TS5A3159A SCDS200F - JUNE 2005 - REVISED JANUARY 2018 # TS5A3159A 1-Ω SPDT Analog Switch 5-V and 3.3-V Single-Channel 2:1 Multiplexer and Demultiplexer #### **Features** - Specified Break-Before-Make Switching - Isolation in Power-Down Mode, $V_{+} = 0$ - Terminal Compatible With TS5A3159 Device - Low ON-State Resistance (1 Ω) - Control Inputs are 5.5-V Tolerant - Low Charge Injection - **Excellent On-State Resistance Matching** - Low Total Harmonic Distortion (THD) - 1.65-V to 5.5-V Single-Supply Operation - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Performance Tested Per JESD - 2000-V Human-Body Model (A114-B, Class II) - 1000-V Charged-Device Model (C101) # **Applications** - Cell Phones - **PDAs** - Portable Instrumentation - Audio and Video Signal Routing - Low-Voltage Data Acquisition Systems - Communication Circuits - Modems - Hard Drives - Computer Peripherals - Wireless Terminals and Peripherals ## 3 Description The TS5A3159A device is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers low on-state resistance and excellent ON-state resistance matching with the break-before-make feature, to prevent signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications. #### Device Information⁽¹⁾ | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |---------------|------------|-------------------| | TS5A3159ADBVR | SOT-23 (6) | 2.90 mm × 1.60 mm | | TS5A3159ADCKR | SC70 (6) | 2.00 mm × 1.25 mm | | TS5A3159AYZPR | DSBGA (6) | 1.41 mm × 0.91 mm | (1) For all available packages, see the orderable addendum at the end of the data sheet. #### **Block Diagram** Copyright © 2018, Texas Instruments Incorporated #### **Table of Contents** | 1 | Features 1 | 8.2 Functional Block Diagram | |---|--|---| | 2 | Applications 1 | 8.3 Feature Description 1 | | 3 | Description 1 | 8.4 Device Functional Modes 1 | | 4 | Revision History2 | 9 Application and Implementation 1 | | 5 | Pin Configuration and Functions | 9.1 Application Information 1 | | 6 | Specifications | 9.2 Typical Application 1 | | U | 6.1 Absolute Maximum Ratings | 10 Power Supply Recommendations 2 | | | 6.2 ESD Ratings | 11 Layout 2 | | | 6.3 Recommended Operating Conditions | 11.1 Layout Guidelines2 | | | 6.4 Thermal Information | 11.2 Layout Example2 | | | 6.5 Electrical Characteristics for 5-V Supply | 12 Device and Documentation Support 2 | | | 6.6 Electrical Characteristics for 3.3-V Supply | 12.1 Device Support2 | | | 6.7 Electrical Characteristics for 2.5-V Supply | 12.2 Documentation Support2 | | | 6.8 Electrical Characteristics for 1.8-V Supply9 | 12.3 Community Resources 2 | | | 6.9 Typical Characteristics | 12.4 Trademarks2 | | 7 | Parameter Measurement Information 14 | 12.5 Electrostatic Discharge Caution 2 | | 8 | Detailed Description | 12.6 Glossary2 | | • | 8.1 Overview | 13 Mechanical, Packaging, and Orderable Information | ## 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Changes from Revision E (November 2015) to Revision F | Page | |---|------| | Changed the YZP package From: 8 Pins To: 6 Pins in the <i>Thermal Information</i> table | 4 | | | _ | | Changes from Revision D (June 2015) to Revision E | Page | #### Changes from Revision C (May 2010) to Revision D Page Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. # 5 Pin Configuration and Functions NO – Normally open NC – Normally closed #### **Pin Functions** | | PIN | | | | | |------|------------------|-------|-----|--|--| | NAME | SOT-23,
SC-70 | DSBGA | I/O | DESCRIPTION | | | COM | 4 | C2 | I/O | Common switch port | | | GND | 2 | B1 | _ | Ground | | | IN | 6 | A2 | I/O | Switch select. High = COM connected to NO; Low = COM connected to NC | | | NC | 3 | C1 | I/O | Normally closed switched port | | | NO | 1 | A1 | _ | Normally open switch port | | | V+ | 5 | B2 | - 1 | Power supply | | Copyright © 2005–2018, Texas Instruments Incorporated ### 6 Specifications #### 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1)(2) | | | | MIN | MAX | UNIT | |--|--|--|------|----------------------|------| | V ₊ | Supply voltage (3) | | -0.5 | 6.5 | V | | V _{NO} ,
V _{NC} ,
V _{COM} | Analog voltage (3)(4)(5) | og voltage ⁽³⁾⁽⁴⁾⁽⁵⁾ | | V ₊ + 0.5 | ٧ | | I _K | Analog port diode current | V_{NC} , V_{NO} , $V_{COM} < 0$ | -50 | | mA | | I _{NO} ,
I _{NC} ,
I _{COM} | ON-state switch current | V_{NO} , V_{NC} , $V_{COM} = 0$ to V_{+} | -200 | 200 | mA | | | ON-state peak switch current (6) | -400 | 400 | mA | | | V_{I} | Digital input voltage (3) (4) | | -0.5 | 6.5 | V | | I_{lK} | Digital input clamp current | V ₁ < 0 | -50 | | mA | | I ₊ | Continuous current through V ₊ | | | 100 | mA | | I _{GND} | Continuous current through GND | Continuous current through GND | | | mA | | T _A | About to mark the control of con | DBV or DCK package | | 150 | 00 | | | Absolute maximum operating temperature (7) | | 125 | °C | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum. - (3) All voltages are with respect to ground, unless otherwise specified. - (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - (5) This value is limited to 5.5 V maximum. - (6) Pulse at 1-ms duration <10% duty cycle. - (7) The lifetime of the device will be reduced if the device operates continually at this temperature. ### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±1000 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. #### 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |------------------|-----------------------------|------|---------|------| | V _{I/O} | Switch input/output voltage | 0 | V_{+} | V | | V+ | Supply voltage | 1.65 | 5.5 | V | | VI | Control input voltage | 0 | 5.5 | V | | T_A | Operating temperature | -40 | 85 | °C | #### 6.4 Thermal Information | | | | TS5A3159A | | | |-----------------|--
--------------|-------------|-------------|------| | | THERMAL METRIC ⁽¹⁾ | DBV (SOT-23) | DCK (SC-70) | YZP (DSBGA) | UNIT | | | | 6 PINS | 6 PINS | 6 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 165 | 259 | 123 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Product Folder Links: TS5A3159A ## 6.5 Electrical Characteristics for 5-V Supply $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾ | P | ARAMETER | TEST CONDI | TIONS | T _A | V ₊ | MIN | TYP | MAX | UNIT | |--|---------------------------|--|--|----------------|----------------------|------|------|---------|------| | ANALOG SWIT | СН | | | | | | | | | | V _{COM} , V _{NO} , V _{NC} | Analog signal | | | | | 0 | | V_{+} | V | | | Dools ON registeres | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$ | Switch on, | 25°C | 45.1/ | | 0.8 | 1.1 | ^ | | r _{peak} | Peak ON resistance | $I_{COM} = -100 \text{ mA},$ | see Figure 14 | Full | 4.5 V | | | 1.5 | Ω | | _ | ON state registeres | V_{NO} or $V_{NC} = 2.5 \text{ V}$, | Switch on, | 25°C | 45. | | 0.7 | 0.9 | | | r _{on} | ON-state resistance | $I_{COM} = -100 \text{ mA},$ | see Figure 14 | Full | 4.5 V | | | 1.1 | Ω | | Ar | ON-state resistance | V_{NO} or $V_{NC} = 2.5 \text{ V}$, | Switch on, | 25°C | 4.5 V | | 0.05 | 0.1 | Ω | | $\Delta r_{\sf on}$ | match between channels | $I_{COM} = -100 \text{ mA},$ | see Figure 14 | Full | 4.5 V | | | 0.1 | 12 | | | ON-state resistance | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -100 \text{ mA},$ | Switch on, see Figure 14 | 25°C | | | 0.15 | | | | r _{on(flat)} | flatness | V_{NO} or $V_{NC} = 1 \text{ V}, 1.5 \text{ V}, 2.5 \text{ V},$ | Switch on, | 25°C | 4.5 V | | 0.1 | 0.25 | Ω | | | | $I_{COM} = -100 \text{ mA},$ | see Figure 14 | Full | | | | 0.25 | | | | | V_{NC} or $V_{NO} = 1 \text{ V}$, $V_{COM} = 1 \text{ V}$ | 0 '' 1 " | 25°C | | -20 | 2 | 20 | | | I _{NC(OFF)} ,
I _{NO(OFF)} | NC, NO | to 4.5 V, or V_{NC} or V_{NC} or V_{NC} = 4.5 V, V_{COM} = 1 V to 4.5 V, | Switch off,
see Figure 15 | Full | 5.5 V | -100 | | 100 | nA | | I _{NC(PWROFF)} , | OFF leakage current | V_{NC} or $V_{NO} = 0$ to 5.5 V, | Switch off, | 25°C | | -1 | 0.2 | 1 | | | I _{NO(PWROFF)} | | $V_{COM} = 5.5 \text{ V to 0},$ | see Figure 15 | Full | 0 V | -20 | | 20 | μΑ | | 1 | NC, NO | V_{NC} or $V_{NO} = 1 V$, | Switch on, | 25°C | | -20 | 2 | 20 | | | I _{NC(ON)} ,
I _{NO(ON)} | ON leakage current | V_{COM} = Open, or V_{NC} or V_{NO} = 4.5 V, V_{COM} = Open, | see Figure 16 | Full | 5.5 V | -100 | | 100 | nA | | | COM | V_{NC} or $V_{NO} = 0$ to 5.5 V, | Switch off, | 25° | 0.14 | -1 | 0.1 | 1 | | | COM(PWROFF) | OFF leakage current | $V_{COM} = 5.5 \text{ V to } 0,$ | see Figure 15 | Full | 0 V | -20 | | 20 | μΑ | | | COM | V _{NC} or V _{NO} = Open, | Switch on, | 25°C | | -20 | 2 | 20 | | | I _{COM(ON)} | ON leakage current | $V_{COM} = 1 \text{ V, or } V_{NC} \text{ or } V_{NO} = 0 \text{ Open, } V_{COM} = 4.5 \text{ V,}$ | see Figure 16 | Full | 5.5 V | -100 | | 100 | nA | | DIGITAL INPUT | (IN) | | | | | | | | | | V _{IH} | Input logic high | | | Full | | 2.4 | | 5.5 | V | | V _{IL} | Input logic low | | | Full | | 0 | | 8.0 | • | | I _{IH} , I _{IL} | Input leakage current | V _I = 5.5 V or 0 | | 25°C | 5.5 V | -2 | | 2 | nA | | יוחי יוב | put lounage outom | 1, 0.0 1 0.0 | | Full | | 100 | | 100 | | | DYNAMIC | | | | 25°C | 5 V | 1 | 12 | 30 | | | t _{ON} | Turnon time | $V_{COM} = V_+,$ $R_L = 50 \Omega,$ | C _L = 35 pF,
see Figure 18 | Full | 4.5 V
to 5.5
V | 1 | | 35 | ns | | | | | | 25°C | 5 V | 1 | 5 | 20 | | | t _{OFF} | Turnoff time | $V_{COM} = V_{+},$ $R_{L} = 50 \Omega,$ | C _L = 35 pF,
see Figure 18 | Full | 4.5 V
to 5.5
V | 1 | | 30 | ns | | | | | | 25°C | 5 V | | 6 | | | | t _{BBM} | Break-before-make time | $\begin{aligned} V_{NC} &= V_{NO} = V_+, \\ R_L &= 50 \ \Omega, \end{aligned}$ | C _L = 35 pF,
see Figure 19 | Full | 4.5 V
to 5.5
V | 1 | | 20 | ns | | Q _C | Charge injection | V _{GEN} = 0,
R _{GEN} = 0, | C _L = 1 nF,
see Figure 23 | 25°C | 5 V | | -20 | | pC | | C _{NC(OFF)} ,
C _{NO(OFF)} | NC, NO
OFF capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch off,
see Figure 17 | 25°C | 5 V | | 18 | | pF | | C _{NC(ON)} ,
C _{NO(ON)} | NC, NO
ON capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch on,
see Figure 17 | 25°C | 5 V | | 55 | | pF | | C _{COM(ON)} | COM
ON capacitance | V _{COM} = V ₊ or GND, | Switch on,
see Figure 17 | 25°C | 5 V | | 55 | | pF | | C _I | Digital input capacitance | $V_I = V_+ \text{ or GND},$ | See Figure 17 | 25°C | 5 V | | 2 | | pF | | BW | Bandwidth | $R_L = 50 \Omega$, | Switch on,
see Figure 20 | 25°C | 5 V | | 100 | | MHz | | | | 1 | | 1 | 1 | 1 | | | | ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum. ## **Electrical Characteristics for 5-V Supply (continued)** $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾ | | PARAMETER | TEST | CONDITIONS | TA | V ₊ | MIN | TYP | MAX | UNIT | |-------------------|---------------------------|---------------------------------------|--|------|----------------|-----|-----|-----|------| | O _{ISO} | Off isolation | $R_L = 50 \Omega$,
f = 1 MHz, | Switch off,
see Figure 21 | 25°C | 5 V | | -64 | | dB | | X _{TALK} | Crosstalk | $R_L = 50 \Omega$,
f = 1 MHz, | Switch on,
see Figure 22 | 25°C | 5 V | | -64 | | dB | | THD | Total harmonic distortion | $R_L = 600 \Omega,$
$C_L = 50 pF,$ | f = 200 Hz to 20 kHz,
see Figure 24 | 25°C | 5 V | 0.0 | 04% | | | | SUPPLY | | | | | | | | | | | | Positive supply current | $V_1 = V_+ \text{ or GND},$ | Switch on or off | 25°C | 5.5 V | | 10 | 50 | nA | | 1+ | Fositive supply current | VI = V+ OI GIND, | SWILCH OH OH | Full | 3.3 V | | | 500 | IIA | # 6.6 Electrical Characteristics for 3.3-V Supply $V_{+} = 3 \text{ V to } 3.6 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$ | | PARAMETER | TEST COND | ITIONS | T _A | V ₊ | MIN | TYP | MAX | UNIT | |---|--|---|------------------------------|----------------|-----------------|------|------|----------------|------| | ANALOG SW | /ITCH | | | <u> </u> | • | | | | | | V _{COM} , V _{NO} ,
V _{NC} | Analog signal range | | | | | 0 | | V ₊ | V | | r . | Peak ON resistance | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$ | Switch on, | 25°C | 3 V | | 1.3 | 1.6 | Ω | | r _{peak} | reak ON lesistance | $I_{COM} = -100 \text{ mA},$ | See Figure 14 | Full | 3 V | | | 2 | 32 | | r _{on} | ON-state resistance | V_{NO} or $V_{NC} = 2 V$, | Switch on, | 25°C | 3 V | | 1.2 | 1.5 | Ω | | on | OTT state registaries | $I_{COM} = -100 \text{ mA},$ | See Figure 14 | Full | | | | 1.7 | | | $\Delta r_{\sf on}$ | ON-state resistance match between channels | V_{NO} or $V_{NC} = 2 \text{ V}$, 0.8 V, $I_{COM} = -100 \text{ mA}$, | Switch on,
See Figure 14 | 25°C
Full | 3 V | | 0.1 | 0.15
0.15 | Ω | | | ON-state resistance | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -100 \text{ mA},$ | Switch on,
See Figure 14 | 25°C | | | 0.2 | | | | r _{on(flat)} | flatness | V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$ | Switch on, | 25°C | 3 V | | 0.15 | 0.3 | Ω | | | | $I_{COM} = -100 \text{ mA},$ | See Figure 14 | Full | | | | 0.3 | | | | | V_{NC} or $V_{NO} = 1 \text{ V}$, $V_{COM} = 1 \text{ V}$ | | 25°C | | -20 | 2 | 20 | | | I _{NC(OFF)} ,
I _{NO(OFF)} | NC, NO off leakage current | to 3 V, or V_{NC} or $V_{NO} = 3$ V, $V_{COM} = 1$ V to 3 V, | Switch off,
See Figure 15 | Full | 3.6 V | -50 | | 50 | nA | | I _{NC(PWROFF)} , | on leakage current | V_{NC} or $V_{NO} = 0$ to 3.6 V, | Switch off, | 25°C | | -1 | 0.2 | 1 | | | I _{NO(PWROFF)} | | $V_{COM} = 3.6 \text{ V to } 0,$ | See Figure 15 | Full | 0 V | -15 | | 15 | μΑ | | | | V _{NC} or V _{NO} = 1 V, V _{COM} = | | 25°C | | -10 | 2 | 10 | | | I _{NC(ON)} ,
I _{NO(ON)} | NC, NO
on leakage current | Open,
or V_{NC} or $V_{NO} = 3 \text{ V}, V_{COM} = \text{Open},$ | Switch on,
See Figure 16 | Full | 3.6 V | -20 | | 20 | nA | | | COM | V_{NC} or $V_{NO} = 3.6 \text{ V to } 0$, | Switch off, | 25° | 0.1/ | -1 | 0.2 | 1 | | | COM(PWROFF) | off leakage current | $V_{COM} = 0 \text{ to } 3.6 \text{ V},$ | See Figure 15 | Full | 0 V | -15 | | 15 | μΑ | | | COM | V_{NC} or V_{NO} = Open, | Switch on, | 25°C | | -10 | 2 | 10 | | | I _{COM(ON)} | on leakage current | $V_{COM} = 1 \text{ V, or } V_{NC} \text{ or } V_{NO} = 0 \text{ pen, } V_{COM} = 3 \text{ V,}$ | See Figure 16 | Full | 3.6 V | -20 | | 20 | nA | | DIGITAL INP | UT (IN) | | | | | | | | | | V_{IH} | Input logic high | | | Full | | 2.4 | | 5.5 | V | | V _{IL} | Input logic low | | | Full | | 0 | | 8.0 | • | | I _{IH} , I _{IL} | Input leakage current | V _I = 5.5 V or 0 | | 25°C | 3.6 V | -2 | | 2 | nA | | | | 1 333 333 | | Full | | -100 | | 100 | | | DYNAMIC | | 1 | | | | _ | | 1 | | | t | Turnon time | $V_{COM} = V_+,$ | $C_{L} = 35 \text{ pF},$ | 25°C | 3.3 V | 5 | 16 | 35 | ns | | t _{ON} | i amon ume | $R_L = 50 \Omega$, | See Figure 18 | Full | 3 V to
3.6 V | 3 | | 50 | 119 | | | | $V_{COM} = V_+,$ | $C_L = 35 pF,$ | 25°C | 3.3 V | 1 | 9 | 20 | | | t _{OFF} | Turnoff time | $R_L = 50 \Omega,$ | See Figure 18 | Full | 3 V to
3.6 V |
1 | | 30 | ns | (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum. Submit Documentation Feedback Copyright © 2005–2018, Texas Instruments Incorporated # **Electrical Characteristics for 3.3-V Supply (continued)** $V_{+} = 3 \text{ V to } 3.6 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$ | | PARAMETER | TEST COI | NDITIONS | TA | V. | MIN | TYP | MAX | UNIT | |--|---------------------------|--|---|------|-----------------|-----|------|-----|------| | | | $V_{NC} = V_{NO} = V_+,$ | $C_L = 35 \text{ pF},$ | 25°C | 3.3 V | | 9 | | | | t _{BBM} | Break-before-make time | $V_{NC} = V_{NO} = V_{+},$ $R_L = 50 \Omega,$ | See Figure 19 | Full | 3 V to
3.6 V | 1 | | 40 | ns | | Q _C | Charge injection | V _{GEN} = 0,
R _{GEN} = 0, | C _L = 1 nF,
See Figure 23 | 25°C | 3.3 V | | -11 | | рС | | C _{NC(OFF)} ,
C _{NO(OFF)} | NC, NO
OFF capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch off,
See Figure 17 | 25°C | 3.3 V | | 18 | | pF | | C _{NC(ON)} ,
C _{NO(ON)} | NC, NO
ON capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch on,
See Figure 17 | 25°C | 3.3 V | | 55 | | pF | | C _{COM(ON)} | COM
ON capacitance | V _{COM} = V ₊ or GND, | Switch on,
See Figure 17 | 25°C | 3.3 V | | 55 | | pF | | Cı | Digital input capacitance | $V_I = V_+ \text{ or GND},$ | See Figure 17 | 25°C | 3.3 V | | 2 | | pF | | BW | Bandwidth | $R_L = 50 \Omega$, | Switch on,
See Figure 20 | 25°C | 3.3 V | | 100 | | MHz | | O _{ISO} | Off isolation | $R_L = 50 \Omega$,
f = 1 MHz, | Switch off,
See Figure 21 | 25°C | 3.3 V | | -64 | | dB | | X _{TALK} | Crosstalk | $R_L = 50 \Omega$,
f = 1 MHz, | Switch on,
See Figure 22 | 25°C | 3.3 V | | -64 | | dB | | THD | Total harmonic distortion | $R_L = 600 \Omega,$
$C_L = 50 pF,$ | f = 20 Hz to 20 kHz,
See Figure 24 | 25°C | 3.3 V | 0 | .01% | | | | SUPPLY | | | | • | • | | | ', | | | | Positivo aupply aurrent | $V_1 = V_+$ or GND, | Switch on or off | 25°C | 3.6 V | | 10 | 25 | n^ | | I ₊ | Positive supply current | $v_{\parallel} = v_{+} \cup i \cup U,$ | SWILCH OH OF OH | Full | 3.0 V | | | 100 | nA | # TEXAS INSTRUMENTS ## 6.7 Electrical Characteristics for 2.5-V Supply | | PARAMETER | TEST CONDITIO | NS | TA | V ₊ | MIN | TYP | MAX | UNIT | |--|------------------------------|--|--|------|----------------------|-----|------|----------------|------| | ANALOG SWIT | СН | | | | | | | | | | V _{COM} , V _{NO} , V _{NC} | Analog signal range | | | | | 0 | | V ₊ | V | | | D 1 011 11 | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$ | Switch on, | 25°C | | | 1.8 | 2.5 | _ | | r _{peak} | Peak ON resistance | $I_{COM} = -8 \text{ mA},$ | See Figure 14 | Full | 2.3 V | | | 2.7 | Ω | | | 011 | V_{NO} or $V_{NC} = 1.8 \text{ V}$, | Switch on, | 25°C | 0.01/ | | 1.5 | 2 | 0 | | r _{on} | ON-state resistance | $I_{COM} = -8 \text{ mA},$ | See Figure 14 | Full | 2.3 V | | | 2.4 | Ω | | A = | ON-state resistance match | V_{NO} or $V_{NC} = 1.8 \text{ V}$, | Switch on, | 25°C | 221/ | | 0.15 | 0.2 | Ω | | Δr_{on} | between channels | $I_{COM} = -8 \text{ mA},$ | See Figure 14 | Full | 2.3 V | | | 0.2 | 77 | | | | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -8 \text{ mA},$ | Switch on,
See Figure 14 | 25°C | | | 0.6 | | | | r _{on(flat)} | ON-state resistance flatness | V_{NO} or $V_{NC} = 0.8 \text{ V}, 1.8 \text{ V},$ | Switch on, | 25°C | 2.3 V | | 0.6 | 1 | Ω | | | | $I_{COM} = -8 \text{ mA},$ | Full | | | | 1 | • | | | | | V_{NC} or $V_{NO} = 0.5 \text{ V}$, | | 25°C | | -20 | 2 | 20 | | | I _{NC(OFF)} ,
I _{NO(OFF)} | NC, NO | V_{COM} = 0.5 V to 2.3 V, or V_{NC} or V_{NO} = 2.3 V, V_{COM} = 0.5 V to 2.3 V, | Switch off,
See Figure 15 | Full | 2.7 V | -50 | | 50 | nA | | I _{NC(PWROFF)} , | OFF leakage current | V_{NC} or $V_{NO} = 0$ to 3.6 V, | Switch off, | 25°C | | -1 | 0.1 | 1 | | | I _{NO(PWROFF)} | | $V_{COM} = 3.6 \text{ V to } 0,$ | See Figure 15 | Full | 0 V | -10 | | 10 | μΑ | | 1 | NC NO | V _{NC} or V _{NO} = 0.5 V, V _{COM} = Open, | Cuitab an | 25°C | | -10 | 2 | 10 | | | I _{NO(ON)} | NC, NO
ON leakage current | or V_{NC} or $V_{NO} = 2.2 \text{ V}$, $V_{COM} = \text{Open}$, | Switch on,
See Figure 16 | Full | 2.7 V | -20 | | 20 | nA | | l | COM | V_{NC} or $V_{NO} = 2.7 \text{ V to } 0$, | Switch off, | 25° | 0 V | -1 | 0.1 | 10 | μА | | ICOM(PWROFF) | OFF leakage current | $V_{COM} = 0$ to 2.7 V, | See Figure 15 | Full | 0 0 | -10 | | 20 | μΛ | | | COM | V_{NC} or V_{NO} = Open, V_{COM} = 0.5 V, | Switch on, | 25°C | 0.7.1/ | -10 | 2 | 10 | ^ | | I _{COM(ON)} | ON leakage current | V_{NC} or V_{NO} = Open, V_{COM} = 2.2 V, | See Figure 16 | Full | 2.7 V | -20 | | 20 | nA | | DIGITAL INPUT | (IN) | | | | | | | I | | | V _{IH} | Input logic high | | | Full | | 1.8 | | 5.5 | V | | V _{IL} | Input logic low | | | Full | | 0 | | 0.6 | V | | | Input lookage ourrent | V = 5.5 V or 0 | | 25°C | 2.7 V | -2 | | 2 | nA | | I _{IH} , I _{IL} | Input leakage current | $V_1 = 5.5 \text{ V or } 0$ | | Full | 2.7 V | 20 | | 20 | ША | | DYNAMIC | | | | | | | | | | | | | | | 25°C | 2.5 V | 5 | 22 | 40 | | | t _{ON} | Turnon time | $V_{COM} = V_+,$ $R_L = 50 \Omega,$ | C _L = 35 pF,
See Figure 18 | Full | 2.3 V
to
2.7 V | 5 | | 50 | ns | | | | | | 25°C | 2.7 V | 2 | 6 | 35 | | | | T "" | $V_{COM} = V_+,$ | $C_L = 35 \text{ pF},$ | 25 0 | 2.3 V | 2 | 0 | 33 | : | | t _{OFF} | Turnoff time | $R_L = 50 \Omega$ | See Figure 18 | Full | to 2.7 V | 2 | | 50 | ns | | | | | | 25°C | 2.5 V | 2 | 13 | 35 | | | t _{BBM} | Break-before-make time | $\begin{aligned} &V_{NC}=V_{NO}=V_{+},\\ &R_{L}=50~\Omega, \end{aligned}$ | C _L = 35 pF,
See Figure 19 | Full | 2.3 V
to
2.7 V | 2 | | 45 | ns | | Q _C | Charge injection | V _{GEN} = 0,
R _{GEN} = 0, | C _L = 1 nF,
See Figure 23 | 25°C | 2.5 V | | -7 | | рС | | $C_{NC(OFF)}, \\ C_{NO(OFF)}$ | NC, NO
OFF capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch off,
See Figure 17 | 25°C | 2.5 V | | 18 | | pF | | C _{NC(ON)} ,
C _{NO(ON)} | NC, NO
ON capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch on,
See Figure 17 | 25°C | 2.5 V | | 55 | | pF | | C _{COM(ON)} | COM
ON capacitance | $V_{COM} = V_{+}$ or GND, | Switch on,
See Figure 17 | 25°C | 2.5 V | | 55 | | pF | | Cı | Digital input capacitance | $V_1 = V_+ \text{ or GND},$ | See Figure 17 | 25°C | 2.5 V | | 2 | | pF | | | | | Switch on, | | | | | | | (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum. Submit Documentation Feedback Copyright © 2005–2018, Texas Instruments Incorporated ## **Electrical Characteristics for 2.5-V Supply (continued)** $V_{+} = 2.3 \text{ V}$ to 2.7, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾ | | PARAMETER | TEST C | ONDITIONS | T _A | V ₊ | MIN TYP | MAX | UNIT | |-------------------|---------------------------|---------------------------------------|---|----------------|----------------|---------|-----|------| | O _{ISO} | Off isolation | $R_L = 50 \Omega$, $f = 1 MHz$, | Switch off,
See Figure 21 | 25°C | 2.5 V | -64 | | dB | | X _{TALK} | Crosstalk | $R_L = 50 \Omega$, $f = 1 MHz$, | Switch on,
See Figure 22 | 25°C | 2.5 V | -64 | | dB | | THD | Total harmonic distortion | $R_L = 600 \Omega,$
$C_L = 50 pF,$ | $ \begin{array}{lll} R_L = 600 \; \Omega, & & f = 20 \; \text{Hz to 20} \\ C_L = 50 \; \text{pF}, & & \text{See Figure 24} \\ \end{array} $ | | 2.5 V | 0.02% | | | | SUPPLY | | | | | | | | | | | Positive supply current | $V_1 = V_+ \text{ or GND},$ | Switch on or off | 25°C | 2.7 V | 10 | 20 | nA | | 1+ | Fositive supply current | VI = V+ OI GIND, | Switch on or on | Full | 2.7 V | | 50 | пА | # 6.8 Electrical Characteristics for 1.8-V Supply $V_{+} = 1.65 \text{ V}$ to 1.95 V, $T_{A} = -40 ^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾ | | PARAMETER | TEST CONDITIO | TA | V ₊ | MIN | TYP | MAX | UNIT | | |---|--|--|--|----------------|---------------------------|------------|------|----------------|----| | ANALOG SW | ITCH | | | | | | | ' | | | V _{COM} , V _{NO} ,
V _{NC} | Analog signal range | | | | | 0 | | V ₊ | V | | r _{peak} | Peak ON resistance | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -2 \text{ mA},$ | Switch on,
See Figure 14 | 25°C
Full | 1.65
V | | 5 | 15 | Ω | | r _{on} | ON-state resistance | V_{NO} or $V_{NC} = 1.5 \text{ V}$,
$I_{COM} = -2 \text{ mA}$, | Switch on,
See Figure 14 | 25°C
Full | 1.65
V | | 2 | 2.5
3.5 | Ω | | Δr_{on} | ON-state resistance match between channels | V_{NO} or $V_{NC} = 1.5 \text{ V}$,
$I_{COM} = -2 \text{ mA}$, | Switch on,
See Figure 14 | 25°C
Full | 1.65
V | | 0.15 | 0.4 | Ω | | ON-state resistance flatness | | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -8 \text{ mA},$ | Switch on,
See Figure 14 | 25°C | 1.65 | | 5 | | _ | | | | V_{NO} or V_{NC} = 0.6 V, 1.5 V, I_{COM} = -2 mA, | Switch on,
See Figure 14 | 25°C
Full | V | | 4.5 | | Ω | | I _{NC(OFF)} , | | V _{NC} or V _{NO} = 0.3 V,
V _{COM} = 0.3 V to 1.65 V, | Switch off, | 25°C | 1.95 | -5 | 2
| 5 | | | I _{NO(OFF)} | NC, NO
OFF leakage current | or V_{NC} or $V_{NO} = 1.65 \text{ V}$, $V_{COM} = 0.3 \text{ V}$ to 1.65 V, | See Figure 15 | Full | V | -20 | | 20 | nA | | I _{NC(PWROFF)} | | V _{NC} or V _{NO} = 0 to 1.95 V,
V _{COM} = 1.95 V to 0, | Switch off,
See Figure 15 | 25°C
Full | 0 V | –1
–5 | 0.1 | 1
5 | μΑ | | | NC. NO | V_{NC} or $V_{NO} = 0.3 \text{ V}$, $V_{COM} = \text{Open}$, | Switch on, | 25°C | 1.95 | _5
_5 | 2 | 5 | | | I _{NO(ON)} , | ON leakage current | or V_{NC} or $V_{NO} = 1.65 \text{ V}$, $V_{COM} = \text{Open}$, | See Figure 16 | Full | V V | -20 | | 20 | nA | | I _{COM(PWROFF)} | COM
OFF leakage current | V_{NC} or $V_{NO} = 1.95 \text{ V to } 0$, $V_{COM} = 0 \text{ to } 1.95 \text{ V}$, | Switch off,
See Figure 15 | 25°
Full | 0 V | -1
-5 | 0.1 | 7
5 | μΑ | | I _{COM(ON)} | COM | V _{NC} or V _{NO} = Open, V _{COM} = 0.3 V, | Switch on, | 25°C | 1.95 | - 5 | 2 | 5 | nA | | CON(ON) | ON leakage current | V_{NC} or V_{NO} = Open, V_{COM} = 1.65 V, See Figure 16 | | Full | V | -20 | | 20 | | | DIGITAL INP | JT (IN) | | | | | | | | | | V _{IH} | Input logic high | | | Full | | 1.5 | | 5.5 | V | | V _{IL} | Input logic low | | | Full | | 0 | | 0.6 | | | I _{IH} , I _{IL} | Input leakage current | V _I = 5.5 V or 0 | | 25°C
Full | 1.95
V | -2
20 | | 20 | nA | | DYNAMIC | | | | | | | | | | | | | | | 25°C | 1.8 V | 10 | 35 | 70 | | | t _{ON} | Turnon time | $V_{COM} = V_+,$ $R_L = 50 \Omega,$ | C _L = 35 pF,
See Figure 18 | Full | 1.65
V to
1.95
V | 10 | | 75 | ns | (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum. # **Electrical Characteristics for 1.8-V Supply (continued)** V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted)⁽¹⁾ | | PARAMETER | TEST CON | DITIONS | TA | V ₊ | MIN | TYP | MAX | UNIT | |--|---------------------------|--|--|------|---------------------------|-----|------|-----|------| | | | | | 25°C | 1.8 V | 2 | 15 | 40 | | | t _{OFF} | Turnoff time | $\begin{aligned} &V_{COM} = V_{+}, \\ &R_{L} = 50~\Omega, \end{aligned}$ | C _L = 35 pF,
See Figure 18 | Full | 1.65
V to
1.95
V | 2 | | 50 | ns | | | | | | 25°C | 1.8 V | | 22 | | | | t _{BBM} | Break-before-make time | $\begin{split} V_{NC} &= V_{NO} = V_+, \\ R_L &= 50~\Omega, \end{split}$ | C _L = 35 pF,
See Figure 19 | Full | 1.65
V to
1.95
V | 2 | | 70 | ns | | Q _C | Charge injection | V _{GEN} = 0,
R _{GEN} = 0, | C _L = 1 nF,
See Figure 23 | 25°C | 1.8 V | | -4 | | рС | | C _{NC(OFF)} ,
C _{NO(OFF)} | NC, NO
OFF capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch off,
See Figure 17 | 25°C | 1.8 V | | 18 | | pF | | C _{NC(ON)} ,
C _{NO(ON)} | NC, NO
ON capacitance | V_{NC} or $V_{NO} = V_{+}$ or GND, | Switch on,
See Figure 17 | 25°C | 1.8 V | | 55 | | pF | | C _{COM(ON)} | COM
ON capacitance | V _{COM} = V ₊ or GND, | Switch on,
See Figure 17 | 25°C | 1.8 V | | 55 | | pF | | Cı | Digital input capacitance | $V_I = V_+ \text{ or GND},$ | See Figure 17 | 25°C | 1.8 V | | 2 | | pF | | BW | Bandwidth | $R_L = 50 \Omega$, | Switch on,
See Figure 20 | 25°C | 1.8 V | | 105 | | MHz | | O _{ISO} | Off isolation | $R_L = 50 \Omega$, $f = 1 MHz$, | Switch off,
See Figure 21 | 25°C | 1.8 V | | 64 | | dB | | X _{TALK} | Crosstalk | $R_L = 50 \Omega$,
f = 1 MHz, | Switch on,
See Figure 22 | 25°C | 1.8 V | | 64 | | dB | | THD | Total harmonic distortion | $R_L = 600 \ \Omega,$
$C_L = 50 \ pF,$ | f = 20 Hz to 20 kHz,
See Figure 24 | 25°C | 1.8 V 0.069 | | .06% | | | | SUPPLY | | · | | | | | | | | | | Danish a samula samu | $V_1 = V_+$ or GND, Switch on or off | | 25°C | 1.95 | | 5 | 15 | ۸ | | I ₊ | Positive supply current | | | Full | V | | | 50 | μΑ | Submit Documentation Feedback Copyright © 2005–2018, Texas Instruments Incorporated ### 6.9 Typical Characteristics ## **Typical Characteristics (continued)** # **Typical Characteristics (continued)** #### 7 Parameter Measurement Information Figure 14. ON-State Resistance (ron) $\textbf{Figure 15. OFF-State Leakage Current (I}_{NC(OFF)}, I_{NC(PWROFF)}, I_{NO(OFF)}, I_{NO(PWROFF)}, I_{COM(OFF)}, I_{COM(PWROFF)})\\$ Figure 16. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$, $I_{NO(ON)}$) ## **Parameter Measurement Information (continued)** Figure 17. Capacitance (C_I, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NO(OFF)}$, $C_{NC(ON)}$, $C_{NO(ON)}$) - (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5 \text{ ns}$, $t_f < 5 \text{ ns}$. - (2) C_L includes probe and jig capacitance. Figure 18. Turnon (t_{ON}) and Turnoff Time (t_{OFF}) Copyright © 2005–2018, Texas Instruments Incorporated #### **Parameter Measurement Information (continued)** - (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$. - (2) C_L includes probe and jig capacitance. Figure 19. Break-Before-Make Time (t_{BBM}) Figure 20. Bandwidth (BW) Figure 21. OFF Isolation (O_{ISO}) Channel Off: NC to COM V_I = V₊ or GND **Network Analyzer Setup** Source Power = 0 dBm (632-mV P-P at $50-\Omega \log d$) DC Bias = 350 mV ### **Parameter Measurement Information (continued)** Figure 22. Crosstalk (X_{TALK}) - (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$. - (2) C₁ includes probe and jig capacitance. Figure 23. Charge Injection (Q_C) (1) C_L includes probe and jig capacitance. Figure 24. Total Harmonic Distortion (THD) #### 8 Detailed Description #### 8.1 Overview The TS5A3159A is a single-pole-double-throw (SPDT) solid-state analog switch. The TS5A3159A, like all analog switches, is bidirectional. When powered on, each COM pin is connected to the NC pin. For this device, NC stands for *normally closed* and NO stands for *normally open*. If IN is low, COM is connected to NC. If IN is high, COM is connected to NO. The TS5A3159A is a break-before-make switch. This means that during switching, a connection is broken before a new connection is established. The NC and NO pins are never connected to each other. #### 8.2 Functional Block Diagram Copyright © 2018, Texas Instruments Incorporated ### 8.3 Feature Description The low ON-state resistance, ON-state resistance matching, and charge injection in the TS5A3159A make this switch an excellent choice for analog signals that require minimal distortion. In addition, the low THD allows audio signals to be preserved more clearly as they pass through the device. The 1.65-V to 5.5-V operation allows compatibility with more logic levels, and the bidirectional I/Os can pass analog signals from 0 V to V₊ with low distortion. #### 8.4 Device Functional Modes Table 1 lists the functional modes of the TS5A3159A. **Table 1. Function Table** | IN | NC TO COM,
COM TO NC | NO TO COM,
COM TO NO | |----|-------------------------|-------------------------| | L | ON | OFF | | Н | OFF | ON | # 9 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 9.1 Application Information The TS5A3159A can be used in a variety of customer systems. The TS5A3159A can be used anywhere multiple analog or digital signals must be selected to pass across a single line. #### 9.2 Typical Application Figure 25. System Schematic for TS5A3159A #### 9.2.1 Design Requirements In this particular application, V_+ was 5 V, although V_+ is allowed to be any voltage specified in *Recommended Operating Conditions*. A decoupling capacitor is recommended on the V+ pin. See *Power Supply Recommendations* for more details. #### 9.2.2 Detailed Design Procedure In this application, IN is, by default, pulled low to GND. Choose the resistor size based on the current driving strength of the GPIO, the desired power consumption, and the switching frequency (if applicable). If the GPIO is open-drain, use pullup resistors instead. #### 9.2.3 Application Curve Figure 26. Power-Supply Current vs Temperature $(V_+ = 5 \text{ V})$ Copyright © 2005–2018, Texas Instruments Incorporated Submit Do ### 10 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μF bypass capacitor is recommended. If there are multiple pins labeled V_{CC} , then a 0.01- μF or 0.022- μF capacitor is recommended for each V_{CC} because the VCC pins are tied together internally. For devices with dual-supply pins operating at different voltages, for example V_{CC} and V_{DD} , a 0.1- μF bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μF and 1- μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results. ### 11 Layout ### 11.1 Layout Guidelines Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a
reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self–inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Figure 27 shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections. Unused switch I/Os, such as NO, NC, and COM, can be left floating or tied to GND. However, the IN pin must be driven high or low. Due to partial transistor turnon when control inputs are at threshold levels, floating control inputs can cause increased I_{CC} or unknown switch selection states. #### 11.2 Layout Example Figure 27. Trace Example # 12 Device and Documentation Support # 12.1 Device Support #### 12.1.1 Device Nomenclature **Table 2. Parameter Description** | SYMBOL | DESCRIPTION | |--------------------------|---| | V_{COM} | Voltage at COM | | V_{NC} | Voltage at NC | | V_{NO} | Voltage at NO | | r _{on} | Resistance between COM and NC or COM and NO ports when the channel is on | | r _{peak} | Peak ON-state resistance over a specified voltage range | | $\Delta r_{ m on}$ | Difference of ron between channels | | r _{on(flat)} | Difference between the maximum and minimum value of ron in a channel over the specified range of conditions | | I _{NC(OFF)} | Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the off state under worst-case input and output conditions | | I _{NC(PWROFF)} | Leakage current measured at the NC port during the power-down condition, V ₊ = 0 | | I _{NO(OFF)} | Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the off state under worst-case input and output conditions | | I _{NO(PWROFF)} | Leakage current measured at the NO port during the power-down condition, $V_+ = 0$ | | I _{NC(ON)} | Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the on state and the output (COM) being open | | I _{NO(ON)} | Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the on state and the output (COM) being open | | I _{COM(ON)} | Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the on state and the output (NC or NO) being open | | I _{COM(PWROFF)} | Leakage current measured at the COM port during the power-down condition, $V_+ = 0$ | | V_{IH} | Minimum input voltage for logic high for the control input (IN) | | V_{IL} | Maximum input voltage for logic low for the control input (IN) | | V_{I} | Voltage at (IN) | | $I_{\rm IH},~I_{\rm IL}$ | Leakage current measured at (IN) | | t _{ON} | Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM, NC, or NO) signal when the switch is turning on. | | t _{OFF} | Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM, NC, or NO) signal when the switch is turning off. | | t _{BBM} | Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. | | $Q_{\mathbb{C}}$ | Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_O$, C_L is the load capacitance and ΔV_O is the change in analog output voltage. | | C _{NC(OFF)} | Capacitance at the NC port when the corresponding channel (NC to COM) is off | | C _{NO(OFF)} | Capacitance at the NO port when the corresponding channel (NO to COM) is off | | C _{NC(ON)} | Capacitance at the NC port when the corresponding channel (NC to COM) is on | | C _{NO(ON)} | Capacitance at the NO port when the corresponding channel (NO to COM) is on | | C _{COM(ON)} | Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is on | | C _{IN} | Capacitance of (IN) | | O _{ISO} | OFF isolation of the switch is a measurement OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the off state. | | | Crosstalk is a measurement of unwanted signal coupling from an on channel to an off channel (NC to NO or NO to | Copyright © 2005–2018, Texas Instruments Incorporated #### **Table 2. Parameter Description (continued)** | SYMBOL | DESCRIPTION | |----------------|--| | BW | Bandwidth of the switch. This is the frequency in which the gain of an on channel is -3 dB below the DC gain. | | THD | Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio or root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic. | | I ₊ | Static power supply current with the control (IN) terminal at V ₊ or GND | #### 12.2 Documentation Support #### 12.2.1 Related Documentation For related documentation, see the following: Implications of Slow or Floating CMOS Inputs, SCBA004 #### 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support. #### 12.4 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 12.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 23-Jan-2018 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | _ | Pins | _ | | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|----------------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | TS5A3159ADBVR | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JAJK, JAJR)
JAJH | Samples | | TS5A3159ADBVRE4 | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JAJK, JAJR)
JAJH | Samples | | TS5A3159ADBVRG4 | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JAJK, JAJR)
JAJH | Samples | | TS5A3159ADBVT | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JAJK, JAJR)
JAJH | Samples | | TS5A3159ADBVTE4 | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JAJK, JAJR)
JAJH | Samples | | TS5A3159ADBVTG4 | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JAJK, JAJR)
JAJH | Samples | | TS5A3159ADCKR | ACTIVE | SC70 | DCK | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JJK, JJR)
JJH | Samples | | TS5A3159ADCKRE4 | ACTIVE | SC70 | DCK | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JJK, JJR)
JJH | Samples | | TS5A3159ADCKRG4 | ACTIVE | SC70 | DCK | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JJK, JJR)
JJH | Samples | | TS5A3159ADCKT | ACTIVE | SC70 | DCK | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JJK, JJR)
JJH | Samples | | TS5A3159ADCKTG4 | ACTIVE | SC70 | DCK | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | (JJK, JJR)
JJH | Samples | | TS5A3159AYZPR | ACTIVE | DSBGA | YZP | 6 |
3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | (JJ7, JJN) | Samples | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. ⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". # **PACKAGE OPTION ADDENDUM** 23-Jan-2018 **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION www.ti.com 23-Jan-2018 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | - Reel Width (WT) #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TS5A3159ADBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TS5A3159ADBVT | SOT-23 | DBV | 6 | 250 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TS5A3159ADCKR | SC70 | DCK | 6 | 3000 | 180.0 | 8.4 | 2.41 | 2.41 | 1.2 | 4.0 | 8.0 | Q3 | | TS5A3159ADCKR | SC70 | DCK | 6 | 3000 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | TS5A3159ADCKT | SC70 | DCK | 6 | 250 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | TS5A3159ADCKT | SC70 | DCK | 6 | 250 | 180.0 | 8.4 | 2.41 | 2.41 | 1.2 | 4.0 | 8.0 | Q3 | | TS5A3159AYZPR | DSBGA | YZP | 6 | 3000 | 178.0 | 9.2 | 1.02 | 1.52 | 0.63 | 4.0 | 8.0 | Q1 | www.ti.com 23-Jan-2018 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | TS5A3159ADBVR | SOT-23 | DBV | 6 | 3000 | 202.0 | 201.0 | 28.0 | | TS5A3159ADBVT | SOT-23 | DBV | 6 | 250 | 202.0 | 201.0 | 28.0 | | TS5A3159ADCKR | SC70 | DCK | 6 | 3000 | 202.0 | 201.0 | 28.0 | | TS5A3159ADCKR | SC70 | DCK | 6 | 3000 | 205.0 | 200.0 | 33.0 | | TS5A3159ADCKT | SC70 | DCK | 6 | 250 | 205.0 | 200.0 | 33.0 | | TS5A3159ADCKT | SC70 | DCK | 6 | 250 | 202.0 | 201.0 | 28.0 | | TS5A3159AYZPR | DSBGA | YZP | 6 | 3000 | 220.0 | 220.0 | 35.0 | # DCK (R-PDSO-G6) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AB. # DCK (R-PDSO-G6) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. DIE SIZE BALL GRID ARRAY #### NOTES: NanoFree Is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. NanoFree[™] package configuration. DIE SIZE BALL GRID ARRAY NOTES: (continued) Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017). DIE SIZE BALL GRID ARRAY NOTES: (continued) 5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. # DBV (R-PDSO-G6) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. - Falls within JEDEC MO-178 Variation AB, except minimum lead width. # DBV (R-PDSO-G6) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. #### **IMPORTANT NOTICE** Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility
to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.