MORNSUN®

SCM3406ASA Half-duplex Transceiver

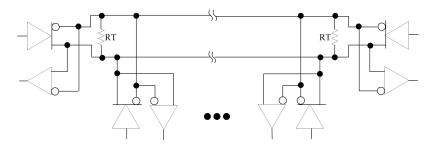

Features

- 3.0-5.5V single supply operation
- Baud Rate Up to 10 Mbps
- 1/8 Unit Load-Up to 256 Nodes on a Bus
- Bus-Pin ESD Protection Up to 15 kV
- Driver short circuit protection

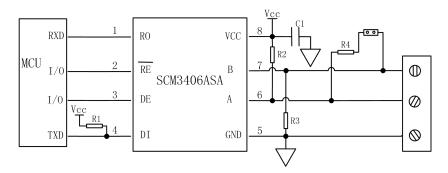
Applications

- Industrial Automation
- Building Automation
- Smart Electricity Meter
- · Remote Signal Interaction, Transmission

Package


Mechanical package: SOP-8 (see "Ordering information" for details).

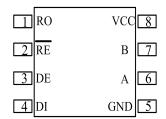
Functional Description


SCM3406ASA is a half-duplex enhanced transceiver designed for RS-485 data bus networks. Powered by 3VDC-5.5VDC supply, the SCM3406ASA is fully compliant with TIA/EIA-485A standard and is suitable for data transmission of up to 10 Mbps. Receivers have an exceptionally high input impedance, which places only 1/8 of the standard load on a shared bus and up to 256 transceivers.

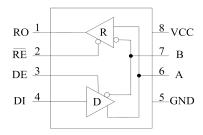
The reliability design of A B pin is emphasized, including driver output over current protection and enhanced ESD design. The ESD protection level of A,B pin can be up to 15kV (Human Body Model).

Typical Application Circuit

Typical Circuit 1: Half-Duplex Network


Typical Circuit: 2 Application Diagram

Contents


Feature and Package	.1
Applications	.1
Functional Description	.1
Typical Application Circuit	1
Pin Connection.	.2
Inner Block Diagram	.2
Function Table	.2
Pin Description	.2
Absolute Maximum Rating	
Recommended Operatinging Conditions	3

Electrical Characteristics	3
Transmission Characteristic	4
Typical Performance Curves	4
Test Circuits	6
Detailed Description	9
Expansion output design	9
Suggestions for Power Supply	9
Order Information	10
Package Information	10
Tape & Reel Information	11

Pin Connection

Internal Block Diagram

Function table

	Driver									
	Input			Outputs				Input	Output	
Ī	RE	DE	DI	A B H L			RE	DE	A-B	RO
	X	Н	Н				L	X	≥-40mV	Н
	X	Н	L	L	Н		L	X	≤-220mV	L
Ī	L	L	X	Z	Z		L	X	Open/Short	Н
	Н	L	X	Z (SHUTDOWN)			Н	Н	X	Z
			•	•			Н	L	X	Z (SHUTDOWN)

Pin descriptions

Pin Number	Pin Name	Pin Functions
1	RO	Receiver Output. When \overline{RE} is low and if $(A - B) \ge -40$ mV, RO is high. If $(A - B) \le -220$ mV, RO is low.
2	RE	Receiver Output Enable. When \overline{RE} is low, RO is enabled. When \overline{RE} is high, RO is high impedance. Drive \overline{RE} high and DE low to enter shutdown mode.
3	DE	Driver Output Enable. When DE is high, outputs are enabled. When DE is low, outputs are high impedance. Drive DE low and $\overline{\text{RE}}$ high to enter shutdown mode.
4	DI	Driver Input.
5	GND	Ground
6	А	Non-Inverting Driver Output / Receiver input
7	В	Inverting Driver Output / Receiver input
8	VCC	Positive Supply VCC. Bypass to GND with a 0.1uF capacitor.

Absolute Maximum Ratings

General test conditions: Free-air, normal operating temperature range (unless otherwise specified).

PARAMETERS	UNIT
Supply voltage range, Vcc	-0.3V~+7V
Voltage range at A or B	-15V~+15V
Voltage range at DE、DI、RE、RO	-0.3V ~ (VCC + 0.3V)
Storage Temperature	-55℃~150℃
Lead Temperature (soldering, 10s)	300℃

Support ±15V in receiver mode, and -8 ~+13V in driver mode

Important: Exposure to Absolute Maximum Rated conditions for an extended period may severely affect the device reliability, and stress levels exceeding the "Absolute Maximum Ratings" may result in permanent damage.

Recommended Operating Conditions

Recommended Operating Conditions	Min.	Nom.	Max.	Unit
Supply Voltage, V _{VCC}	3	5	5.5	
Voltage at any bus terminal (differential or common mode), V _I	-7		12	
High-level input voltage (DI, DE, $\overline{\text{RE}}$) , V_{IH}	2		VCC]
Low-level input voltage (DI, DE, $\overline{\text{RE}}$) , V_{IL}	0		0.8]
Differential load resistance	54	60		Ω
Signaling rate			10000	kbps
Operating ambient temperature, T _A in free–air	-40		125	°C
Maximum operating junction temperature, T _J			150	$^{\circ}$

Electrical Characteristics

General test conditions and V_{VCC} = 5V, Ta = 25 $^{\circ}$ C (unless otherwise specified).

PARAMET	ΓERS	CONDIT	Min.	Nom.	Max.	Unit	
Digital Input Signals: DI, DE,	RE		•				
Logic input thresholds		High,	ViH	2			V
Logic input th	resnoias	Low, '	VIL			0.8] V
Driver			·				
Differential Driver	Output (V _{OD})	No Lo	pad			V _{vcc}	V
Differential Drive	r Output (1)	Vin=3V, R _L =549	Ω, Figure16	1.5	1.9		
Differential Drive	r Output (2)	Vin=5V, R _L =549	Ω, Figure16	2.1	2.8		V
Differential Drive	r Output (3)	R _L =60Ω, V _{CM} = -7 3.0~3.6V, F		1.5		V _{vcc}	v
Driver Common Mode	e Output Voltage	Figure	e18	1		3	V
Change in Common Mo	ode Output Voltage	Figure			±0.05	V	
Driver Short Circuit	t Current Limit	-7V≤V _{OUT} ≤12\			±150	mA	
Receiver			·				
Receiver Input I	Resistance	-7V≤V _{OU} -	_T ≤12V	96			kΩ
Input Current (A. P. nino)	DE=0, \overline{RE} =0,	V _{OUT} =12V			120	uA
input Current (A, b pilis)	V _{VCC} =0 or 5.5V	V _{OUT} = -7V	-110			uA
Change in magnitude of dif	ferential output voltage	I _O = ±8	mA	-220		-40	mV
Receiver Input	Hysteresis				70		mV
	V _{OH} , Figure 23	I _{OUT} = -8mA, Vcc = -1V	4.5V ~ 5.5V, V _{ID} =	3	4.5		
Describes Outset Valley	V _{он} , Figure 23	I _{оит} = -8mA, Vcc = 1	3.0V ~ 3.6V, V _{ID} =	2.45	2.65		
Receiver Output Voltage	V _{OL} , Figure 23	I _{ОUТ} = 8mA, Vcc = 4	1.5V ~ 5.5V, VID=			0.4	V
	V _{OL} , Figure 23	I _{OUT} = 8mA, Vcc = 3	3.0V ~ 3.6V, VID=			0.5	

Supply and Pro	pply and Protection											
	Driver and receiver enabled	DE = V_{VCC} , \overline{RE} = 0, No load		1900	2200	uA						
l _{vcc}	Driver enabled, receiver disabled	DE = V_{VCC} , \overline{RE} = V_{VCC} , No load		1800	2200	uA						
	Receiver enabled, driver disabled	DE = V_{VCC} , \overline{RE} = 0, No load		1700	2000	uA						
	Driver and receiver disabled	DE = 0, \overline{RE} = V _{VCC} , No load		1650	2000	uA						
	Lluman Dady Madal	A, B and GND		±15		kV						
ESD	Human Body Model	Other pins		±4		kV						
	IEC61000-4-2	A, B and GND		±15		kV						
EFT	IEC61000-4-4	A, B and GND		±1		kV						

Transmission Characteristics

General test conditions and V_{VCC} = 5V, Ta = 25 $^{\circ}$ C (unless otherwise specified).

PARAMETERS	CONDITIONS	Min.	Nom.	Max.	Unit
Driver					
Data Signaling Rate	Duty Cycle 40% ~ 60%			10000	kbps
Driver Propagation Delay (T _{PHL} , T _{PLH})			21	30	ns
Driver Output Rise/Fall Time (T _R , T _F)	$R_L = 54\Omega, C_L = 50pF$, Figure 19		8		ns
Driver Differential Skew (T _{PHL} - T _{PLH})			3	6	ns
Driver Enable to Output High (T _{PZH})			20	45	ns
Driver Enable to Output Low (TPZL)			30	50	ns
Driver Disable from Output High (T _{PHZ})	R_L =110Ω, RE = 0,Figure 20, Figure 21		30	50	ns
Driver Disable from Output Low (T _{PLZ})			30	50	ns
Receiver					
Receiver Propagation Delay (T _{PLH} , T _{PHL})	C. = 15pE Figure 22		35	50	ns
Receiver Differential Skew (T _{PLH} - T _{PHL})	— C _L = 15pF, Figure 22		10	15	ns
Receiver Output Rise/Fall Time (T _R , T _F)	C _L = 15pF, V _{DI} =-1.5V~1.5V, Figure 22		14		ns
Receiver Enable to Output High (T _{PZH})			20	30	ns
Receiver Enable to Output Low (T _{PZL})	C = 15pF Figure 22 Figure 24		25	40	ns
Receiver Disable from Output High (T _{PHZ})	C _L = 15pF, Figure 23, Figure 24		30	60	ns
Receiver Disable from Output Low (T _{PLZ})			30	60	ns

Typical Performance Curves

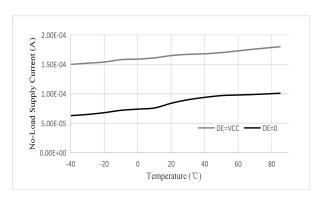


Figure 1 No-Load Supply Current vs. Temperature

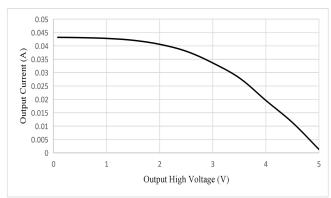


Figure 2 Output Current vs. Receiver Output High Voltage

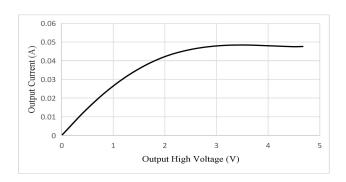


Figure 3 Output Current vs. Receiver Output Low Voltage

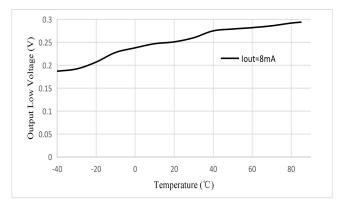


Figure 5 Receiver output low voltage vs. Temperature

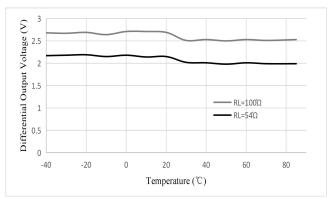


Figure 7 Driver Differential Output Voltage vs Temperature

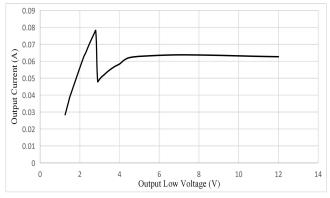


Figure 9 Output current vs. Transmitter output low voltage

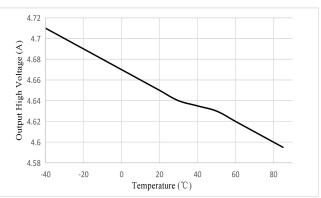


Figure 4 Receiver Output High Voltage vs. Temperature

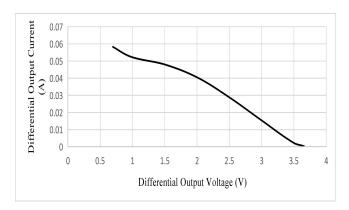


Figure 6 Driver differential output current vs. Differential output voltage

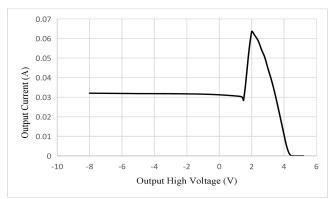


Figure 8 Output current vs. Transmitter output high voltage

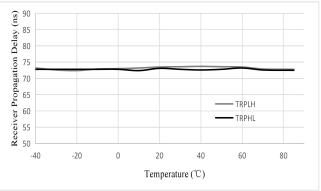


Figure 10 Receiver Propagation Delay vs. Temperature

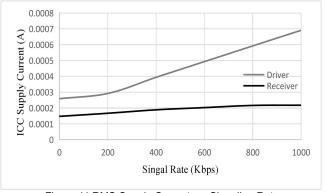


Figure 11 RMS Supply Current vs. Signaling Rate

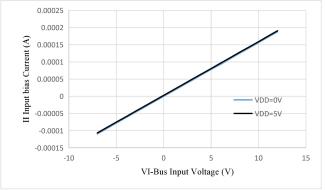


Figure 13 Bus input current vs. Bus input voltage

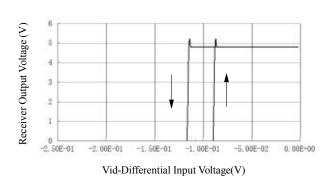


Figure 12 Receiver output voltage vs. Differential input voltage

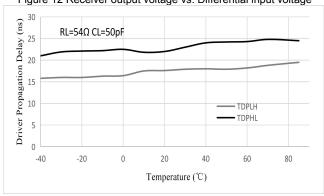


Figure 14 Driver propagation delay vs. Temperature

Time (50ns/div)

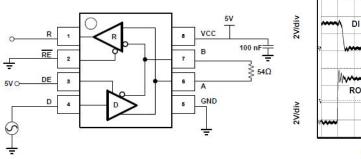


Figure 15 Loopback Test Circuit

Test Circuits

NOTE: Load test capacitance includes probe and test fixture stray capacitance, unless otherwise specified. Signal generator with following characteristics: Rise and fall time < 6ns, pulse rate 100kHz, 50% duty cycle, $ZO = 50\Omega$ (unless otherwise specified).

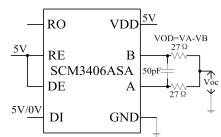


Figure 16 Driver Test Circuit, V_{OD} and V_{OC} Without Common-Mode Loading

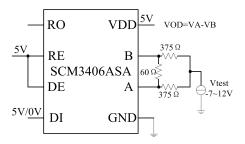


Figure 17 Driver Test Circuit, V_{OD} With Common-Mode Loading

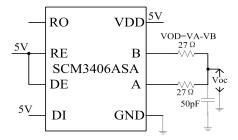


Figure 18 Driver Voc Test Circuit

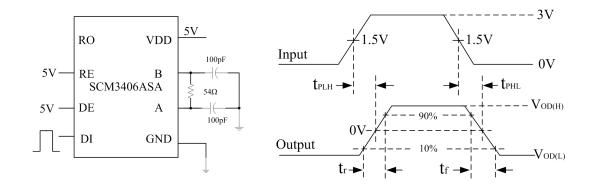


Figure 19 Driver Switching Test Circuit and Waveforms

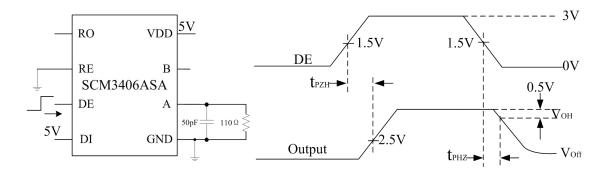


Figure 20 Driver Enable/Disable Test Circuit and Waveforms, High Output

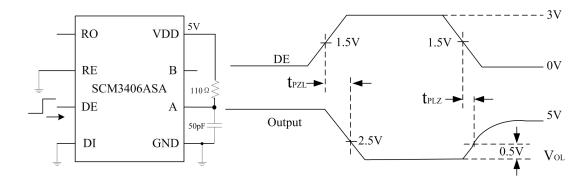


Figure 21 Driver Enable/Disable Test Circuit and Waveforms, Low Output

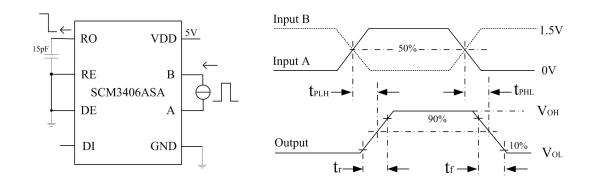


Figure 22 Receiver Switching Test Circuit and Waveforms

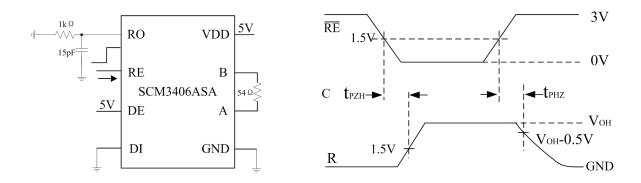


Figure 23 Receiver Enable/Disable Test Circuit and Waveforms, Data Output High

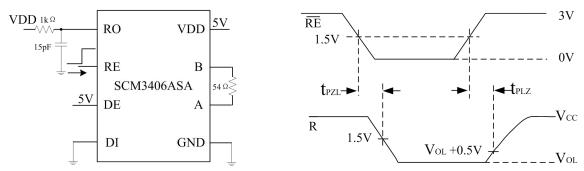


Figure 24 Receiver Enable/Disable Test Circuit and Waveforms, Data Output Low

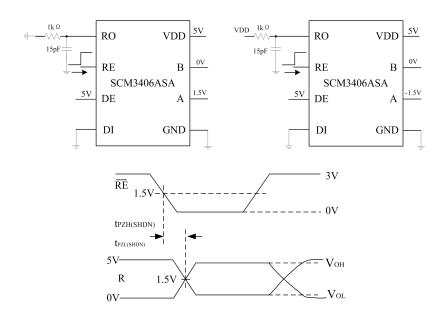


Figure 25 Receiver Enable from Shutdown Test Circuit and Waveforms

Detailed Description

The SCM3406ASA series are advanced RS-485 transceivers. They each contain one driver and one receiver. These devices feature a fail-safe circuitry that guarantees a high receiver output voltage when the receiver inputs are either open, shorted or when they are connected to a terminated transmission line with all drivers disabled. These devices operate with a single 3.0V or 5.0V supply. Drivers limit the output current by over current protection, to avoid the damage to the transceivers.

Receiver input filter: The SCM3406ASA receivers have an integrated input filter which enhances noise immunity of the high-speed differential signals. The receiver propagation delay increases due to this filtering.

Bus fail-safe: Ordinary RS485 bus receivers will be in an indeterminate state when -220mV< A - B <-40mV. This situation can occur whenever the data bus is not being actively driven. The advanced Fail-safe feature of the SCM3406ASA guarantees a high receiver output voltage if the receiver's differential inputs are either shorted, open circuit, or if they are connected to a termination resistor. The SCM3406ASA receiver thresholds are very precise, and the offset between threshold voltage and ground has a margin of at least 40mV.

Load abilities on the bus (256 nodes): The standard receiver input impedance of RS-485 is $12k\Omega$ (1 unit load). A standard RS485 driver can drive at least 32 unit loads. The SCM3406ASA transceiver is design to 1/8th of the standard unit load and the input impedance is higher than $96k\Omega$, hence allowing up to 256 unit loads, in other words eight times as many. The SCM3406ASA can work combined with other standard RS485 that use the smaller amount of unit loads.

Driver output protection: The device prevents excessive output current caused by fault conditions or driver short circuit. A driver current limit on the output stage provides and ensures immediate protection against short circuits over the entire common mode voltage range.

Expansion Output Design

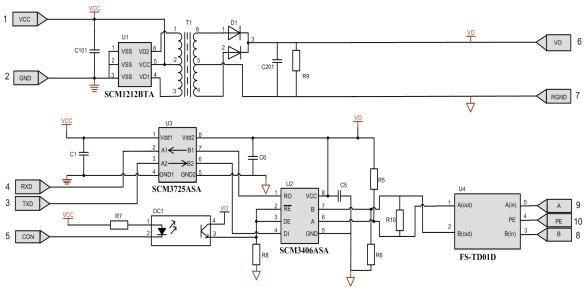
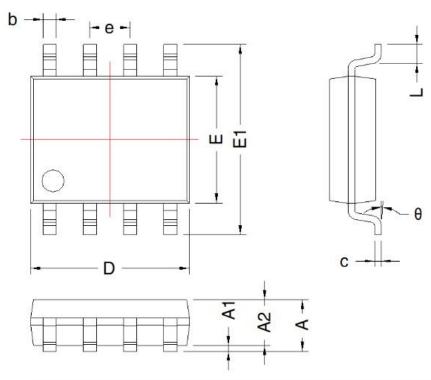


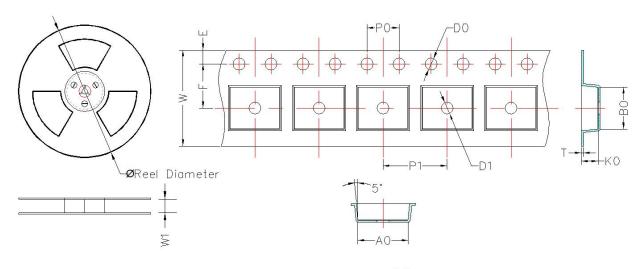
Fig. 26 Schematic diagram of isolation application circuit for UART to RS485 signal

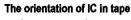
Suggestions for Power Supply

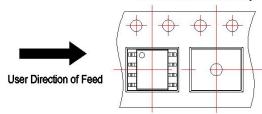
If the input power is a few inches from the SCM3406ASA, as much as possible, connect a $0.1\mu F$ bypass capacitor to the VCC pin and a $10\mu F$ capacitor near the center tap pin of the transformer.


Ordering Information

Part number	Package	Number of pins	Product Marking	Tape & Reel
SCM3406ASA	SOP	8	SCM 3406ASA YM	3k/REEL


Product marking and date code


SCM3406XYZ:


- (1) SCM3406 = Product designation.
- (2) X = Version code information (A-Z).
- (3) Y = Packaging definition code; S for SOP package,
- (4)Z = Operating temperature range (C = 0 $^{\circ}\mathrm{C}$ to +70 $^{\circ}\mathrm{C}$, I =-40 $^{\circ}\mathrm{C}$ to +85 $^{\circ}\mathrm{C}$, A =-40 $^{\circ}\mathrm{C}$ to +125 $^{\circ}\mathrm{C}$, M = -55 $^{\circ}\mathrm{C}$ to +125 $^{\circ}\mathrm{C}$) .
- (5) YM = Date code for product traceability; Y = code for production year; M = code for production month.

		SOP-8				
Moule	Dimens	ion(mm)	Dimensi	ion(inch)		
Mark	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A1	0.10	0.25	0.004	0.010		
A2	1.35	1.55	0.053	0.061		
D	4.70	5.10	0.185	0.201 0.157		
E	3.80	4.00	0.150			
E1	5.80	6.20	0.228	0.244		
L	0.40	0.80	0.016	0.031		
b	0.33	0.51	0.013	0.020		
е	1.27	BSC	0.05	BSC		
С	0.17	0.25	0.007	0.010 8°		
θ	0°	8°	0°			

Device	Package Type	MPQ	Reel Diameter (mm)	Width W1 (mm)	AO (mm)	B0 (mm)	K0 (mm)	T (mm)	W (mm)	E (mm)	F (mm)	P1 (mm)	P0 (mm)	DO (mm)	D1 (mm)
SCM3406ASA	SOP-8	3000	330.0	12.4	6.5±0.2	5.45±0.2	2.0 ± 0.2	0.3±0.05	12.0±0.3	1.75±0.1	5.5±0.1	8.0±0.1	4±0.1	1.5±0.1	1.5±0.1

Technical requirement:

1. Color : Blue (Reference color number :

PANTONE DS 196-1 C; C100 M70 Y0 K0 PANTONE DS 197-1 C; C100 M70 Y0 K10 PANTONE DS 205-1 C; C100 M60 Y0 K20 PANTONE DS 205-2 C; C85 M50 Y0 K20 PANTONE DS 206-2 C; C85 M50 Y0 K35 PANTONE DS 219-1 C; C90 M50 Y5 K15)

- 2. Dimensions and tolerances according to ANSI/EIA-481-C-2003;
- 3. Disk surface good finish, no warping deformation;
- 4. External packing in good condition, no damage or pollution;

Mornsun Guangzhou Science & Technology Co., Ltd.

No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, huangpu District, Guangzhou, P. R. China

MORNSUN®