

Service manual Lukey 702

Термовоздушная паяльная станция с цифровой индикацией

Содержание

Применение и характеристики.

Технические характеристики.

Комплектация.

Принципиальные схемы:

Контроллер термофена.

Контроллер паяльника, паяльник.

Блок питания, термофен.

Цоколевки элементов.

Печатная плата(фото)

Алгоритмы работы:

Паяльника

Фена

Применение и характеристики

Lukey-702 - это компактная термовоздушная паяльная станция (фен + паяльник) с цифровой индикацией и широким диапазоном рабочих температур. Станция может быть использована для решения задач различной сложности. С успехом применяется для демонтажа или пайки различных компонентов в корпусах **SOIC**, **PLCC**, **QFP**, **BGA** и т.д. Подходит для термоусадочных трубок, сушки, предварительного нагрева, пластической пайки. По сравнению с предшествующими моделями, станция **Lukey-702** обладает целым рядом преимуществ:

- компактные размеры станции габариты в 1,5 раза меньше, чем у предшествующих моделей;
- компрессор и нагревательный элемент располагаются непосредственно в ручке фена, отсутствует толстый шланг, что не только облегчает работу, но и позволяет сэкономить рабочее пространство;
- при работе с феном практически отсутствует вибрация;
- В термофене реализована система автоматического отключения, которая срабатывает при установке термофена на подставку;
- круговой поток воздуха, аналог **Vortex**, обеспечивает равномерный прогрев элементов платы, не приводит к смещению компонентов;
- внедрена система обратного контроля температуры на выходе фена температура, указываемая на индикаторе, соответствует реальной температуре на выходе;
- уникальная система охлаждения продолжительный продув воздухом после отключения продлевает срок эксплуатации нагревательного элемента;
- быстрое достижение и поддержка температуры, автоматическое запоминание последних значений температуры паяльника и температуры воздуха;
- принципиально новая система фиксирования насадок (без винтов), позволяет легко и быстро менять насадки паяльника;
- антистатическая функция обеспечивает минимальное накопление поверхностного заряда.

Технические характеристики

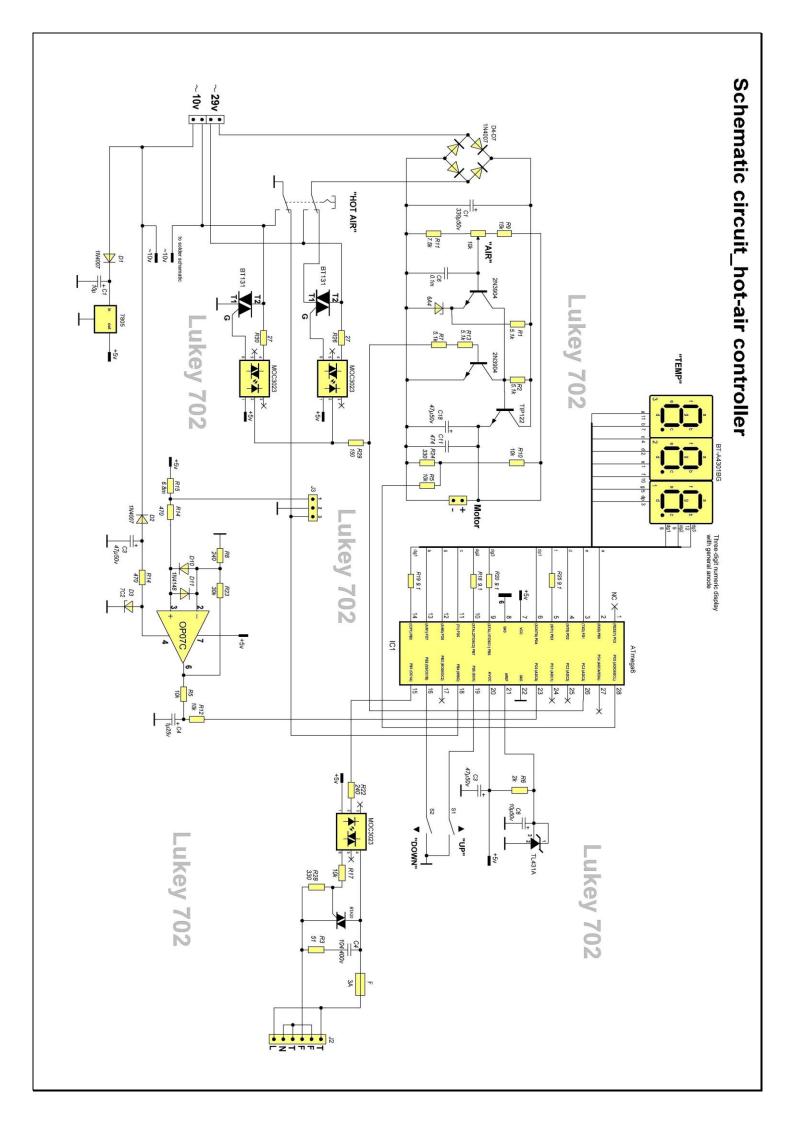
- Питание: 220 В 50 Гц.
- Потребляемая мощность: 750 Вт.
- Диапазон рабочих температур паяльника: 200-480 °C
- Диапазон рабочих температур термофена: 100-480 °C
- Тип нагревательного элемента паяльника: керамический
- Тип насоса: турбина-крыльчатка
- Скорость потока воздуха: 120 л/мин (максимум)
- Уровень шума: меньше 45 Дб.
- Габариты, мм: 160х190х116
- Вес: около 1,5 кг.

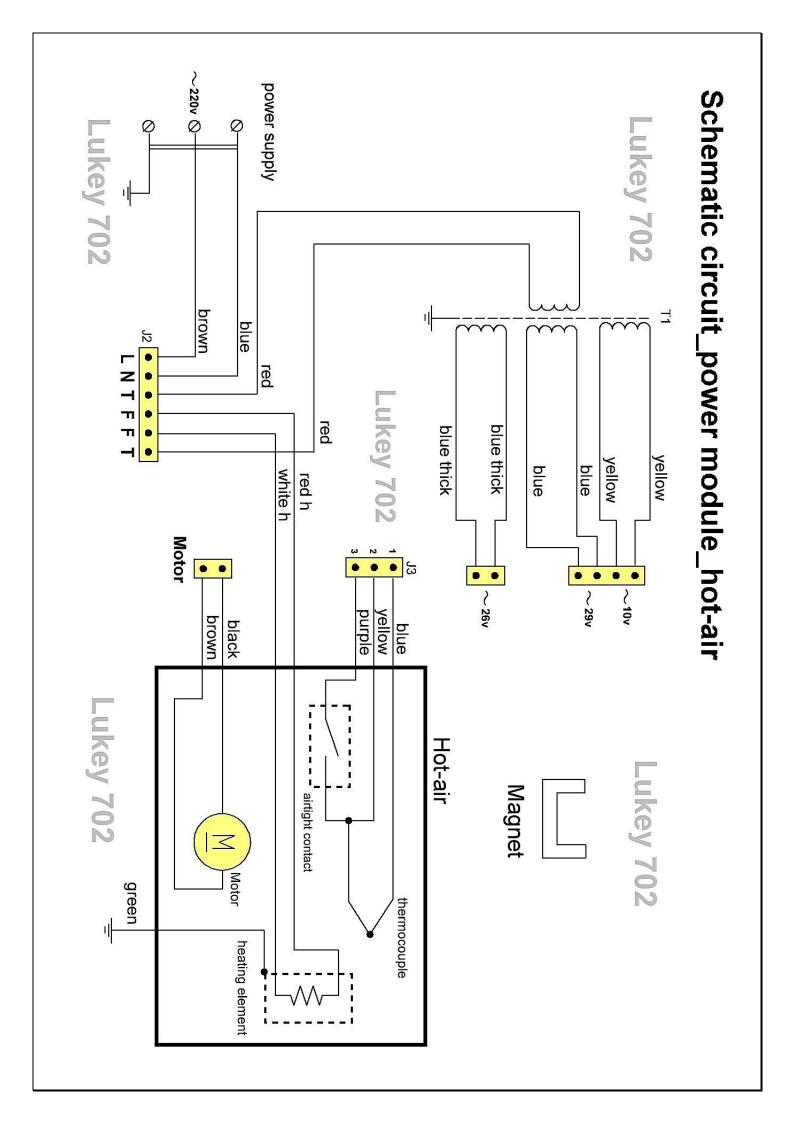
Комплектация

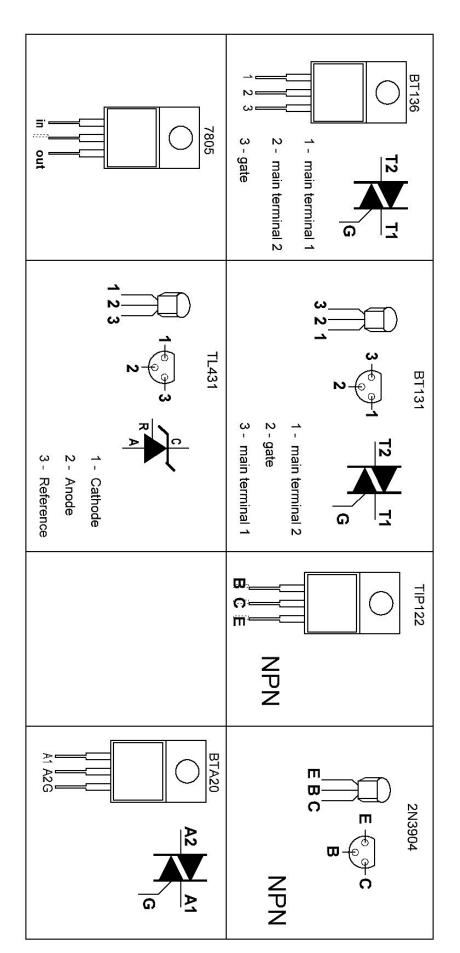
1. Основной блок станции Lukey 702 с термофеном в сборе – 1 шт.

2. Паяльник Lukey – 1 шт.

3. Подставка для паяльника Lukey – 1 шт.


4. Держатель термофена – 1 шт.


5. Насадки термофена – 3 шт.


- 6. Ключ для снятия насадок термофена 1 шт.
- 8. Инструкция 1 шт.
- 9. Упаковочная коробка с защитным пенопластовым каркасом 1 шт.

~10v to hot air schematic ~10v Schematic circuit_solder controller_module_solder iron Lukey 702 "SOLDER" BT-A4301BG D13 1N4007 C8 47μ50ν "TEMP" R19 9.1 R20 9.1 R25 9.1 7C2 + C6 47µ50v 2 ATmega8 25 × NC 26 X NC 27 X NC 17 X NC 24 X NC \$ R27 C32 + 3 2 1 10µ50v ± C7 47μ50ν Solder iron connect D15 BT136 Module connect R21 27 ~ 26v PS\2 R4 10k **Module Lukey 937AD** gray black green red + Lukey 702 Lukey 702 R6 6.8M 240 1N4148 1N4148 D1 D2 15 R Heating element thermocouple 24v 50w Taiwan Solder iron 1.5k 1 25v 10k

Piout component

Алгоритмы работы

Алгоритм работы паяльника

- 1. При включении питания кнопкой "**SOLDER**" производится анализ подключения паяльника. Если на 18 выводе микроконтроллера (в дальнейшем м/к) сигнал >4V, то включения не происходит. Если на 18 выводе м/к сигнал 0V, то включается рабочий режим.
- 2. При нормальном сигнале на 18 выводе м/к (0V), на индикатор выводится значение ранее установленной температуры и с 15 выводе м/к выдается сигнал включения нагрева. На индикатор (через 1 сек) начинает выдаваться значение реальной температуры с шагом 1. Значения реальной температуры подаются на 23 вывод м/к с усилителя сигнала термопары.
- 3. При достижении заданной температуры (совпадении значений введенных в м/к данных с полученными с 23 вывода м/к), м/к переходит в режим поддержания температуры. При этом на индикаторе мигает точка (dp) в младшем разряде.
- 4. При нажатии одной из кнопок "UP" или "DOWN", производится увеличение или уменьшение значения введенной в м/к температуры. При этом на индикатор начинает выводиться значение устанавливаемой температуры. Шаг установки температуры равен 1. При удержании кнопки в нажатом положении более 3 сек, инициирует быстрый ввод значений со скоростью 10 значений в секунду.
- 5. Прекращение ввода данных через 3 сек переводит м/к в режим выдачи на индикатор реальной температуры и переход в рабочий режим.
- 6. Введенные данные остаются в энергонезависимой памяти м/к и при выключении и повторном включении являются рабочими на данном этапе.
- 7. Выдача значений на индикатор производится м/к согласно принципиальной схемы:

Вывод м/к	2	13	11	4	3	5	12	6	14	10	9
Индикация	a	b	c	d	e	f	g	dp	DG1	DG2	DG3

DG1 – младший разряд индикатора

DG2 – средний

DG3 – старший.

Рабочие уровни сигналов 2-6 и 11-13 низкого уровня (0V).

Рабочие уровни сигналов 9.10 и 14 высокого уровня (5V).

Использован индикатор с общим анодом.

Алгоритм работы фена.

- 1. При включении питания кнопкой "HOT AIR", м/к производит анализ состояния 18 вывода. Если на 18 выводе сигнал 0V (фен лежит на подставке), то на индикатор выводится значение ранее установленной температуры и через 3 сек значение "- - " (три средних черточки). Это ждущий режим. При этом не происходит включения нагрева и вентилятора. Если в этом режиме нажать одну из кнопок "Up" или "Down", то на индикатор выводится значение заданной температуры и происходит увеличение либо уменьшение значения введенной в м/к температуры с шагом в 1. Удержание кнопки более 3 сек индицирует быстрое изменение значения со скоростью 10 значений в секунду. При прекращении ввода в м/к он через 3 сек переходит в режим выдачи на индикатор трех черточек.
- 2. При состоянии сигнала на 18 выводе > 4V (фен снят с подставки) происходит включение м/к в рабочий режим. При этом на 26 выводе устанавливается сигнал 0V, который блокирует моментальной отключение питания кнопкой "HOT AIR" и включает схему управления вентилятором. Производится анализ состояния 28 вывода м/к. Если на нем сигнал >0,4V (т.е. подано питание вентилятора), то на индикатор выводится значение установленной температуры и через 1 сек значение реальной температуры с шагом в 1. Значения реальной температуры снимаются с 23 вывода м/к. Подается сигнал нагрева фена с 15 вывода м/к (рабочий уровень 0V).

- 3. При достижении заданной температуры, м/к переходит в режим поддержания температуры. При этом на индикатор выводится значение реальной температуры и подмигивает точка (dp) в младшем разряде.
- 4. При нажатии одной из кнопок "UP" или "DOWN", производится увеличение или уменьшение значения введенной в м/к температуры. При этом на индикатор начинает выводиться значение устанавливаемой температуры. Шаг установки температуры равен 1. При удержании кнопки в нажатом положении более 3 сек, инициирует быстрый ввод значений со скоростью 10 значений в секунду.
- 5. Прекращение ввода данных через 3 сек переводит м/к в режим выдачи на индикатор реальной температуры и переход в рабочий режим.
- 6. Введенные данные остаются в энергонезависимой памяти м/к и при выключении и повторном включении являются рабочими на данном этапе.
- 7. При установке фена на подставку и появлении на 18 выводе м/к сигнала 0V, через 1 сек происходит выключение нагрева фена (переход сигнала на 15 выводе в состояние 5V).
- 8. При снижении реальной температуры до 50 происходит установка сигнала на 26 выводе в состояние 5V и схема переходит в режим, как в пункте 1 (за исключением выдачи на индикатор заданной температуры). При снятии фена с подставки, процесс повторяется, начиная с пункта 1.
- 9. Если питание фена выключается кнопкой "HOT AIR", то все происходит начиная с пункта 7, за исключением того, что при установке сигнала на выводе 26 в состояние 5V, фен полностью отключится, поскольку будет снято питающее напряжение.
- 10. Выдача значений на индикатор такая же, как и в схеме паяльника.

P.S. Рабочие сигналы на индикатор:

выводы 2, 3, 4, 5, 6, 11, 12, 13 низкого уровня (0V).

выводы 9, 10, 14 высокого уровня (5V)

Используется индикатор с общим анодом.

Рабочие сигналы на выводах 26 и 15 низкого уровня (0V).

Возможность установки температуры фена 100-480 градусов, паяльника 200-480 градусов.

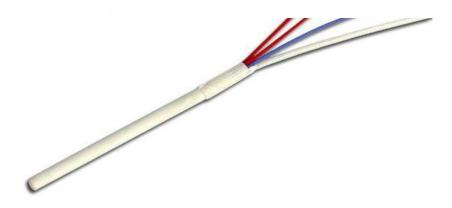

Анализ состояния ножки 18 паяльника и ножек 18, 28 фена происходит постоянно!

Таблица значений напряжения на 23 ножке от температуры.

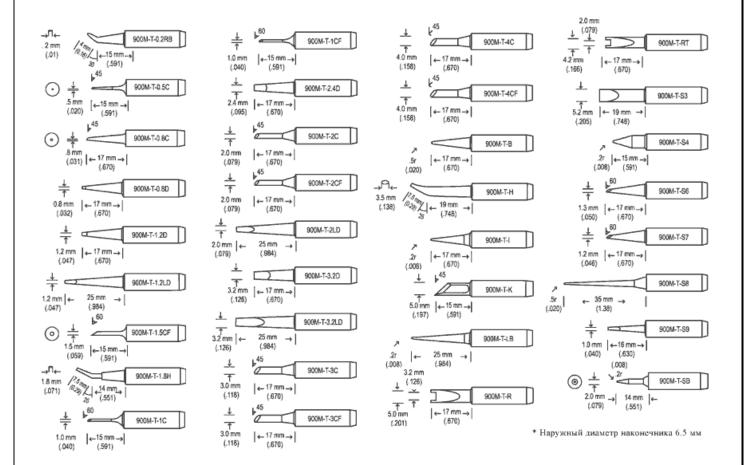
Температура	50	100	150	200	250	300	350	400	450	480
Напряжение	0,35	0,51	0,74	1,00	1,27	1,40	1,55	1,72	1,85	1,92

Примечание к таблице: Значения могут быть не совсем точными, поскольку снимались прибором на рабочей станции. Поэтому лучше взять крайние точки (50 и 480) – характеристика полностью линейная. Для режима поддержания температуры может быть использован любой подходящий алгоритм.

Нагревательный элемент

Технические характеристики:

Напряжение питания	24 В, перем.			
Мощность	35 Bt			
Материал	Керамика			
Количество контактов	4			
Сопротивление	21-24 Ом			
нагревателя				
Сопротивление термопары	1,6-2,0 Ом			
Диаметр	3,8 мм			
Длина керамического	6 см			
элемента				


Конструктивные особенности:

Керамический нагревательный элемент произведен по японской технологии с применением новейших материалов, что гарантирует быстрый разогрев жала паяльника до рабочей температуры, а также длительный срок его использования.

Встроенный в нагревательный элемент температурный датчик с платиновым напылением поддерживает установленную температуру с высокой точностью.

Особенности установки керамического нагревательного элемента на конкретные модели паяльников или паяльного инструмента приведены в соответствующей сопроводительной документации.

Применяемые жала

