T-1 3/4 (5mm) INFRARED EMITTING DIODE

Part Number: L-7113SF4BT

Features

- Mechanically and spectrally matched to the phototransistor.
- RoHS compliant.

Description

SF4 Made with Gallium Aluminum Arsenide Infrared Emitting diodes.

Package Dimensions

REV NO: V.10B CHECKED: Allen Liu DATE: APR/09/2013 DRAWN: Y.Liu

PAGE: 1 OF 6 ERP: 1101005218

Solaction Guida

Selection Guide					
Part No.	Dice	Lens Type	Po (mW/sr) [2] @ 20mA *50mA		Viewing Angle [1]
			Min.	Тур.	201/2
L-7113SF4BT	SF4 (GaAlAs)	Blue Transparent	6	15	20°
			*12	*25	

Notes:

θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.
* Radiant intensity with asterisk is measured at 50mA;Radiant Intensity/ luminous flux: +/-15%.
Radiant intensity value is traceable to the CIE127-2007 compliant national standards.

Electrical / Optical Characteristics at TA=25°C

Parameter	P/N	Symbol	Тур.	Max.	Units	Test Conditions
Forward Voltage [1]	SF4	VF	1.3	1.6	V	I⊧=20mA
Reverse Current	SF4	lr		10	uA	VR = 5V
Capacitance	SF4	С	90		pF	VF=0V;f=1MHz
Peak Spectral Wavelength	SF4	λP	880		nm	I⊧=20mA
Spectral Bandwidth	SF4	Δλ1/2	50		nm	IF=20mA

Note:

Forward Voltage: +/-0.1V.
Wavelength value is traceable to the CIE127-2007 compliant national standards.

Absolute Maximum Ratings at TA=25°C

Parameter	Symbol	SF4	Units		
Power dissipation	Po	80	mW		
DC Forward Current	lF	50	mA		
Peak Forward Current [1]	İFS	1.2	A		
Reverse Voltage	VR	5	V		
Operating Temperature	Та	-40 To +85	°C		
Storage Temperature	Тятд	-40 To +85	°C		
Lead Solder Temperature [2]	260°C For 3 Seconds				
Lead Solder Temperature [3]	260°C For 5 Seconds				

Notes:

1. 1/100 Duty Cycle, 10µs Pulse Width.
2. 2mm below package base.

3. 5mm below package base.

PRECAUTIONS

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead-forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)

' Correct mounting method "imes " Incorrect mounting method

- 2. When soldering wire to the LED, use individual heat-shrink tubing to insulate the exposed leads to prevent accidental contact short-circuit. (Fig.2)
- 3. Use stand-offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB.

- 4. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)
- 5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)

