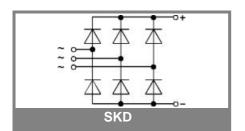
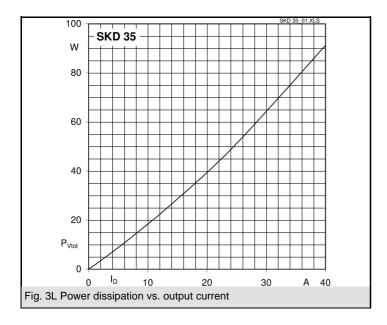


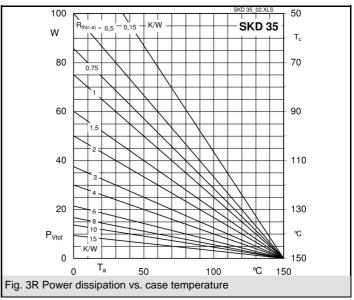
Power Bridge Rectifiers

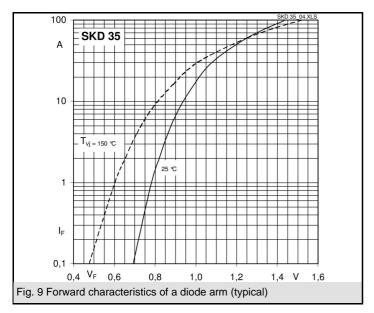
SKD 35

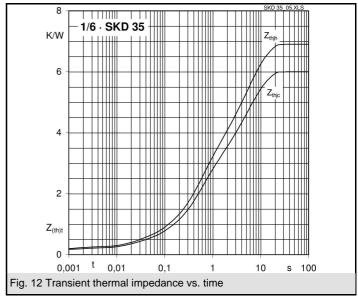
Features

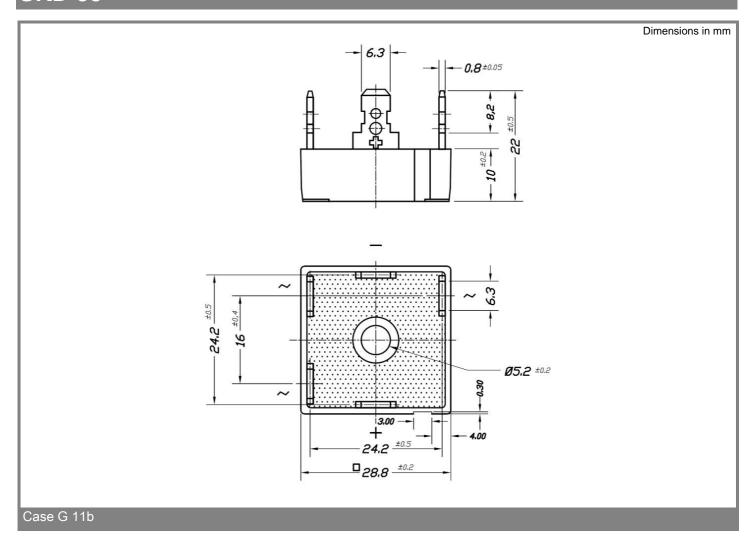

- Square plastic case with isolated metal base plate and fast-on connectors
- Blocking voltage up to 1600 V
- · High surge current
- · Easy chassis mounting


Typical Applications


- Three phase rectifier for power supplies
- Input rectifiers for variable frequency drives
- Rectifier for DC motor field supplies
- · Battery charger rectifiers
- Recommended snubber network: RC: 50 Ω , 0.1 μ F (P $_R$ = 1 W)
- Freely suspended or mounted on an insulator
- 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm
- 3) Recommended V_{VRMS} values $(V_{VRMS max} = V_{RRM} / 1,42)$


V_{RSM}, V_{RRM}	V _{VRMS}	$I_D = 36 \text{ A } (T_c = 70 \text{ °C})$	C _{max}	R_{min}
V	V	Types	μF	Ω
200	60	SKD 35/02		0,15
400	125	SKD 35/04		0,3
800	250	SKD 35/08		0,7
1200	400	SKD 35/12		1
1600	500	SKD 35/16		1,5


Symbol	Conditions	Values	Units
I _D	T _a = 45 °C, P1/120 natural cooling	28	Α
	T _a = 45 °C, chassis ²⁾	14,5	Α
I _{DCL}	T _a = 35 °C, P1/120 forced cooling	36	Α
	T _a = 45 °C, P1/120 natural cooling	28	Α
	T _a = 45 °C, chassis ²⁾	14,5	Α
I _{FSM}	T _{vj} = 25 °C, 10 ms	370	Α
	T _{vj} = 150 °C, 10 ms	320	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}, 8,3 \dots 10 \text{ms}$	680	A²s
	T _{vj} = 150 °C, 8,3 10 ms	500	A²s
V _F	T _{vj} = 25°C, I _F = 150 A	max. 1,9	V
$V_{(TO)}$	$T_{vj} = 150^{\circ}C$	max. 0,85	V
r _T	$T_{vj} = 150^{\circ}C$	max. 7	mΩ
I _{RD}	$T_{vj} = 25^{\circ}C, V_{RD} = V_{RRM}$	300	μA
	$T_{vj}^{s} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		μA
I_{RD}	T_{vj} = 150°C, $V_{RD} = V_{RRM}$	5	mA
	$T_{vj} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		mA
t _{rr}	$T_{vj} = 25^{\circ}C$	10	μs
f_G		2000	Hz
R _{th(j-a)}	isolated ¹⁾	14	K/W
,	chassis ²⁾	3,8	K/W
R _{th(j-c)}	total	1,0	K/W
R _{th(c-s)}	total	0,15	K/W
T _{vi}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a. c. 50 60 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M _s	to heatsink	2 ± 15 %	Nm
M_t			Nm
а			m/s²
w		23	g
Fu			А
Case		G 11b	



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.