Цифровой мультиметр MS8332C

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	1
2. ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ	1
3. ОБЗОР МУЛЬТИМЕТРА. 3.1. Внешний вид мультиметра. 3.2. Кнопки управления. 3.3. Символы.	2
4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	2
БЫПОЛНЕНИЕ ИЗМЕРЕНИЙ 1. Измерение постоянного и переменного напряжения 5.2. Измерение сопротивления 5.3. Проверка диодов 5.4. Прозвонка электрических цепей 5.5. Измерение емкости 5.6. Измерение частоты 5.7. Измерение коэффициента заполнения 5.8. Измерение силы тока	3 3 3 4 4
6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ 6.1. Замена батарей 6.2. Замена предохранителя 6.4. Очистка	4

1. ВВЕДЕНИЕ

Данный цифровой мультиметр разработан и произведен в соответствии с требованиями стандартов EN 61010-1, EN 61010-2-030, EN 61010-2-033, EN 61010-031 для электронных измерительных приборов и ручных цифровых многоцелевых мультиметров, а также соответствует стандартам UL STD.61010-1, 61010-2-030, 61010-2-033 и сертифицирован по стандартам CSA STD.C22.2 No. 61010-1, 61010-2-030, IEC STD61010-2-033.

Данный прибор удовлетворяет требованиям для категории перенапряжения CAT III 600В и уровня загрязнения 2.

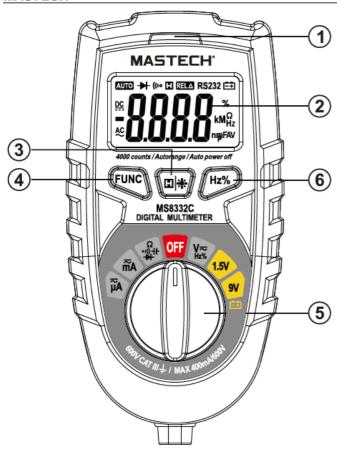
Мультиметр может использоваться для измерения постоянного и переменного напряжения, сопротивления, постоянного и переменного тока, проверки диодов, прозвонки цепей и т.д. Уникальная функция бесконтактного обнаружения переменного напряжения позволит вам быстро обратить внимание на обеспечение безопасности работ, а конструкция, предусматривающая полноценную защиту от переменного напряжения 220 В, обеспечит вам возможность выполнять измерения спокойно и безопасно.

Данный цифровой мультиметр подходит для широкого круга применений в школах, лабораториях, научно-исследовательских институтах, на производстве и в других областях деятельности. Внимательно прочтите данную инструкцию по эксплуатации, обращая особое внимание на приведенные в ней правила безопасной работы. Защита, которую обеспечивает прибор, может быть нарушена при использовании вразрез с указаниями производителя.

2. ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ

Л Предупреждение

При работе с мультиметром необходимо соблюдать меры предосторожности, поскольку неправильная эксплуатация прибора может привести к поражению электрическим током и повреждению мультиметра. При работе следует соблюдать все указания инструкции и общие правила техники безопасности. Для полноценного использования функционала мультиметра и обеспечения безопасной работы внимательно прочтите и соблюдайте приведенные в этом разделе правила.


Во избежание поражения электрическим током и повреждения мультиметра необходимо придерживаться следующих указаний:

- Не проводите измерений напряжения, выходящего за пределы диапазонов допустимых диапазонов для данного мультиметра.
- При работе в режимах измерения сопротивления и проверки диодов не прикладывайте высокое напряжение (выше 100 В) ко входам мультиметра.
- Не допускайте использования мультиметра при наличии повреждений и оголенных участков проводника на измерительных проводах.
- Не подвергайте мультиметр действию прямых солнечных лучей или высоких температур.
- Перед измерением силы тока вначале отключите напряжение в обследуемой цепи и подайте напряжение на цепь только после подсоединения измерительных проводов.
- При замене батареи следите за соблюдением правильной полярности
- Проверяйте правильность работы мультиметра на источнике с известной величиной напряжения. Если мультиметр работает неправильно, немедленно прекратите его использование. Защита прибора может быть повреждена. В случае любых сомнений передайте прибор на осмотр квалифицированным персоналом.

3. ОБЗОР МУЛЬТИМЕТРА

3.1. Внешний вид мультиметра

- 1) Световой индикатор напряжения при бесконтактном обнаружении напряжения
- 2) Жидкокристаллический дисплей
- 3) Кнопка «HOLD/- » (подсветка дисплея)
- 4) Кнопка выбора функций
- 5) Поворотный переключатель
- 6) Кнопка переключения «Hz%»

Киопки управления

3.2. кнопкі Кнопка	Описание
FUNC	Кнопка переключения функций позволяет выполнять переключение между пределами измерения напряжения, тока и сопротивления, между режимами измерения постоянного и переменного тока, а также функциями измерения сопротивления, емкости, проверки диодов и прозвонки цепей.
Hz%	Кнопка переключения между измерением частоты и коэффициента заполнения служит для переключения между этими величинами в режимах измерения напряжения и силы тока.
	Кнопка фиксации данных/подсветки дисплея. Нажмите эту кнопку для фиксации показания дисплея. Нажмите и удерживайте ее в течение 2 секунд для включения подсветки дисплея.

3.3. Символы

O.O. OMINIBO	··
۲)	Переменный ток
<u>DC</u>	Постоянный ток
	Двойная изоляция
Δ	Предупреждение: обратитесь к инструкции по эксплуатации.
	Предохранитель
C€	Символ соответствия законам и регламентам Европейского Союза
ᆉ	Заземление
c us Intertek	Символ соответствия стандартам UL 61010-1, 61010-2-030 и 61010-031 Изделие сертифицировано по стандартам CSA C22.2 № 61010-1, 61010-2-030 и 61010-031
CAT III	Категория перенапряжения III. Показывает применимость в тестах и измерениях на цепях, подсоединенных к распределительному оборудованию низковольтной электросети зданий.

4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

4.1. Общие характеристики

- Цифровой мультиметр с автоматическим выбором пределов измерения, максимальное отображаемое значение: 3999.
- Дисплей: 3¾-разрядный жидкокристаллический.
- Защита от перегрузки: защита на всех пределах измерения.
- Функция фиксации показания на дисплее.
- Функция относительных измерений.
- Индикация разряженной батареи.
- Автоматическое отключение.
- Рабочая температура: 0-40 °С (32-104 °F) при относительной влажности <80%.
- Температура хранения: -10-50 °С (14-122 °F) при относительной влажности <70%
- Класс безопасности: EN61010-1, CAT III 600 В
- Источник питания: две батареи на 1,5 В типа ААА.
- Габаритные размеры: 110 x 58 x 33 мм.
- Масса: 150 г

4.2. Измерительные характеристики

Точность приводится в форме: ±% от показания ± количество единиц младшего разряда в интервале температур 23±5°С при относительной влажности <75%.

4.2.1. Постоянное напряжение

Предел измерения	Разрешение	Точность
400 мВ	0,1 мВ	
4 B	1 мВ	±(0 E9(. 3)
40 B	10 мВ	±(0,5%+3)
400 B	100 мВ	
600 B	1 B	±(0,8%+5)

Входной импеданс: 10 МОм

Максимальное допустимое напряжение: постоянное напряжение 600 B.

4.2.2. Переменное напряжение

Предел измерения	Разрешение	Точность
4 B	1 мВ	
40 B	10 мВ	±(0,8%+3)
400 B	100 мВ	
600 B	1 B	±(1,0%+5)

Входной импеданс: 10 МОм

Максимальное допустимое напряжение: переменное напряжение 600 B.

Частотный диапазон: 40 Гц - 400 Гц

Отклик: среднее значение (среднеквадратичное значение синусоидального сигнала)

4.2.3. Сопротивление

Предел измерения	Разрешение	Точность
400 Ом	0,1 Ом	
4 кОм	1 Ом	
40 кОм	10 Ом	±(1,0%+3)
400 кОм	100 Ом	
4 МОм	1 кОм	
40 МОм	10 кОм	±(1,2%+15)

Напряжение в разомкнутой цепи: около 0,25 В

Защита от перегрузки: постоянное или переменное (среднеквадратичное значение) напряжение 250 В

4.2.4. Проверка диодов и прозвонка цепей

Режим	Описание
+	Отображается приблизительное падение напряжения на диоде в режиме прямого тока
01))	Если измеренное сопротивление менее 50±20 Ом, включается звуковой сигнал

Напряжение в разомкнутой цепи: около 1,5 В при проверке диодов, около 0,5 В при прозвонке цепей.

Защита от перегрузки: постоянное или переменное (среднеквадратичное значение) напряжение 250 В

4.2.5. Постоянный ток

Предел измерения	Разрешение	Точность
400 мкА	0,1 мкА	1/1 00/ . E)
4000 мкА	1 мкА	±(1,8%+5)

40 мА	10 мкА
400 мА	100 мкА

Максимальный входной ток: 400 мА.

Защита от перегрузки: в диапазоне мА сверхбыстрый предохранитель FF 400мА/600В.

4.2.6. Переменный ток

4.2.0. Переженный ток		
Предел измерения	Разрешение	Точность
400 мкА	0,1 мкА	
4000 мкА	1 мкА	1/1 00/ . E)
40 мА	10 мкА	±(1,8%+5)
400 мА	100 мкА	

Максимальный входной ток: 400 мА.

Защита от перегрузки: в диапазоне мА сверхбыстрый предохранитель FF 400мА/600В.

Частотный диапазон: 40 Гц - 400 Гц

Отклик: среднее значение (среднеквадратичное значение синусоидального сигнала)

4.2.7. Емкость

Предел измерения	Разрешение	Точность
50 нФ	0,01 нФ	±(5,0%+30)
500 нФ	0,1 нФ	±(3,0%+15)
5 мкФ	1 нФ	
50 мкФ	10 нФ	±(5,0%+25)
100 мкФ	100 нФ	

Защита от перегрузки: постоянное или переменное (среднеквадратичное значение) напряжение 250 В

4.2.8. **Yacmoma**

Диапазон измерения	Точность
1 Гц – 5 МГц	±(1,5%+15)

4.2.9. Коэффициент заполнения

Предел измерения	Точность
0,5% - 99%	±(2,0%+5)

4.2.10. Тестирование батарей

4.2.10. Тестирование ошпиреи		
Измерительный диапазон	Точность	
1,5 B	+(2.0% + 20)	
9 B	±(2,0%+20)	

5. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

5.1. Измерение постоянного и переменного напряжения

Предупреждения

- 1. Во избежание поражения электрическим током или повреждения прибора не пытайтесь измерять постоянное и переменное (среднеквадратичное значение) напряжение выше 600 В.
- 2. Во избежание поражения электрическим током или повреждения прибора не допускается прикладывать постоянное и переменное (среднеквадратичное значение) напряжение выше 600 В между входами мультиметра и землей.
- 3. Не проводите измерения постоянного и переменного напряжения в момент включения или выключения обследуемого мотора или цепи. При этом могут возникать сильные выбросы напряжения, способные повредить мультиметр.
- В мультиметре предусмотрены следующие пределы измерения постоянного напряжения: 400,0 мВ, 4,000 В, 40,00 В, 400,0 В и 600,0 В; переменного напряжения: 4,000 В, 40,00 В, 400,0 В и 600,0 В.

Для измерения переменного или постоянного напряжения:

- 1) Установите поворотный переключатель в положение V=Hz%.
- 2) Нажмите кнопку «**FUNC**» чтобы выбрать измерение постоянного (DC) или переменного (AC) напряжения. Подсоедините измерительные провода параллельно к обследуемой цепи.
- 3) На дисплее появится измеренное значение напряжения. При измерении постоянного напряжения отображается полярность напряжения на красном измерительном проводе.

Примечание:

При измерении на пределах измерения 400 мВ (постоянное напряжение) и 4 В (переменное напряжение) показания мультиметра могут быть отличными от нуля до подсоединения измери-

тельных щупов к обследуемой цепи из-за внешних помех. Это нормально не влияет на точность измерений.

5.2. Измерение сопротивления

Л Предупреждение

Во избежание повреждения мультиметра и обследуемого оборудования перед измерением сопротивления отключите питание в обследуемой цепи и разрядите все высоковольтные конденсаторы.

В мультиметре предусмотрены следующие пределы измерения сопротивления: 400,0 Ом, 4,000 кОм, 40,00 кОм, 400,00 кОм, 4.000 МОм и 40.00 МОм.

Для измерения сопротивления:

- Установите поворотный переключатель в положение
 ОАР-→Ω.
- 2) Нажмите кнопку «**FUNC**» чтобы выбрать функцию измерения сопротивления (Ω).
- 3) Подсоедините измерительные провода к обследуемой цепи.
- 4) На дисплее появится измеренное значение сопротивления.

Примечания:

- 1) Измеренное значение сопротивления резистора, встроенного в цепь, может отличаться от его номинального сопротивления, поскольку на него влияют прочие компоненты цепи, создающие дополнительное сопротивление, параллельное резистору.
- 2) Для получения более точного результата при измерении малых сопротивлений перед началом измерения замкните измерительные провода накоротко. При этом на дисплее отобразится их сопротивление. В ходе дальнейших измерений вычитайте это значение из текущего показания.
- 3) При измерении больших сопротивлений мультиметру может потребоваться несколько секунд для получения стабильного показания.
- 4) Когда измерительная цепь разомкнута, на дисплее будет отображаться сообщение «OL», указывающее на превышение предела измерения.

5.3. Проверка диодов

- Установите поворотный переключатель в положение
 ОАР-→Ω.
- 2) Нажмите кнопку «**FUNC**» чтобы выбрать функцию проверки диодов (\rightarrow).
- 3) Подсоедините красный измерительный провод к аноду проверяемого диода, а черный к его катоду.
- 4) Измеренное значение падения напряжения на диоде в режиме прямого тока отобразится на дисплее. При обратном подсоединении проводов к диоду цепи на дисплее отобразится «**OL**».

Примечание:

При проверке диода, встроенного в цепь, при правильном подсоединении измерительных проводов на дисплее отображается значение падения напряжения на диоде в режиме прямого тока, а при обратном подсоединении проводов результат измерения зависит от параметров других элементов цепи, подсоединенных параллельно диоду.

5.4. Прозвонка электрических цепей

А Предупреждение

Во избежание повреждения мультиметра и обследуемого оборудования перед прозвонкой цепи отключите в ней питание в и разрядите все высоковольтные конденсаторы.

- 1) Установите поворотный переключатель в положение $^{\bullet 0}$ САР igodots .
- 2) Нажмите кнопку «**FUNC**» чтобы выбрать функцию прозвонки цепей (* *1).
- 3) Подсоедините измерительные провода к концам обследуемой цепи или участка цепи.
- 4) На дисплее отобразится примерное значение сопротивления участка цепи между точками подсоединения проводов. Если измеренное значение сопротивления окажется менее 50±20 Ом, включится звуковой сигнал.

5.5. Измерение емкости

А Предупреждение

Во избежание повреждения мультиметра и обследуемого оборудования перед измерением емкости отключите в обследуемой цепи питание и разрядите все высоковольтные конденсаторы.

В мультиметре предусмотрены следующие пределы измерения емкости: 4,000 нФ, 40,00 нФ, 400,0 нФ, 4,000 мкФ, 40,00 мкФ и 100,0 мкФ.

Для измерения емкости:

- Установите поворотный переключатель в положение •i) CAP-► Ω.
- 2) Нажмите кнопку «FUNC» чтобы выбрать функцию измерения емкости (САР).
- 3) Подсоедините измерительные провода к обследуемой цепи. На дисплее появится измеренное значение емкости.

Примечания:

- 1) Мультиметру может потребоваться некоторое время для стабилизации измеренного значения при измерении больших емкостей.
- 2) При измерении малых емкостей (менее 10 нф) для повышения точности измерений из полученного результата необходимо вычесть распределенную емкость мультиметра и измерительных проводов (емкость, измеренную при замкнутых накоротко щупах).

5.6. Измерение частоты

Для измерения частоты:

- 1) Установите поворотный переключатель в положение V=Hz%.
- 2) Нажмите кнопку «Hz%» для выбора функции измерения часто-
- 3) Подсоедините измерительные провода к обследуемой цепи.
- 4) На дисплее появится измеренное значение частоты.

5.7. Измерение коэффициента заполнения

Для измерения коэффициента заполнения:

- 1) Установите поворотный переключатель в положение V=Hz%.
- 2) Нажмите кнопку «Hz%» для выбора функции измерения коэффициента заполнения (%).
- 3) Подсоедините измерительные провода к обследуемой цепи.
- 4) На дисплее появится измеренное значение коэффициента заполнения.

5.5. Измерение силы тока

Предупреждение

Во избежание повреждения прибора или обследуемого оборудования перед измерением силы тока проверьте состояние предохранителя мультиметра.

Не пытайтесь проводить измерения силы тока в цепи, в которой в разомкнутом состоянии напряжение превышает 250 В.

В мультиметре предусмотрены следующие пределы измерения постоянного и переменного тока: 400,0 мкА, 4,000 мА, 40,00 мА и 400.0 MA.

Для измерения силы тока:

- 1) Отключите ток в обследуемой цепи. Разрядите все имеющиеся в ней высоковольтные конденсаторы.
- 2) Установите поворотный переключатель в положение µА или **мА**. Если измеряемый ток меньше 400 мкА, выберите положение **µА.** Если ток лежит в диапазоне от этого значения до 400 мА, выберите положение тА.
- 3) Разомкните обследуемую цепь. Подсоедините красный измерительный провод к цепи в месте размыкания со стороны высокого потенциала, а черный измерительный провод - со стороны низкого потенциала.
- 4) Включите ток в обследуемой цепи, и измеренное значение силы тока отобразится на дисплее. Если на дисплее отображаются символы «OL», это означает, что измеряемый ток превосходит выбранный предел измерения, и поворотный переключатель нужно переключить на больший предел измерения.
- 5) Отключите ток в обследуемой петле. Разрядите все конденсаторы, отсоедините измерительные провода и восстановите исходную цепь.

Примечания:

- 1) При измерении тока мультиметр должен подключаться к обследуемой цепи только последовательно. Параллельное подключение не допускается во избежание выхода прибора из строя и получения травм.
- 2) При измерении постоянного тока в случае обратного подключение проводов измеренное значение будет отрицательным, но это не повлияет на точность измерения.

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- Перед тем, как снять заднюю крышку мультиметра, отсоедините измерительные провода от обследуемой цепи.
- Для защиты внутренних схем мультиметра для замены предохранителя используйте только предохранитель с теми же характеристиками: сверхбыстрый FF 400 мA/600 B, 10 кA.
- Не используйте прибор, пока задняя крышка не установлена на место и не закреплена винтами.
- В случае любых отклонений от нормальной работы прекратите использование прибора и отправьте его на сервисное обслуживание.

🕰 Предупреждение

Во избежание поражения электрическим током отсоединяйте измерительные провода перед заменой батареи, предохранителя или очисткой мультиметра.

6.1. Замена батарей

Л Предупреждение

Во избежание поражения электрическим током удостоверьтесь, что измерительные провода отсоединены от измерительной цепи, перед тем, как открыть крышку батарейного отсека мультиметра.

🕰 Предупреждение

Не устанавливайте в мультиметр вместе старые и новые батареи. Не устанавливайте вместе щелочные, стандартные (карбон-цинковые) и перезаряжаемые (никель-кадмиевые, никель-металлогидридные и т.д.) батареи.

- 1) Если на дисплее появляется индикатор разряженной батареи « 🚉 », это означает, что батареи необходимо заменить.
- 2) Отверните фиксирующий винт крышки батарейного отсека и снимите ее.
- 3) Извлеките разряженную батарею и установите на ее место
- 4) Установите крышку батарейного отсека на место и закрепите ее винтом.

6.2. Замена предохранителя

- 1) Выключите мультиметр.
- 2) Откройте нижнюю крышку мультиметра с помощью отвертки и извлеките неисправный предохранитель.
- 3) Установите на его место новый предохранитель того же размера и с такими же характеристиками (сверхбыстрый FF 400 мA/600 B, 10 кA), установите нижнюю крышку на место и закрепите ее винтом.

6.3. Очистка

Для очистки корпуса мультиметра можно воспользоваться мягкой чистой тканью. Не используйте для этого органических растворителей, способных вызвать коррозию корпуса.