

Features

- VOLTAGE OFFSET: ±100uV (MAX)
- WIDE COMMON MODE VOLTAGE: -0.3V to +36V
- SUPPLY VOLTAGE: 2.7V to +30V
 - ACCURACY and ZERO-DRIFT PERFORMANCE
 - ±1% Gain Error (Max over temperature)
 - 0.5µV/°C Offset Drift (Max)
 - 10ppm/°C Gain Drift (Max)
- THREE GAIN OPTIONS for VOLTAGE OUTPUT
 - TP181A1: 50V/V
 - TP181A2: 100V/V
 - TP181A3: 200V/V
- LOW SUPPLY CURRENT: 120uA (TYP)
- Rail-to-Rail Output
- PACKAGE: SC70-6
- Industrial –40°C to 125°C Operation Range
- ESD Rating: Robust 3KV HBM, 2KV CDM
- Higher performance Drop-In Compatible With INA213, INA214, INA199, NCS199 Products

Applications

- CURRENT SENSING (High-Side/Low-Side)
- BATTERY CHARGERS
- POWER MANAGEMENT
- CELL PHONE CHARGER
- ELECTRICAL CIGIRATE
- WIRELESS CHARGER
- TELECOM EQUIPMENT

Description

The TP181 series of zero-drift, bi-directional current sense amplifier can sense voltage drops across shunts at commonmode voltages from -0.3V to 36V, independent of the supply voltage. Three fixed gains are available: 50V/V, 100V/V and 200V/V. The low offset of the zero-drift architecture enables current sensing with maximum drops across the shunt as low as **10mV** full-scale.

TP181 devices operate from a single +2.7V to 30V power supply, with drawing a typical of 120uA of supply current. All versions are specified from -40° C +125°C, and offered in SC70-6 packages.

GAIN OPTIONS TABLE

PRODUCT	GAIN	R3 and R4	R1 and R2
TP181A1	50	20kΩ	1MΩ
TP181A2	100	10kΩ	1MΩ
TP181A3	200	5kΩ	1MΩ

 $V_{OUT} = (I_{LOAD} \times R_{SHUNT})GAIN + V_{REF}$

Application schematic

Pin Configuration

Order Information

Model Name	Order Number	Gain	Package	Transport Media, Quantity	Package Marking
	TP181A1-CR	50V/V	6-Pin SC70	Tape and Reel, 3,000	9A1
TP181	TP181A2-CR	100V/V	6-Pin SC70	Tape and Reel, 3,000	9A2
	TP181A3-CR	200V/V	6-Pin SC70	Tape and Reel, 3,000	9A3

Absolute Maximum Ratings Note 1

Supply Voltage Note 2	42.0V	Current at Supply Pins	±60mA
Input Voltage	GND-0.3 to 42V	Operating Temperature Range4	40°C to 125°C
Input Current: +IN, –IN Note 3	±5mA	Maximum Junction Temperature	150°C
Output Current: OUT	±35mA	Storage Temperature Range6	65°C to 150°C
		Lead Temperature (Soldering, 10 sec) 260°C

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The op amp supplies must be established simultaneously, with, or before, the application of any input signals.

Note 3: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input current should be limited to less than 10mA.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	±2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	±2	kV

Thermal Resistance

Package Type	θ _{JA}	θ _{JC}	Unit
6-Pin SC70	227	80	°C/W

Electrical Characteristics

The specifications are at TA = 25°C, VSENSE = VIN+ – VIN–, VS = 5 V, VIN+ = 12V, and VREF = VS / 2, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
INPUT						1
Vos	Input Offset Voltage	VSENSE = 0 mV		±10	±100	uV
V _{os} TC	Input Offset Voltage Drift	VSENSE = 0 mV, -40°C to 125°C		0.1	0.5	µV/°C
V _{CM}	Common-mode Input Range	-40°C to 125°C	-0.3		36	V
CMRR	Common Mode Rejection Ratio	VIN+ = 5~26 V, VSENSE = 0 mV, -40°C to 125°C	95	120		dB
IB	Input Bias Current	VSENSE = 0 mV		35		uA
I _{OS}	Input Offset Current	VSENSE = 0 mV		0.4		uA
PSRR	Power Supply Rejection Ratio	Vs = +2.7~18V, VIN+ = +18V, VSENSE = 0 mV		±1		uV/V
NOISE RTI N	lote 4			1	27	
en	Input Voltage Noise Density	f = 1kHz		30		nV/√Hz
OUTPUT						
		TP181A1		50		V/V
G	Gain	TP181A2		100		V/V
		TP181A3		200		V/V
GE	Gain Error	VSENSE = -5~5mV, -40°C to 125°C		±0.1%	±1%	
GE TC	Gain Error Vs Temperature	-40°C to 125°C		3	10	ppm
C_{LOAD}	Maxim capacitive load	No oscillation		1		nF
V _{OH}	Output Swing from Supply Rail	R_{LOAD} = 10k Ω to REF, -40°C to 125°C		0.02	0.05	V
Vol	Output Swing from Supply Rail	$R_{LOAD} = 10k\Omega$ to REF, -40°C to 125°C		0.01	0.05	V
FREQUENC	YRESPONSE					
		CLOAD = 10pF, TP181A1		48		kHz
BW	Bandwidth	CLOAD = 10pF, TP181A2		30		kHz
		CLOAD = 10pF, TP181A3		20		kHz
SR	Slew Rate			0.6		V/µs
POWER SUP	PPLY					
V+	Supply Voltage		2.7		30	V
Ι _Q	Quiescent Current	VSENSE = 0 mV		120	150	μA
TEMPERATU	JRE RANGE					
	Specified range		-40		125	°C
	Operating range		-55		150	°C

Note 4: RTI = referred to input

Typical Performance Characteristics

The TP181A1 is used for characteristics at TA = 25°C, VS = 5V, VIN+ =12V, and VREF=VS/2, unless otherwise noted

PSRR vs. Frequency

CMRR Vs Frequency

0.1-Hz to 10Hz Voltage Noise (Referred-to-Input)

Typical Performance Characteristics

The TP181A1 is used for characteristics at TA = 25°C, VS = 5V, VIN+ =12V, and VREF=VS/2, unless otherwise noted

Noninverting Differential Input Overload

Common-Mode Voltage Transient Response

TP181

Inverting Differential Input Overload

Brownout Recovery

Typical Performance Characteristics

The TP181A1 is used for characteristics at TA = 25°C, VS = 5V, VIN+ =12V, and VREF=VS/2, unless otherwise noted

Pin Functions

IN-: Inverting Input of the Amplifier.
IN+: Non-Inverting Input of Amplifier.
OUT: Amplifier Output. The voltage range extends to within mV of each supply rail.
REF: Reference voltage

V+: Positive Power Supply. Typically, the voltage is from 2.7V to 30V. A bypass capacitor of 0.1µF as close to the part as possible should be used between power supply pin and ground pin.GND: Negative Power Supply.

Operation Overview

The TP181 family is 36V common-mode, zero-drift topology, current-sensing amplifiers that can be used in both low-side and high-side configurations. These specially-designed, current-sensing amplifiers are able to accurately measure voltages developed across current-sensing resistors on common-mode voltages that far exceed the supply voltage powering the device. Current can be

measured on input voltage rails as high as 36 V while the device can be powered from supply voltages as low as 2.7 V.

The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as 100μ V with a maximum temperature contribution of 0.5μ V/°C over the full temperature range of -40° C to 125° C.

Applications Information

Application schematic

Above figure shows the basic connections of the TP181. The input pins, IN+ and IN–, should be connected as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistor.

Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors close to the device pins.

Selecting RSHUNT

The zero-drift offset performance of the TP181 offers several benefits. Most often, the primary advantage of the low offset characteristic enables lower full-scale drops across the shunt. For example, nonzero-drift current shunt monitors typically require a full-scale range of 100 mV.

The TP181 family gives equivalent accuracy at a full-scale range on the order of 10 mV. This accuracy reduces shunt dissipation by an order of magnitude with many additional benefits.

Alternatively, there are applications that must measure current over a wide dynamic range that can take advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower gains of the TP181 to accommodate larger shunt drops on the upper end of the scale. For instance, an TP181A1 operating on a 3.3-V supply could easily handle a full-scale shunt drop of 60 mV, with only 100uV of offset.

REF Input Impedance Effects

As with any difference amplifier, the TP181 family common-mode rejection ratio is affected by any impedance present at the REF input. This concern is not a problem when the REF pin is connected directly to most references or power supplies. When using resistive dividers from the power supply or a reference voltage, the REF pin should be buffered by an op amp.

Power Supply Recommendation

The input circuitry of the TP181 can accurately measure beyond its power-supply voltage, V+. For example, the V+ power supply

can be 5 V, whereas the load power-supply voltage can be as high as 30 V. However, the output voltage range of the OUT pin is limited by the voltages on the power-supply pin. Note also that the TP181 can withstand the full input signal range up to 36 V at the input pins, regardless of whether the device has power applied or not.

Proper Board Layout

To ensure optimum performance at the PCB level, care must be taken in the design of the board layout. To avoid leakage currents, the surface of the board should be kept clean and free of moisture. Coating the surface creates a barrier to moisture accumulation and helps reduce parasitic resistance on the board.

Keeping supply traces short and properly bypassing the power supplies minimizes power supply disturbances due to output current variation, such as when driving an ac signal into a heavy load. Bypass capacitors should be connected as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the amplifier. It is recommended that signal traces be kept at least 5mm from supply lines to minimize coupling.

A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and other points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these thermocouple effects, orient resistors so heat sources warm both ends equally. Input signal paths should contain matching numbers and types of components, where possible to match the number and type of thermocouple junctions. For example, dummy components such as zero value resistors can be used to match real resistors in the opposite input path. Matching components should be located in close proximity and should be oriented in the same manner. Ensure leads are of equal length so that thermal conduction is in equilibrium. Keep heat sources on the PCB as far away from amplifier input circuitry as is practical.

The use of a ground plane is highly recommended. A ground plane reduces EMI noise and also helps to maintain a constant temperature across the circuit board.

Package Outline Dimensions

SC70-6 /SOT-363

3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.