically disabled when the ADC12_A is not actively converting, and automatically re-enabled when
needed. When REFBURST = 0, the buffer will be on continuously this allows the reference voltage to be
present outside the device continuously if REFOUT = 1.

The internal reference buffer also has selectable speed vs. power settings. When the maximum
conversion rate is below 50 ksps, setting ADC12SR = 1 reduces the current consumption of the buffer
approximately 50%.

The ADC12_A is designed for low power applications. When the ADC12_A is not actively converting, the
core is automatically disabled and automatically re-enabled when needed The MODOSC is also
automatically enabled when needed and disabled when not needed.

SLAU208–June 2008 ADC12_A 469
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

18.2.5 Sample and Conversion Timing

Start

Sampling

Stop

Sampling

Conversion

Complete

SAMPCON

SHI

tsample tconvert

tsync

13 × ADC12CLK

Start

Conversion

ADC12CLK

Extended Sample Mode www.ti.com

An analog-to-digital conversion is initiated with a rising edge of the sample input signal SHI. The source
for SHI is selected with the SHSx bits and includes the following:
• The ADC12SC bit
• The Timer_A Output Unit 1
• The Timer_B Output Unit 0
• The Timer_B Output Unit 1

The polarity of the SHI signal source can be inverted with the ADC12ISSH bit. The SAMPCON signal
controls the sample period and start of conversion. When SAMPCON is high, sampling is active. The
high-to-low SAMPCON transition starts the analog-to-digital conversion, which requires 13 ADC12CLK
cycles in 12-bit resolution mode. Two different sample-timing methods are defined by control bit
ADC12SHP, extended sample mode and pulse mode.

Extended Sample Mode
The extended sample mode is selected when ADC12SHP = 0. The SHI signal directly controls SAMPCON
and defines the length of the sample period tsample. When SAMPCON is high, sampling is active. The
high-to-low SAMPCON transition starts the conversion after synchronization with ADC12CLK (see
Figure 18-3).

Figure 18-3. Extended Sample Mode

Pulse Sample Mode
The pulse sample mode is selected when ADC12SHP = 1. The SHI signal is used to trigger the sampling
timer. The ADC12SHT0x and ADC12SHT1x bits in ADC12CTL0 control the interval of the sampling timer
that defines the SAMPCON sample period tsample. The sampling timer keeps SAMPCON high after
synchronization with AD12CLK for a programmed interval tsample. The total sampling time is tsample plus
tsync (see Figure 18-4).

The ADC12SHTx bits select the sampling time in 4× multiples of ADC12CLK. ADC12SHT0x selects the
sampling time for ADC12MCTL0 to 7, and ADC12SHT1x selects the sampling time for ADC12MCTL8 to
15.

470 ADC12_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Start

Sampling

Stop

Sampling

Conversion

Complete

SAMPCON

SHI

tsample tconvert

tsync

13 × ADC12CLK

Start

Conversion

ADC12CLK

VS

RS VI
RI

VC

CI

V = Input voltage at pin Ax

V = External source voltage

R = External source resistance

R = Internal MUX-on input resistance

C = Input capacitance

V = Capacitance-charging voltage

I

S

S

I

I

C

MSP430

18.2.6 Conversion Memory

www.ti.com Sample Timing Considerations

Figure 18-4. Pulse Sample Mode

Sample Timing Considerations
When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time tsample, as shown below in Figure 18-5. An
internal MUX-on input resistance RI (maximum 2 kΩ) in series with capacitor CI (40 pF maximum) is seen
by the source. The capacitor CI voltage VC must be charged to within 1/2 LSB of the source voltage VS for
an accurate 12-bit conversion.

Figure 18-5. Analog Input Equivalent Circuit

The resistance of the source RS and RI affect tsample. The following equation can be used to calculate the
minimum sampling time tsample for a 12-bit conversion:

tsample > (RS + RI) × ln(213) × CI + 800ns

Substituting the values for RI and CI given above, the equation becomes:
tsample > (RS + 2kΩ) × 9.011 × 40pF + 800ns

For example, if RS is 10 kΩ, tsample must be greater than 5.13 µs.

There are 16 ADC12MEMx conversion memory registers to store conversion results. Each ADC12MEMx
is configured with an associated ADC12MCTLx control register. The SREFx bits define the voltage
reference and the INCHx bits select the input channel. The ADC12EOS bit defines the end of sequence
when a sequential conversion mode is used. A sequence rolls over from ADC12MEM15 to ADC12MEM0
when the ADC12EOS bit in ADC12MCTL15 is not set.

The CSTARTADDx bits define the first ADC12MCTLx used for any conversion. If the conversion mode is
single-channel or repeat-single-channel the CSTARTADDx points to the single ADC12MCTLx to be used.

SLAU208–June 2008 ADC12_A 471
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

18.2.7 ADC12_A Conversion Modes

Single-Channel Single-Conversion Mode www.ti.com

If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels,
CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLx in a sequence when each conversion
completes. The sequence continues until an ADC12EOS bit in ADC12MCTLx is processed - this is the
last control byte processed.

When conversion results are written to a selected ADC12MEMx, the corresponding flag in the ADC12IFGx
register is set.

The ADC12_A has four operating modes selected by the CONSEQx bits as discussed in Table 18-1.

Table 18-1. Conversion Mode Summary
ADC12CONSEQx Mode Operation

00 Single channel single-conversion A single channel is converted once.
01 Sequence-of-channels A sequence of channels is converted once.
10 Repeat-single-channel A single channel is converted repeatedly.
11 Repeat-sequence-of-channels A sequence of channels is converted repeatedly.

Single-Channel Single-Conversion Mode
A single channel is sampled and converted once. The ADC result is written to the ADC12MEMx defined
by the CSTARTADDx bits. Figure 18-6 shows the flow of the Single-Channel, Single-Conversion mode.
When ADC12SC triggers a conversion, successive conversions can be triggered by the ADC12SC bit.
When any other trigger source is used, ADC12ENC must be toggled between each conversion.

472 ADC12_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12

off

x = CSTARTADDx

Wait for Enable

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =

ADC12ENC = 0

ADC12ENC = 0

(see Note A)

12 × ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 00

x = pointer to ADC12MCTLx

ADC12ENC ¹

ADC12ENC =

ADC12ENC =

ADC12ENC = 0

(see Note A)

SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

www.ti.com Single-Channel Single-Conversion Mode

A Conversion result is unpredictable.

Figure 18-6. Single-Channel, Single-Conversion Mode

SLAU208–June 2008 ADC12_A 473
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12

off

x = CSTARTADDx

Wait for Enable

ADC12ENC ¹

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ADC12ENC =SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =
12 × ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 01

ADC12MSC = 1

and

ADC12SHP = 1

and

ADC12EOS.x = 0

ADC12EOS.x = 1

If x < 15 then x = x + 1

else x = 0

If x < 15 then x = x + 1

else x = 0

(ADC12MSC = 0

or

ADC12SHP = 0)

and

ADC12EOS.x = 0

x = pointer to ADC12MCTLx

ADC12ENC =

Sequence-of-Channels Mode www.ti.com

Sequence-of-Channels Mode
A sequence of channels is sampled and converted once. The ADC results are written to the conversion
memories starting with the ADCMEMx defined by the CSTARTADDx bits. The sequence stops after the
measurement of the channel with a set ADC12EOS bit. Figure 18-7 shows the sequence-of-channels
mode. When ADC12SC triggers a sequence, successive sequences can be triggered by the ADC12SC
bit. When any other trigger source is used, ADC12ENC must be toggled between each sequence.

Figure 18-7. Sequence-of-Channels Mode

ADC12_A474 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12

off

x = CSTARTADDx

Wait for Enable

ADC12ENC ¹

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ADC12

ENC =

ADC12

ENC =SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON = 12 × ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 10

ADC12MSC = 1

and

ADC12SHP = 1

and

ADC12ENC = 1

ADC12ENC = 0

(ADC12MSC = 0

or

ADC12SHP = 0)

and

ADC12ENC = 1

x = pointer to ADC12MCTLx

www.ti.com Repeat-Single-Channel Mode

Repeat-Single-Channel Mode
A single channel is sampled and converted continuously. The ADC results are written to the ADC12MEMx
defined by the CSTARTADDx bits. It is necessary to read the result after the completed conversion
because only one ADC12MEMx memory is used and is overwritten by the next conversion. Figure 18-8
shows repeat-single-channel mode

Figure 18-8. Repeat-Single-Channel Mode

SLAU208–June 2008 ADC12_A 475
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12

off

x = CSTARTADDx

Wait for Enable

ADC12ENC ¹

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

SAMPCON =

12 × ADC12CLK

Conversion Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 11

ADC12MSC = 1 and ADC12SHP = 1

and (ADC12ENC = 1 or ADC12EOS.x = 0)

x = pointer to ADC12MCTLx

ADC12ENC = 0

and

ADC12EOS.x = 1

(ADC12MSC = 0

or

ADC12SHP = 0)

and

(ADC12ENC = 1

or

ADC12EOS.x = 0)

If ADC12EOS.x = 1 then

x =CSTARTADDx

else {if x < 15 then x = x + 1 else

x = 0}

If ADC12EOS.x = 1 then

x =CSTARTADDx

else {if x < 15 then x = x + 1 else

x = 0}

Convert

ADC12ENC =

ADC12ENC =

Repeat-Sequence-of-Channels Mode www.ti.com

Repeat-Sequence-of-Channels Mode
A sequence of channels is sampled and converted repeatedly. The ADC results are written to the
conversion memories starting with the ADC12MEMx defined by the CSTARTADDx bits. The sequence
ends after the measurement of the channel with a set ADC12EOS bit and the next trigger signal re-starts
the sequence. Figure 18-9 shows the repeat-sequence-of-channels mode.

Figure 18-9. Repeat-Sequence-of-Channels Mode

ADC12_A476 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

18.2.8 Using the Integrated Temperature Sensor

www.ti.com Using the Multiple Sample and Convert (ADC12MSC) Bit

Using the Multiple Sample and Convert (ADC12MSC) Bit
To configure the converter to perform successive conversions automatically and as quickly as possible, a
multiple sample and convert function is available. When ADC12MSC = 1, CONSEQx > 0, and the sample
timer is used, the first rising edge of the SHI signal triggers the first conversion. Successive conversions
are triggered automatically as soon as the prior conversion is completed. Additional rising edges on SHI
are ignored until the sequence is completed in the single-sequence mode or until the ADC12ENC bit is
toggled in repeat-single-channel, or repeated-sequence modes. The function of the ADC12ENC bit is
unchanged when using the ADC12MSC bit.

Stopping Conversions
Stopping ADC12_A activity depends on the mode of operation. The recommended ways to stop an active
conversion or conversion sequence are:
• Resetting ADC12ENC in single-channel single-conversion mode stops a conversion immediately and

the results are unpredictable. For correct results, poll the busy bit until reset before clearing
ADC12ENC.

• Resetting ADC12ENC during repeat-single-channel operation stops the converter at the end of the
current conversion.

• Resetting ADC12ENC during a sequence or repeat-sequence mode stops the converter at the end of
the sequence.

• Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting
ADC12ENC bit. Conversion data are unreliable.

Note: No ADC12EOS Bit Set For Sequence

If no ADC12EOS bit is set and a sequence mode is selected, resetting the ADC12ENC bit
does not stop the sequence. To stop the sequence, first select a single-channel mode and
then reset ADC12ENC.

To use the on-chip temperature sensor, the user selects the analog input channel INCHx = 1010. Any
other configuration is done as if an external channel was selected, including reference selection,
conversion-memory selection, etc. The temperature sensor is in the ADC12_A in the MSP430F54xx
devices while it is part of the REF module in other devices.

The typical temperature sensor transfer function is shown in Figure 18-10. When using the temperature
sensor, the sample period must be greater than 30 ＝s. The temperature sensor offset error can be large,
and may need to be calibrated for most applications. See device-specific datasheet for parameters.

Selecting the temperature sensor automatically turns on the on-chip reference generator as a voltage
source for the temperature sensor. However, it does not enable the VREF+ output or affect the reference
selections for the conversion. The reference choices for converting the temperature sensor are the same
as with any other channel.

SLAU208–June 2008 ADC12_A 477
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

–50 0 50 100

0.700

0.800

0.900

1.000

1.100

1.200

1.300

V = 0.00355(TEMP) + 0.986TEMP C

NOT UP TO DATE

Temperature – °C

V
o

lt
a
g

e

18.2.9 ADC12_A Grounding and Noise Considerations

Stopping Conversions www.ti.com

Figure 18-10. Typical Temperature Sensor Transfer Function

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should
be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths that are common with
other analog or digital circuitry. If care is not taken, this current can generate small, unwanted offset
voltages that can add to or subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 18-11 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due to digital switching or
switching power supplies can corrupt the conversion result. A noise-free design using separate analog and
digital ground planes with a single-point connection is recommend to achieve high accuracy.

478 ADC12_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Digital
Power Supply
Decoupling

100 nF10 Fµ

Analog
Power Supply
Decoupling

Using an
External
Positive
Reference

Using an
External
Negative
Reference

DVCC

DVSS

AVCC

AVSS

V /VREF– eREF–

V /VREF+ eREF+

+

+

+

+

100 nF10 Fµ

100 nF10 Fµ

100 nF10 Fµ

18.2.10 ADC12_A Interrupts

www.ti.com ADC12IV, Interrupt Vector Generator

Figure 18-11. ADC12_A Grounding and Noise Considerations

The ADC12_A has 18 interrupt sources:
• ADC12IFG0-ADC12IFG15
• ADC12OV, ADC12MEMx overflow
• ADC12TOV, ADC12_A conversion time overflow

The ADC12IFGx bits are set when their corresponding ADC12MEMx memory register is loaded with a
conversion result. An interrupt request is generated if the corresponding ADC12IEx bit and the GIE bit are
set. The ADC12OV condition occurs when a conversion result is written to any ADC12MEMx before its
previous conversion result was read. The ADC12TOV condition is generated when another
sample-and-conversion is requested before the current conversion is completed. The DMA is triggered
after the conversion in single channel conversion mode or after the completion of a sequence of channel
conversions in sequence of channels conversion mode.

ADC12IV, Interrupt Vector Generator
All ADC12_A interrupt sources are prioritized and combined to source a single interrupt vector. The
interrupt vector register ADC12IV is used to determine which enabled ADC12_A interrupt source
requested an interrupt.

The highest priority enabled ADC12_A interrupt generates a number in the ADC12IV register (see register
description). This number can be evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled ADC12_A interrupts do not affect the ADC12IV value.

Any access, read or write, of the ADC12IV register automatically resets the ADC12OV condition or the
ADC12TOV condition if either was the highest pending interrupt. Neither interrupt condition has an
accessible interrupt flag. The ADC12IFGx flags are not reset by an ADC12IV access. ADC12IFGx bits are
reset automatically by accessing their associated ADC12MEMx register or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if
the ADC12OV and ADC12IFG3 interrupts are pending when the interrupt service routine accesses the
ADC12IV register, the ADC12OV interrupt condition is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the ADC12IFG3 generates another interrupt.

SLAU208–June 2008 ADC12_A 479
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12_A Interrupt Handling Software Example www.ti.com

ADC12_A Interrupt Handling Software Example
The following software example shows the recommended use of ADC12IV and the handling overhead.
The ADC12IV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:
• ADC12IFG0–ADC12IFG14, ADC12TOV, and ADC12OV: 16 cycles
• ADC12IFG15: 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if a higher prioritized interrupt
occurred during the processing of ADC12IFG15. This saves nine cycles if another ADC12_A interrupt is
pending.

; Interrupt handler for ADC12.
INT_ADC12 ; Enter Interrupt Service Routine

ADD &ADC12IV,PC ; Add offset to PC
RETI ; Vector 0: No interrupt
JMP ADOV ; Vector 2: ADC overflow
JMP ADTOV ; Vector 4: ADC timing overflow
JMP ADM0 ; Vector 6: ADC12IFG0

... ; Vectors 8-32
JMP ADM14 ; Vector 34: ADC12IFG14

;
; Handler for ADC12IFG15 starts here. No JMP required.
;
ADM15 MOV &ADC12MEM15,xxx ; Move result, flag is reset

... ; Other instruction needed?
JMP INT_ADC12 ; Check other int pending

;
; ADC12IFG14-ADC12IFG1 handlers go here
;
ADM0 MOV &ADC12MEM0,xxx ; Move result, flag is reset

... ; Other instruction needed?
RETI ; Return
;
ADTOV ... ; Handle Conv. time overflow

RETI ; Return
;
ADOV ... ; Handle ADCMEMx overflow

RETI ; Return

ADC12_A480 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

18.3 ADC12_A Registers
www.ti.com ADC12_A Registers

The ADC12_A registers are listed in Table 18-2. The base address of the ADC12_A can be found in the
devices specific datasheet. The address offset of each ADC12_A register is given in Table 18-2.

Table 18-2. ADC12_A Registers
Register Short Form Register Type Address Initial State
ADC12 control register 0 ADC12CTL0 Read/write 00h Reset with POR
ADC12 control register 1 ADC12CTL1 Read/write 02h Reset with POR
ADC12 control register 2 ADC12CTL2 Read/write 04h Reset with POR
ADC12 interrupt flag register ADC12IFG Read/write 0Ah Reset with POR
ADC12 interrupt enable register ADC12IE Read/write 0Ch Reset with POR
ADC12 interrupt vector word ADC12IV Read 0Eh Reset with POR
ADC12 memory 0 ADC12MEM0 Read/write 20h Reset with POR
ADC12 memory 1 ADC12MEM1 Read/write 22h Reset with POR
ADC12 memory 2 ADC12MEM2 Read/write 24h Reset with POR
ADC12 memory 3 ADC12MEM3 Read/write 26h Reset with POR
ADC12 memory 4 ADC12MEM4 Read/write 28h Reset with POR
ADC12 memory 5 ADC12MEM5 Read/write 2Ah Reset with POR
ADC12 memory 6 ADC12MEM6 Read/write 2Ch Reset with POR
ADC12 memory 7 ADC12MEM7 Read/write 2Eh Reset with POR
ADC12 memory 8 ADC12MEM8 Read/write 30h Reset with POR
ADC12 memory 9 ADC12MEM9 Read/write 32h Reset with POR
ADC12 memory 10 ADC12MEM10 Read/write 34h Reset with POR
ADC12 memory 11 ADC12MEM11 Read/write 36h Reset with POR
ADC12 memory 12 ADC12MEM12 Read/write 38h Reset with POR
ADC12 memory 13 ADC12MEM13 Read/write 3Ah Reset with POR
ADC12 memory 14 ADC12MEM14 Read/write 3Ch Reset with POR
ADC12 memory 15 ADC12MEM15 Read/write 3Eh Reset with POR
ADC12 memory control 0 ADC12MCTL0 Read/write 10h Reset with POR
ADC12 memory control 1 ADC12MCTL1 Read/write 11h Reset with POR
ADC12 memory control 2 ADC12MCTL2 Read/write 12h Reset with POR
ADC12 memory control 3 ADC12MCTL3 Read/write 13h Reset with POR
ADC12 memory control 4 ADC12MCTL4 Read/write 14h Reset with POR
ADC12 memory control 5 ADC12MCTL5 Read/write 15h Reset with POR
ADC12 memory control 6 ADC12MCTL6 Read/write 16h Reset with POR
ADC12 memory control 7 ADC12MCTL7 Read/write 17h Reset with POR
ADC12 memory control 8 ADC12MCTL8 Read/write 18h Reset with POR
ADC12 memory control 9 ADC12MCTL9 Read/write 19h Reset with POR
ADC12 memory control 10 ADC12MCTL10 Read/write 1Ah Reset with POR
ADC12 memory control 11 ADC12MCTL11 Read/write 1Bh Reset with POR
ADC12 memory control 12 ADC12MCTL12 Read/write 1Ch Reset with POR
ADC12 memory control 13 ADC12MCTL13 Read/write 1Dh Reset with POR
ADC12 memory control 14 ADC12MCTL14 Read/write 1Eh Reset with POR
ADC12 memory control 15 ADC12MCTL15 Read/write 1Fh Reset with POR

SLAU208–June 2008 ADC12_A 481
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12_A Registers www.ti.com

ADC12CTL0, ADC12_A Control Register 0

15 14 13 12 11 10 9 8
ADC12SHT1x ADC12SHT0x

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12ADC12MSC ADC12 REFON ADC120N ADC12OVIE ADC12TOVIE ADC12ENC ADC12SCREF2_5V
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Modifiable only when ADC12ENC = 0

ADC12SHT1x Bits 15-12 ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling
period for registers ADC12MEM8 to ADC12MEM15.

ADC12SHT0x Bits 11-8 ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling
period for registers ADC12MEM0 to ADC12MEM7.

ADC12SHTx ADC12CLK
Bits Cycles
0000 4
0001 8
0010 16
0011 32
0100 64
0101 96
0110 128
0111 192
1000 256
1001 384
1010 512
1011 768
1100 1024
1101 1024
1110 1024
1111 1024

ADC12MSC Bit 7 ADC12_A multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-convert.
1 The first rising edge of the SHI signal triggers the sampling timer, but further

sample-and-conversions are performed automatically as soon as the prior conversion is
completed.

ADC12REF2_5V Bit 6 ADC12_A reference generator voltage. ADC12REFON must also be set.
0 1.5 V
1 2.5 V

ADC12REFON Bit 5 ADC12_A reference generator on. In devices with the REF module this bit is only valid if the REFMSTR
bit of the REF module is set to 0. In the F54xx device the REF module is not available.
0 Reference off
1 Reference on

ADC120N Bit 4 ADC12_A on
0 ADC12_A off
1 ADC12_A on

ADC12OVIE Bit 3 ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable the interrupt.
0 Overflow interrupt disabled
1 Overflow interrupt enabled

482 ADC12_A SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com ADC12_A Registers

ADC12TOVIE Bit 2 ADC12_A conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the
interrupt.
0 Conversion time overflow interrupt disabled
1 Conversion time overflow interrupt enabled

ADC12ENC Bit 1 ADC12_A enable conversion
0 ADC12_A disabled
1 ADC12_A enabled

ADC12SC Bit 0 ADC12_A start conversion. Software-controlled sample-and-conversion start. ADC12SC and
ADC12ENC may be set together with one instruction. ADC12SC is reset automatically.
0 No sample-and-conversion-start
1 Start sample-and-conversion

SLAU208–June 2008 ADC12_A 483
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12_A Registers www.ti.com

ADC12CTL1, ADC12_A Control Register 1

15 14 13 12 11 10 9 8
ADC12CSTARTADDx ADC12SHSx ADC12SHP ADC12ISSH

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12DIVx ADC12SSELx ADC12CONSEQx ADC12BUSY
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0)

Modifiable only when ADC12ENC = 0

ADC12 Bits 15-12 ADC12_A conversion start address. These bits select which ADC12_A conversion-memory register is
CSTARTADDx used for a single conversion or for the first conversion in a sequence. The value of CSTARTADDx is 0 to

0Fh, corresponding to ADC12MEM0 to ADC12MEM15.
ADC12SHSx Bits 11-10 ADC12_A sample-and-hold source select

00 ADC12SC bit
01 Timer_A.OUT1
10 Timer_B.OUT0
11 Timer_B.OUT1

ADC12SHP Bit 9 ADC12_A sample-and-hold pulse-mode select. This bit selects the source of the sampling signal
(SAMPCON) to be either the output of the sampling timer or the sample-input signal directly.
0 SAMPCON signal is sourced from the sample-input signal.
1 SAMPCON signal is sourced from the sampling timer.

ADC12ISSH Bit 8 ADC12_A invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.

ADC12DIVx Bits 7-5 ADC12_A clock divider
000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

ADC12SSELx Bits 4-3 ADC12_A clock source select
00 MODCLK
01 ACLK
10 MCLK
11 SMCLK

ADC12CONSEQx Bits 2-1 ADC12_A Conversion sequence mode select
00 Single-channel, single-conversion
01 Sequence-of-channels
10 Repeat-single-channel
11 Repeat-sequence-of-channels

ADC12BUSY Bit 0 ADC12_A busy. This bit indicates an active sample or conversion operation.
0 No operation is active.
1 A sequence, sample, or conversion is active.

ADC12_A484 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com ADC12_A Registers

ADC12CTL2, ADC12_A Control Register 2

15 14 13 12 11 10 9 8
Reserved ADC12PDIV

r-0 r-0 r-0 r-0 r-0 r-0 r-0 rw-0

7 6 5 4 3 2 1 0

ADC12 ADC12ADC12TCOFF Reserved ADC12RES ADC12DF ADC12SR REFOUT REFBURST
rw-(0) r-0 rw-(1) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Modifiable only when ADC12ENC = 0

Reserved Bits 15-9 Reserved. Read back as 0.
ADC12PDIV Bit 8 ADC12_A pre-divider. This bit pre-divides the selected ADC12_A clock source.

0 Pre-divide by 1
1 Pre-divide by 4

ADC12TCOFF Bit 7 ADC12_A temperature sensor off. If the bit is set the temperature sensor turned off. This is used to save
power.

Reserved Bit 6 Reserved. Read back as 0.
ADC12RES Bits 5-4 ADC12_A resolution. This bit defines the conversion result resolution.

00 8-bit (9 clock cycle conversion time)
01 10-bit (11 clock cycle conversion time)
10 12-bit (13 clock cycle conversion time)
11 Reserved

ADC12DF Bit 3 ADC12_A data read-back format. Data is always stored in the binary unsigned format.
0 Binary unsigned. Theoretically the analog input voltage – VREF results in 0000h, the analog input

voltage + VREF results in 0FFFh.
1 Signed binary (2's complement), left aligned. Theoretically the analog input voltage – VREF

results in 8000h, the analog input voltage + VREF results in 7FF0h.
ADC12SR Bit 2 ADC12_A sampling rate. This bit selects the reference buffer drive capability for the maximum sampling

rate. Setting ADC12SR reduces the current consumption of the reference buffer.
0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps

ADC12REFOUT Bit 1 Reference output
0 Reference output off
1 Reference output on

ADC12REFBURST Bit 0 Reference burst. ADC12REFOUT must also be set.
0 Reference buffer on continuously
1 Reference buffer on only during sample-and-conversion

ADC12MEMx, ADC12_A Conversion Memory Registers

15 14 13 12 11 10 9 8

0 0 0 0 Conversion Results
r0 r0 r0 r0 rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results
rw rw rw rw rw rw rw rw

Conversion Bits 15-0 The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12 are 0 in 12-bit mode, bits
Results 15-10 are 0 in 10-bit mode and bits 15-8 are 0 in 8-bit mode. Writing to the conversion memory registers

will corrupt the results. This data format is used if ADC12DF = 0.

SLAU208–June 2008 ADC12_A 485
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12_A Registers www.ti.com

ADC12MEMx, ADC12_A Conversion-Memory Register, 2's Complement Format

15 14 13 12 11 10 9 8
Conversion Results

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results 0 0 0 0
rw rw rw rw r0 r0 r0 r0

Conversion Bits 15-0 The 12-bit conversion results are left-justified, 2's complement format. Bit 15 is the MSB. Bits 3-0 are 0 in
Results 12-bit mode, bits 5-0 are 0 in 10-bit mode and bits 7-0 are 0 in 8-bit mode. This data format is used if

ADC12DF = 1. The data is stored in the right justified format and is converted to the left-justified 2's
complement during read-back.

ADC12MCTLx, ADC12_A Conversion Memory Control Registers

7 6 5 4 3 2 1 0

ADC12EOS ADC12SREFx ADC12INCHx
rw rw rw rw rw rw rw rw

Modifiable only when ADC12ENC = 0

ADC12EOS Bit 7 End of sequence. Indicates the last conversion in a sequence.
0 Not end of sequence
1 End of sequence

ADC12SREFx Bits 6-4 Select reference
000 VR+ = AVCC and VR- = AVSS

001 VR+ = VREF+ and VR- = AVSS

010 VR+ = VeREF+ and VR- = AVSS

011 VR+ = VeREF+ and VR- = AVSS

100 VR+ = AVCC and VR- = VREF-/ VeREF-

101 VR+ = VREF+ and VR- = VREF-/ VeREF-

110 VR+ = VeREF+ and VR- = VREF-/ VeREF-

111 VR+ = VeREF+ and VR- = VREF-/ VeREF-

ADC12INCHx Bits 3-0 Input channel select
0000 A0
0001 A1
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VeREF+

1001 VREF-/VeREF-

1010 Temperature diode
1011 (AVCC – AVSS) / 2
1100 A12
1101 A13
1110 A14
1111 A15

ADC12_A486 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

www.ti.com ADC12_A Registers

ADC12IE, ADC12_A Interrupt Enable Register

15 14 13 12 11 10 9 8
ADC12IE15 ADC12IE14 ADC12IE13 ADC12IE12 ADC12IE11 ADC12IE10 ADC12IFG9 ADC12IE8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12IE7 ADC12IE6 ADC12IE5 ADC12IE4 ADC12IE3 ADC12IE2 ADC12IE1 ADC12IE0
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC12IEx Bits 15-0 Interrupt enable. These bits enable or disable the interrupt request for the ADC12IFGx bits.
0 Interrupt disabled
1 Interrupt enabled

ADC12IFG, ADC12_A Interrupt Flag Register

15 14 13 12 11 10 9 8

ADC12IFG15 ADC12IFG14 ADC12IFG13 ADC12IFG12 ADC12IFG11 ADC12IFG10 ADC12IFG9 ADC12IFG8
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12IFG7 ADC12IFG6 ADC12IFG5 ADC12IFG4 ADC12IFG3 ADC12IFG2 ADC12IFG1 ADC12IFG0
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC12IFGx Bits 15-0 ADC12MEMx Interrupt flag. These bits are set when corresponding ADC12MEMx is loaded with a
conversion result. The ADC12IFGx bits are reset if the corresponding ADC12MEMx is accessed, or may
be reset with software.
0 No interrupt pending
1 Interrupt pending

SLAU208–June 2008 ADC12_A 487
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

ADC12_A Registers www.ti.com

ADC12IV, ADC12_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0
r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 ADC12IVx 0
r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0

ADC12IVx Bits 15-0 ADC12_A interrupt vector value.

ADC12IV InterruptInterrupt Source Interrupt FlagContents Priority
000h No interrupt pending –
002h ADC12MEMx overflow – Highest
004h Conversion time overflow –
006h ADC12MEM0 interrupt flag ADC12IFG0
008h ADC12MEM1 interrupt flag ADC12IFG1
00Ah ADC12MEM2 interrupt flag ADC12IFG2
00Ch ADC12MEM3 interrupt flag ADC12IFG3
00Eh ADC12MEM4 interrupt flag ADC12IFG4
010h ADC12MEM5 interrupt flag ADC12IFG5
012h ADC12MEM6 interrupt flag ADC12IFG6
014h ADC12MEM7 interrupt flag ADC12IFG7
016h ADC12MEM8 interrupt flag ADC12IFG8
018h ADC12MEM9 interrupt flag ADC12IFG9
01Ah ADC12MEM10 interrupt flag ADC12IFG10
01Ch ADC12MEM11 interrupt flag ADC12IFG11
01Eh ADC12MEM12 interrupt flag ADC12IFG12
020h ADC12MEM13 interrupt flag ADC12IFG13
022h ADC12MEM14 interrupt flag ADC12IFG14
024h ADC12MEM15 interrupt flag ADC12IFG15 Lowest

ADC12_A488 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

Chapter 19
SLAU208–June 2008

Embedded Emulation Module (EEM)

This chapter describes the Embedded Emulation Module (EEM) that is implemented in all MSP430 flash
devices.

Topic .. Page

19.1 EEM Introduction... 490
19.2 EEM Building Blocks ... 492
19.3 EEM Configurations... 494

SLAU208–June 2008 Embedded Emulation Module (EEM) 489
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

19.1 EEM Introduction

EEM Introduction www.ti.com

Every MSP430 flash-based microcontroller implements an embedded emulation module (EEM). It is
accessed and controlled through either 4-wire JTAG mode or Spy-Bi-Wire mode. Each implementation is
device dependent and is described in Section 19.3 EEM Configurations and the device data sheet.

In general, the following features are available:
• Nonintrusive code execution with real-time breakpoint control
• Single step, step into, and step over functionality
• Full support of all low-power modes
• Support for all system frequencies, for all clock sources
• Up to eight (device dependent) hardware triggers/breakpoints on memory address bus (MAB) or

memory data bus (MDB)
• Up to two (device dependent) hardware triggers/breakpoints on CPU register write accesses
• MAB, MDB, and CPU register access triggers can be combined to form up to ten (device dependent)

complex triggers/breakpoints
• Up to two (device dependent) cycle counters
• Trigger sequencing (device dependent)
• Storage of internal bus and control signals using an integrated trace buffer (device dependent)
• Clock control for timers, communication peripherals, and other modules on a global device level or on

a per-module basis during an emulation stop

Figure 19-1 shows a simplified block diagram of the largest currently available 5xx EEM implementation.

For more details on how the features of the EEM can be used together with the IAR Embedded
Workbench™ debugger see the application report Advanced Debugging Using the Enhanced Emulation
Module (SLAA263) at www.msp430.com. Code Composer Essentials (CCE) and most other debuggers
supporting MSP430 have the same or a similar feature set. For details see the user's guide of the
applicable debugger.

490 Embedded Emulation Module (EEM) SLAU208–June 2008
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SLAA263
http://www.msp430.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

CPU Stop

Trigger
Blocks

MB0

MB1

MB2

MB3

MB4

MB5

MB6

MB7

CPU0

CPU1

&

0

Trigger Sequencer

"AND" Matrix- Combination Triggers

&

1

&

2

&

3

&

4

&

5

&

6

&

7

&

8

&

9

Start/Stop Cycle Counter

Start/Stop State Storage

OR

OR

OR

www.ti.com EEM Introduction

Figure 19-1. Large Implementation of the Embedded Emulation Module (EEM)

SLAU208–June 2008 Embedded Emulation Module (EEM) 491
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

19.2 EEM Building Blocks

19.2.1 Triggers

19.2.2 Trigger Sequencer

19.2.3 State Storage (Internal Trace Buffer)

19.2.4 Cycle Counter

EEM Building Blocks www.ti.com

The event control in the EEM of the MSP430 system consists of triggers, which are internal signals
indicating that a certain event has happened. These triggers may be used as simple breakpoints, but it is
also possible to combine two or more triggers to allow detection of complex events and trigger various
reactions besides stopping the CPU.

In general, the triggers can be used to control the following functional blocks of the EEM:
• Breakpoints (CPU stop)
• State storage
• Sequencer
• Cycle counter

There are two different types of triggers: the memory trigger and the CPU register write trigger.

Each memory trigger block can be independently selected to compare either the MAB or the MDB with a
given value. Depending on the implemented EEM the comparison can be =, ≠, ≥, or ≤. The comparison
can also be limited to certain bits with the use of a mask. The mask is either bit-wise or byte-wise,
depending upon the device. In addition to selecting the bus and the comparison, the condition under which
the trigger is active can be selected. The conditions include read access, write access, DMA access, and
instruction fetch.

Each CPU register write trigger block can be independently selected to compare what is written into a
selected register with a given value. The observed register can be selected for each trigger independently.
The comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to certain bits with the use of a
bit mask.

Both types of triggers can be combined to form more complex triggers. For example, a complex trigger
can signal when a particular value is written into a user-specified address.

The trigger sequencer allows the definition of a certain sequence of trigger signals before an event is
accepted for a break or state storage event. Within the trigger sequencer, it is possible to use the following
features:
• Four states (State 0 to State 3)
• Two transitions per state to any other state
• Reset trigger that resets the sequencer to State 0.

The trigger sequencer always starts at State 0 and must execute to State 3 to generate an action. If
State 1 or State 2 are not required, they can be bypassed.

The state storage function uses a built-in buffer to store MAB, MDB, and CPU control signal information
(i.e., read, write, or instruction fetch) in a nonintrusive manner. The built-in buffer can hold up to eight
entries. The flexible configuration allows the user to record the information of interest very efficiently.

The cycle counter provides one or two 40-bit counters to measure the cycles used by the CPU to execute
certain tasks. On some devices, the cycle counter operation can be controlled using triggers. This allows,
for example, conditional profiling, such as profiling a specific section of code.

Embedded Emulation Module (EEM)492 SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

19.2.5 Clock Control
www.ti.com EEM Building Blocks

The EEM provides device dependent flexible clock control. This is useful in applications where a running
clock is needed for peripherals after the CPU is stopped (e.g., to allow a UART module to complete its
transfer of a character or to allow a timer to continue generating a PWM signal).

The clock control is flexible and supports both modules that need a running clock and modules that must
be stopped when the CPU is stopped due to a breakpoint.

SLAU208–June 2008 Embedded Emulation Module (EEM) 493
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

19.3 EEM Configurations
EEM Configurations www.ti.com

Table 19-1 gives an overview of the EEM configurations in the MSP430 5xx family. The implemented
configuration is device dependent (see the device-specific data sheet for details).

Table 19-1. 5xx EEM Configurations
Feature XS S M L
Memory bus triggers 2 3 5 8

(=, ≠ only)
Memory bus trigger mask for 1) Low byte 1) Low byte 1) Low byte All 16 or 20 bits

2) High byte 2) High byte 2) High byte
3) Four upper addr bits 3) Four upper addr bits 3) Four upper addr bits

CPU register write triggers 0 1 1 2
Combination triggers 2 4 6 10
Sequencer No No Yes Yes
State storage No No No Yes
Cycle counter 1 1 1 2

(including
triggered start/stop)

In general the following features can be found on any 5xx device:
• At least two MAB/MDB triggers supporting:

– Distinction between CPU, DMA, read, and write accesses
– =, ≠, ≥, or ≤ comparison (in XS, only =, ≠)

• At least two trigger combination registers
• Hardware breakpoints using the CPU stop reaction
• At least one 40-bit cycle counter
• Enhanced clock control with individual control of module clocks

494 Embedded Emulation Module (EEM) SLAU208–June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
	1.1 System Control Module Introduction
	1.2 Principle of Operation
	1.2.1 Device Descriptor Table
	1.2.1.1 Identifying the Device type
	1.2.1.2 MSP430 Calibration Descriptors

	1.2.2 Boot Code
	1.2.3 Boot Strap Loader (BSL)
	1.2.4 JTAG Mailbox System (JMB)

	1.3 Memory Map–Uses and Abilities
	1.3.1 Vacant Memory Space
	1.3.2 JTAG Lock Mechanism
	1.3.3 SYS Interrupt Vector Generators
	1.3.3.1 SYSSNIV Software Example

	1.4 Interrupts
	1.4.1 (Non)-Maskable Interrupts (NMI)
	1.4.2 SNMI Timing
	1.4.3 Maskable Interrupts
	 Interrupt Processing
	1.4.4.1 Interrupt Acceptance
	1.4.4.2 Return From Interrupt
	1.4.4.3 Interrupt Nesting

	1.5 Operating Modes
	1.5.1 Entering and Exiting Low-Power Modes
	1.5.1.1 Extended Time in Low-Power Modes

	1.6 Principles for Low-Power Applications
	1.7 Connection of Unused Pins
	1.8 Reset and Subtypes
	1.9 Interrupt Vectors
	1.10 Special Function Registers
	1.11 SYS Registers

	2 Watchdog Timer (WDT_A)
	2.1 Watchdog Timer Introduction
	2.2 Watchdog Timer Block Diagram
	2.2.1 Watchdog Timer Counter
	2.2.2 Watchdog Mode
	2.2.3 Interval Timer Mode
	2.2.4 Watchdog Timer Interrupts
	2.2.5 Clock Fail-Safe Feature
	2.2.6 Operation in Low-Power Modes
	2.2.7 Software Examples

	2.3 Watchdog Timer Registers

	3 Unified Clock System (UCS)
	3.1 Unified Clock System Introduction
	3.2 Unified Clock System Module Operation
	3.2.1 Unified Clock System Module Features for Low-Power Applications
	3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
	3.2.3 Internal Trimmed Low-Frequency Reference Oscillator(REFO)
	3.2.4 XT1 Oscillator
	3.2.5 XT2 Oscillator
	3.2.6 Digitally-Controlled Oscillator (DCO)
	3.2.7 Frequency Locked Loop (FLL)
	3.2.8 DCO Modulator
	3.2.9 Disabling the FLL Hardware and Modulator
	3.2.10 FLL Operation from Low-Power Modes
	3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules
	3.2.12 Unified Clock System Module Fail-Safe Operation
	3.2.13 Synchronization of Clock Signals

	3.3 MODOSC Module Oscillator
	3.3.1 MODOSC Operation

	3.4 Unified Clock System Module Registers

	4 Power Management Module and Supply Voltage Supervisor
	4.1 PMM Introduction
	4.2 PMM Operation
	4.2.1 Supply Voltage Supervisor and Monitor – High Side
	4.2.2 Supply Voltage Supervisor and Monitor – Low Side
	4.2.3 Supply Voltage Monitor Output (SVMOUT, Optional)
	4.2.4 Performance Optimization
	4.2.5 Voltage Reference
	4.2.6 Brown-Out Reset (BOR)
	4.2.7 Manual Control of the Power Management Module
	4.2.7.1 Manual Control of the Voltage Regulator
	4.2.7.2 Controlling the SVSH,L and SVMH,L Performance
	4.2.7.3 Disabling the Core Voltage Regulator – LPM5

	4.2.8 I/O-Port Control
	4.2.9 PMM Interrupts

	4.3 PMM Registers

	5 CPUX
	5.1 CPU Introduction
	5.2 Interrupts
	5.3 CPU Registers
	5.3.1 Program Counter (PC)
	5.3.2 Stack Pointer (SP)
	5.3.3 Status Register (SR)
	5.3.4 Constant Generator Registers (CG1 and CG2)
	5.3.5 General Purpose Registers R4 to R15

	5.4 Addressing Modes
	5.4.1 Register Mode
	5.4.2 Indexed Mode
	5.4.3 Symbolic Mode
	5.4.4 Absolute Mode
	5.4.5 Indirect Register Mode
	5.4.6 Indirect, Autoincrement Mode
	5.4.7 Immediate Mode

	5.5 MSP430 and MSP430X Instructions
	5.5.1 MSP430 Instructions
	5.5.2 MSP430X Extended Instructions

	5.6 Instruction Set Description
	5.6.1 Extended Instruction Binary Descriptions
	5.6.2 MPS430 Instructions
	5.6.3 Extended Instructions
	5.6.4 Address Instructions

	6 Flash Memory Controller
	6.1 Flash Memory Introduction
	6.2 Flash Memory Segmentation
	6.2.1 Segment A

	6.3 Flash Memory Operation
	6.3.1 Erasing Flash Memory
	6.3.2 Writing Flash Memory
	6.3.3 Flash Memory Access During Write or Erase
	6.3.4 Stopping Write or Erase Cycle
	6.3.5 Checking Flash memory
	6.3.6 Configuring and Accessing the Flash Memory Controller
	6.3.7 Flash Memory Controller Interrupts
	6.3.8 Programming Flash Memory Devices

	6.4 Flash Memory Registers

	7 Digital I/O
	7.1 Digital I/O Introduction
	7.2 Digital I/O Operation
	7.2.1 Input Register PxIN
	7.2.2 Output Registers PxOUT
	7.2.3 Direction Registers PxDIR
	7.2.4 Pullup/Pulldown Resistor Enable Registers PxREN
	7.2.5 Output Drive Strength Registers PxDS
	7.2.6 Function Select Registers PxSEL
	7.2.7 P1 and P2 Interrupts
	7.2.8 Configuring Unused Port Pins

	7.3 Digital I/O Registers

	8 RAM Controller
	8.1 RAMCTL Introduction
	8.2 RAMCTL Operation
	8.3 RAMCTL Module Registers

	9 DMA Controller
	9.1 DMA Introduction
	9.2 DMA Operation
	9.2.1 DMA Addressing Modes
	9.2.2 DMA Transfer Modes
	9.2.2.1 Burst-Block Transfers

	9.2.3 Initiating DMA Transfers
	9.2.4 Stopping DMA Transfers
	9.2.5 DMA Channel Priorities
	9.2.6 DMA Transfer Cycle Time
	9.2.7 Using DMA With System Interrupts
	9.2.8 DMA Controller Interrupts
	9.2.9 Using the USCI_B I2C Module with the DMA Controller
	9.2.10 Using ADC12 with the DMA Controller
	9.2.11 Using DAC12 With the DMA Controller

	9.3 DMA Registers

	10 32-Bit Hardware Multiplier (MPY32)
	10.1 32-Bit Hardware Multiplier Introduction
	10.2 32-Bit Hardware Multiplier Operation
	10.2.1 Operand Registers
	10.2.2 Result Registers
	10.2.3 Software Examples
	10.2.4 Fractional Numbers
	10.2.5 Putting It All Together
	10.2.6 Indirect Addressing of Result Registers
	10.2.7 Using Interrupts
	10.2.8 Using DMA

	10.3 32-Bit Hardware Multiplier Registers

	11 CRC Module
	11.1 CRC Module Introduction
	11.2 CRC Checksum Generation
	11.2.1 CRC Implementation
	11.2.2 Assembler Examples

	11.3 CRC Module Registers

	12 Timer_A
	12.1 Timer_A Introduction
	12.2 Timer_A Operation
	12.2.1 16-Bit Timer Counter
	12.2.2 Starting the Timer
	12.2.3 Timer Mode Control
	12.2.4 Capture/Compare Blocks
	12.2.4.0.1 Capture Initiated by Software

	12.2.5 Output Unit
	12.2.6 Timer_A Interrupts

	12.3 Timer_A Registers

	13 Timer_B
	13.1 Timer_B Introduction
	13.1.1 Similarities and Differences From Timer_A

	13.2 Timer_B Operation
	13.2.1 16-Bit Timer Counter
	13.2.2 Starting the Timer
	13.2.3 Timer Mode Control
	13.2.3.1 Up Mode

	13.2.4 Capture/Compare Blocks
	13.2.5 Output Unit
	13.2.5.1 Output Modes

	13.2.6 Timer_B Interrupts

	13.3 Timer_B Registers

	14 Real-Time Clock (RTC_A)
	14.1 Real-Time Clock Introduction
	14.2 Real-Time Clock Operation
	14.2.1 Counter Mode
	14.2.2 Calendar Mode
	14.2.2.1  Real-Time Clock and Prescale Dividers
	14.2.2.2  Real-Time Clock Alarm Function
	14.2.2.3  Reading or Writing Real-Time Clock Registers in Calendar Mode

	14.2.3 Real-Time Clock Interrupts
	14.2.3.1  Real-Time Clock Interrupts in Calendar Mode
	14.2.3.2  Real-Time Clock Interrupts in Counter Mode

	14.2.4 Real-Time Clock Calibration

	14.3 Real-Time Clock Registers

	15 Universal Serial Communication Interface, UART Mode
	15.1 USCI Overview
	15.2 USCI Introduction: UART Mode
	15.3 USCI Operation: UART Mode
	15.3.1 USCI Initialization and Reset
	15.3.2 Character Format
	15.3.3 Asynchronous Communication Formats
	15.3.4 Automatic Baud Rate Detection
	15.3.5 IrDA Encoding and Decoding
	15.3.5.1 IrDA Encoding

	15.3.6 Automatic Error Detection
	15.3.7 USCI Receive Enable
	15.3.8 USCI Transmit Enable
	15.3.9 UART Baud Rate Generation
	15.3.10 Setting a Baud Rate
	15.3.11 Transmit Bit Timing
	15.3.12 Receive Bit Timing
	15.3.13 Typical Baud Rates and Errors
	15.3.14 Using the USCI Module in UART Mode with Low Power Modes
	15.3.15 USCI Interrupts

	15.4 USCI Registers: UART Mode

	16 Universal Serial Communication Interface, SPI Mode
	16.1 USCI Overview
	16.2 USCI Introduction: SPI Mode
	16.3 USCI Operation: SPI Mode
	16.3.1 USCI Initialization and Reset
	16.3.2 Character Format
	16.3.3 Master Mode
	16.3.4 Slave Mode
	16.3.5 SPI Enable
	16.3.6 Serial Clock Control
	16.3.6.1 Serial Clock Polarity and Phase

	16.3.7 Using the SPI Mode with Low Power Modes
	16.3.8 SPI Interrupts

	16.4 USCI Registers: SPI Mode

	17 Universal Serial Communication Interface, I2C Mode
	17.1 USCI Overview
	17.2 USCI Introduction: I2C Mode
	17.3 USCI Operation: I2C Mode
	17.3.1 USCI Initialization and Reset
	17.3.2 I2C Serial Data
	17.3.3 I2C Addressing Modes
	17.3.4 I2C Module Operating Modes
	17.3.5 I2C Clock Generation and Synchronization
	17.3.6 Using the USCI Module in I2C Mode with Low Power Modes
	17.3.7 USCI Interrupts in I2C Mode

	17.4 USCI Registers: I2C Mode

	18 ADC12_A
	18.1 ADC12_A Introduction
	18.2 ADC12_A Operation
	18.2.1 12-Bit ADC Core
	18.2.2 ADC12_A Inputs and Multiplexer
	18.2.3 Voltage Reference Generator
	18.2.4 Auto Power-Down
	18.2.5 Sample and Conversion Timing
	18.2.6 Conversion Memory
	18.2.7 ADC12_A Conversion Modes
	18.2.8 Using the Integrated Temperature Sensor
	18.2.9 ADC12_A Grounding and Noise Considerations
	18.2.10 ADC12_A Interrupts

	18.3 ADC12_A Registers

	19 Embedded Emulation Module (EEM)
	19.1 EEM Introduction
	19.2 EEM Building Blocks
	19.2.1 Triggers
	19.2.2 Trigger Sequencer
	19.2.3 State Storage (Internal Trace Buffer)
	19.2.4 Cycle Counter
	19.2.5 Clock Control

	19.3 EEM Configurations

