OSRAM SFH 7779 **Datasheet**

Discontinued

Chip on board

SFH 7779

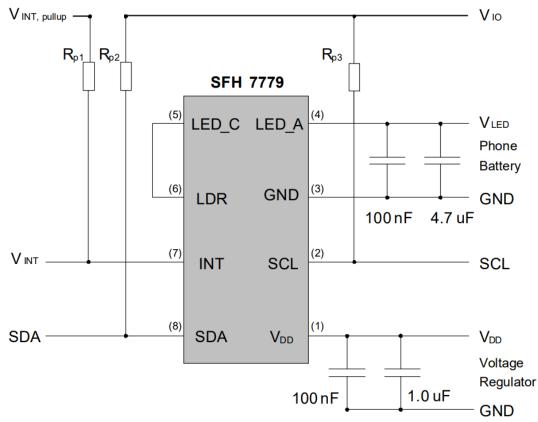
Ambient Light and Proximity Sensor with Integrated 940nm IR Emitter

Applications

- 3D Sensing

Features

- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- PS and ALS Interrupt function
- I2C interface (max. 400kHz)
- Miniature package



Ordering Information

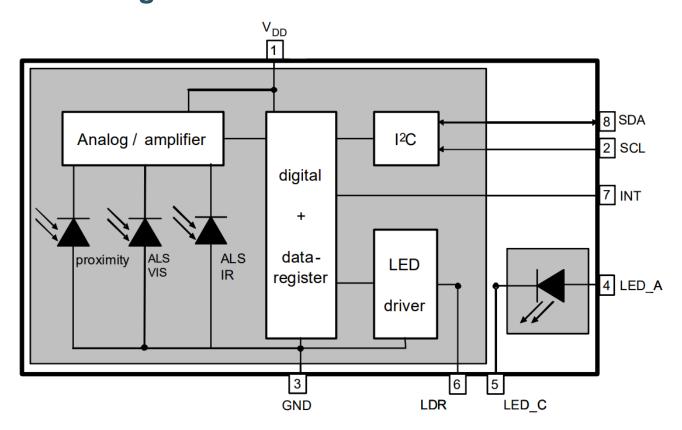
Type SFH 7779 Ordering Code Q65111A4810

Application diagram

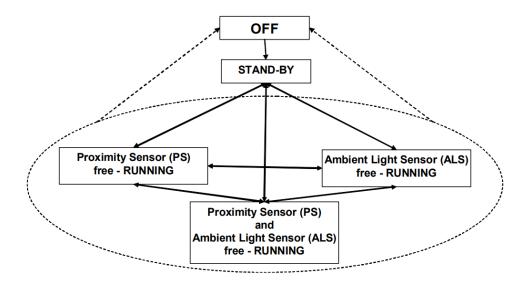
- Bypass capacitors for VDD and VLED are required for proper operation of the device.
- Proposed size for the pull-up resistors are Rp1, Rp2 and Rp3 are 10kOhm

Pin description

Pin	Name	Function	
1	V_{DD}	Power supply pin	
2	SCL	I ² C bus serial clock pin	
3	GND	Ground pin	
4	LED_A	Anode of the LED	
5	LED_C	Cathode of the LED	
6	LDR	LED driver pin	
7	INT	Interrupt pin; open drain output; configured via I2C bus	
8	SDA	l ² C bus serial data pin	


Short Evaluation program

Adress	Command	Action	
0x42	0x3F	set LED pulse current to 200mA and ALS gain to x128	
0x41	0x06	activate ALS & PS with a measurement repetition time of 100ms	
Wait 100ms	3		
0x44	read data	read LSB of proximity measurement data	
0x45	read data	read MSB of proximity measurement data	
0x46	read data	read LSB of ambient light measurement of VIS diode	
0x47	read data	read MSB of ambient light measurement of VIS diode	
0x48	read data	read LSB of ambient light measurement of IR diode	_
0x49	read data	read MSB of ambient light measurement of IR diode	_


I²C interface

- I/O-pins are open drain type and logic high level is set with external pull-up resistor
- SFH 7779 operates in slave mode. Slave address is 0111001 (0x39h)
- Designed for the I²C Fast mode (400 kb/s)
- Interrupt pin (INT): open-drain output (like SDA and SCL)

Block diagram

Mode	Description
OFF	The device is inactive. Other units may use the I2C bus without any restrictions; I/O pins and INT are in high Z
	state. There is no sink current through the LED
STAND-BY	This is the initial mode after power-up. IDD is typ. 0.8μA. No measurement is performed. Device can be
	activated by I2C bus communication. Data registers can be read and written.
ALS / PS free	Measurements are triggered internally by the SFH 7779. Stand-by / active mode for ALS and PS,
running	measurement times, interrupt options and LED current can be adjusted via I2C register. Measurement results
	can be read from the data register, the status from the interrupt register

If V_{DD} exceeds the threshold voltage, the sensor will switch from OFF mode to STAND-By mode. As shown in the transition-diagram above it is possible to switch between all modes without any restriction.

Maximum Ratings T_A = 25 °C

Parameter	Symbol		Values
Storage temperature range	T _{stg}	min.	-40 °C
		max.	100 °C
Operating temperature range	Top	min.	-40 °C
		max.	85 °C
Maximum supply voltage	V_{DD}	max.	4.5 V
between V _{DD} and GND			
Maximum voltage of SDA, SCL to GND	$V_{ m dig}$	max.	4.5 V
Maximum voltage of INT to GND	V _{int}	max.	7 V
Maximum voltage of VLED to GND	V _{LED}	max.	7 V
Maximum Current of INT and SDA	I _{INT} / I _{SDA}	max.	7 mA
ESD withstand voltage	V _{ESD}	max.	2 kV
acc. to ANSI/ESDA/JEDEC JS-001 HBM, Class 2			

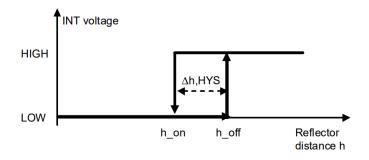
Operating conditions

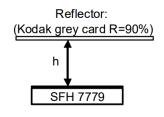
Parameter	Symbol		Values	
Supply voltage	V_{DD}	min. typ. max.	2.3 V 2.5 V 3.6 V	
Ripple on supply voltage V _{DDmin} and V _{DDmax} must stay in the V _{DD} range, DC 100 MHz	$V_{DD,rip}$	max.	200 mV	
V _{DD} threshold voltage voltage to initiate the start-up procedure	$V_{\text{DD,th}}$	typ. max.	1.7 V 2.3 V	
Voltage for INT	V _{INT}	max.	5.5 V	
Voltage for SCL and SDA	V _{SCL} ; V _{SDA}	min. max:	1.65 V 3.6 V	
SDA and SCL input low level voltage	V _{SCL_low} V _{SDA_low}	max.	0.54 V	
SDA and SCL input high level voltage	V_{SCL_high} V_{SDA_high}	min.	1.26 V	
SDA and SCL input current	Iscl_low Isda low	min. max.	-10 μA 10 μA	
INT output low level voltage ($I_{INT} = 3 \text{ mA}$) When INT is active $V_{INT} = \text{low}$. When INT is inactive $V_{INT} = \text{high}$.	VINT_low	max.	0.4 V	
Supply voltage LED	V_{LED}	min. typ. max.	2.3 V 3.5 V 5.5 V	
Ripple V _{LED}	$V_{LED,rip}$	max.	200mV	

Characteristics

T_A = 25 °C

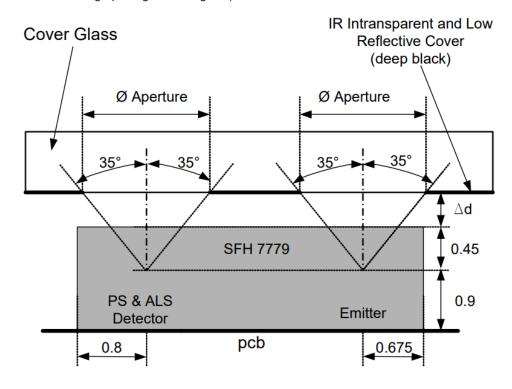
Parameter	Symbol		Values
Conditions for OFF mode	$V_{\text{DD,off}}$	typ.	0.5 V
Current consumption in OFF mode V _{DD} < 0.5 V	I _{DD,off}	typ.	0 μΑ
STAND-BY mode current consumption Mode control(41h) = 0x00; V _{DD} = 2.5 V	I _{DD,stby}	typ. max.	0.8 μA 1.5 μA
Proximity Sensor (PS)			· ·
LED centroid wavelength (I _{LED} = 100mA)	λ _{centroid}	typ.	940 nm
LED Spectral bandwidth (I _{LED} = 100mA)	Δλ	typ.	30 nm
Temperature coefficient of optical power of LED	TC	typ.	-0.5 %/K
ILED ON time for one measurement	tled on	min. typ. max.	80 μs 200 μs 300 μs
LED current, programmable VLED > 2.3V for ILED < 100mA VLED > 3.0V for ILED > 100mA	ILED	min. max.	25 mA 200 mA
Accuracy of LED current source ALS_PS_CONTROL: LED Current (00b	ILED	min. typ. max.	22.5 mA 25 mA 27.5 mA
Mean current consumption in PS mode current consumption of the pulsed LED is not included; MODE_CONTROL(0x41h) = 0x03h; all other registers are default; V _{DD} = 2.5 V	I _{DD}	typ. max.	60 μA 150 μA
Mean current consumption in PS mode during the 200 µs LED pulse (t _{LED} o _N) current consumption of the pulsed LED is not included	I _{DD}	typ. max.	6.5 mA 8.5 mA
Typical detection distance KODAK grey card 100x130mm², R = 90% ILED = 200mA, V _{DD} = 2.5V, E _V = 0lx; high threshold = 11 counts	h _{on}	typ.	10 cm
Typical none detection distance KODAK grey card $100x130mm^2$, R = 90% $I_{LED} = 200mA$, $V_{DD} = 2.5V$, $E_V = 0lx$; high threshold = 8 counts	h _{off}	typ.	12 cm

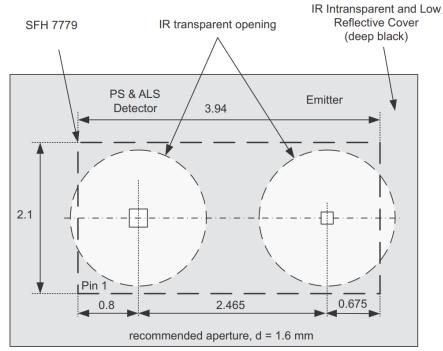

Characteristics (continued)


T_A = 25 °C

Parameter	Symbol		Values
PS sensor output with human skin reflector I _{LED} = 200mA, V _{DD} = 2.5, h = 0mm: skin directly on top of the sensor	PS _{out}	typ.	850 counts
Temperature coefficient of the PS signal I _{LED} = 200mA, V _{DD} = 2.5V, R = 90%,	TK _{PS}	typ.	0.15 %/K
$A_{Reflector} = 10 \times 13 \text{ cm}^2$. $h = 4 \text{ cm}$			

Example of PS Hysteresis


The switching distance h is specified from top sensor surface to the reflector.



Dimensions of proposed optical aperture

(optical aperture: IR transmitting opening in cover glass)

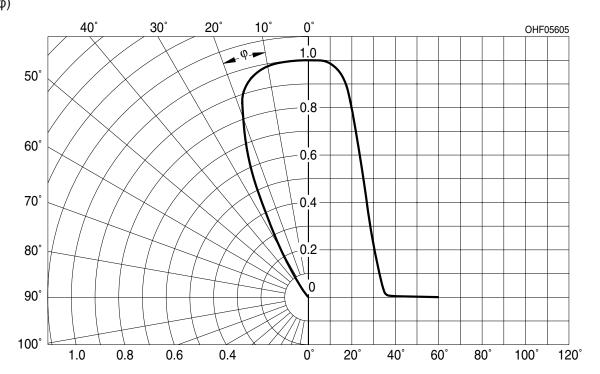
Dimensions in mm

Characteristics

T_A = 25 °C

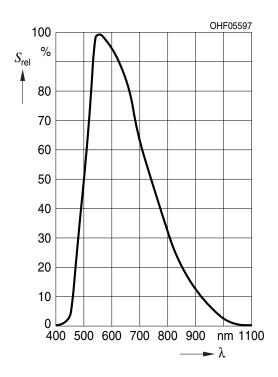
Parameter	Symbol		Values
Ambient Light Sensor: ALS_VIS and ALS_ IR diode			
Wavelength of max. sensitivity for ALS VIS	λ S _{max}	typ.	560 nm
Spectral range of sensitivity (10 % of S _{max})	λ S _{10%}	min.	450 nm
of ALS VIS		max.	950 nm
Wavelength of max. sensitivity of ALS IR	λS_{max}	typ.	880 nm
Spectral range of sensitivity (10 % of S _{max})	λ S _{10%}	min.	830 nm
of ALS IR		max.	1050 nm
Illuminance measurement range is programmable		min.	0.0022 lx
the maximum ALS sensitivity can be reached with the ALS high		max.	73000 lx
sensitivity mode → 400ms ALS integration time			
MODE_CONTROL (0x41h) = 0Ah or 0Bh			
ALS VIS sensor output	ALS _{VIS_out}	min.	750 counts
1000lx; white LED; VDD = 2.5V		typ.	900 counts
MODE_CONTROL (0x41h) = 08h		max.	1080 counts
ALS_PS_CONTROL (0x42h): Gain X1			
ALS IR sensor output	ALS_{IR_out}	min.	460 counts
324μW/cm2; IRED 850 nm; VDD = 2.5V)		typ.	550 counts
$(MODE_CONTROL\ (0x41h) = 08h$		max.	660 counts
ALS_PS_CONTROL (0x42h): Gain = X1			
ALS_VIS sensor output at darkness	ALS _{VIS_out}	min.	0 counts
MODE_CONTROL (0x41h) 08h		typ.	0 counts
_ALS_PS_CONTROL (0x42h): Gain = X1		max.	2 counts
ALS_IR sensor output at darkness	ALS _{IR_out}	min.	0 counts
MODE_CONTROL (0x41h) = 08h	_	typ.	0 counts
ALS_PS_CONTROL (0x42h): Gain = X1		max.	2 counts

Characteristics


T_A = 25 °C

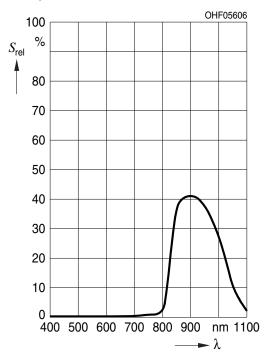
Parameter	Symbol		Values
Ambient Light Sensor: ALS_VIS and ALS_ IR diode			
Resolution of the digital output signal based on gain settings for ALS VIS: MODE_CONTROL (0x41h) = 08h; t _{int ALS} = 100ms Gain X1	ALS _{VIS_out}		
Gain X2		typ.	1.1 lx/count
Gain X64		typ.	0.55 lx/count
Gain X128		typ.	0.018 lx/count
		typ.	0.009 lx/count
High sensitive mode:			
$MODE_CONTROL$ (0x41h) = 0Ah; $t_{int ALS}$ = 400ms			
Gain X128			
$V_{DD} = 2.5V$; white LED		typ.	0.002 lx/count
 Gain settings at ALS_PS_CONTROL (0x42h) 			
Typical temperature coefficient for ALS measurement	TC _{Ev}	typ.	0.2 % / K
1000lx; white LED; $V_{DD} = 2.5V$			
Mean current consumption	I _{DD}	typ.	90 µA
MODE CONTROL $(0x41h) = 08h$		max.	150 µA
other registers are default			
Typical error by Flicker noise		max.	3 %
caused by bulbs (f=50 or 60 Hz) or fluorescent lamps			

Radiation Characteristics 1), 2)


IR Emitter $I_{rel} = f(\phi)$

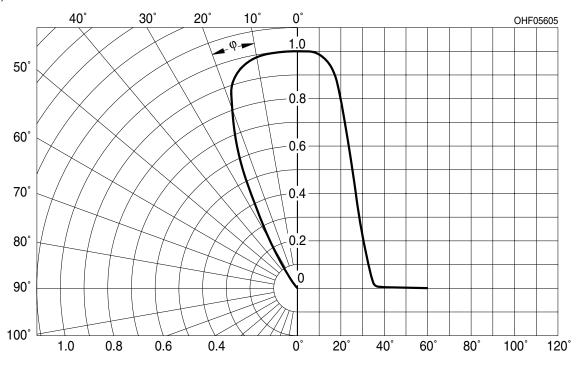
Relative Spectral Sensitivity 1), 2)

ALS VIS


$$S_{rel_VIS} = f(\lambda)$$

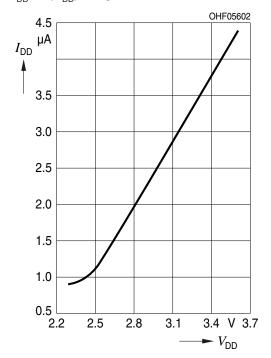
Relative Spectral Sensitivity 1), 2)

ALS IR


 $S_{_{\text{rel_IR}}}$ = f(λ); 100% = maximum sensitivity of ALS VIS diode

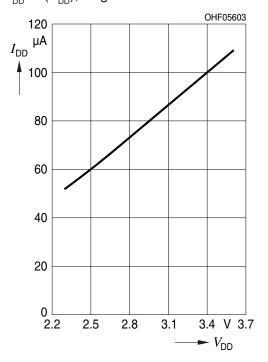
Directional Characteristics 1), 2)

ALS Vis Diode


$$S_{rel} = f(\phi)$$

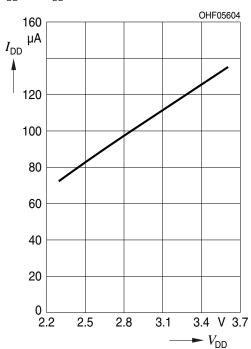
Current Consumption 1), 2)

standby mode

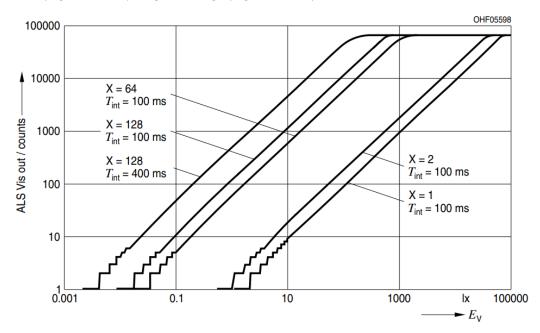

$$I_{DD} = f(V_{DD})$$
; Register 0x41 = 0x00

Current Consumption 1), 2)

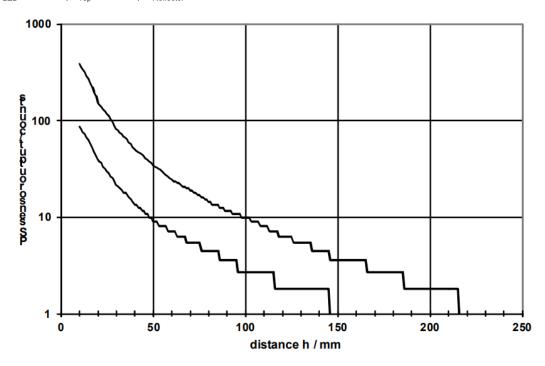
PS mode


$$I_{DD} = f(V_{DD})$$
; Register 0x41 = 0x03

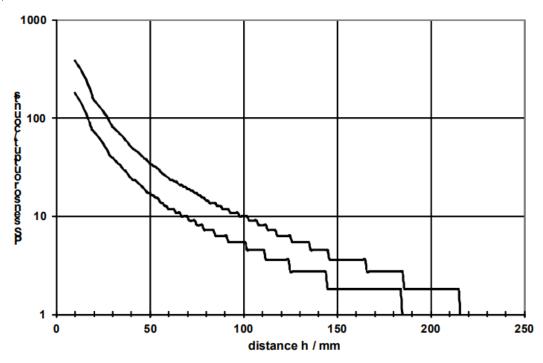
Current Consumption 1), 2)


ALS mode

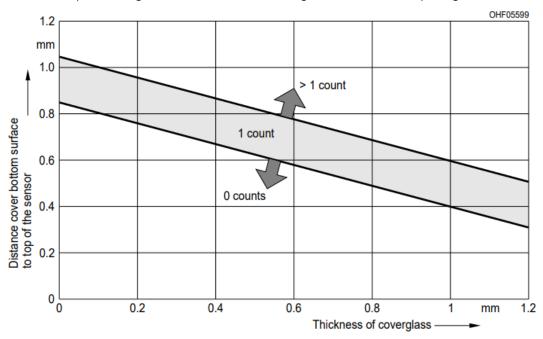
$$I_{DD} = f(V_{DD})$$
; Register 0x41 = 0x08


ALS VIS sensitivity ranges

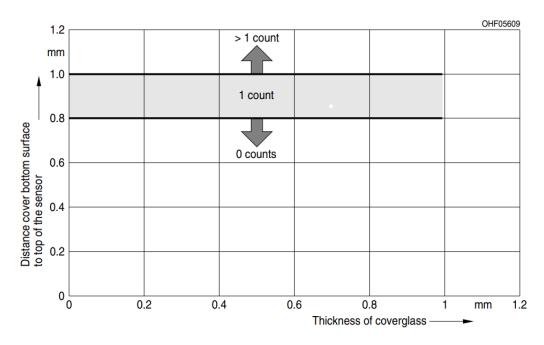
ALS VIS output(Ev); white LED; f(sensitivity settings); T_{int} : integration time (register 0x41h); X: gain settings (register 0x42h)


PS sensitivity f(R = reflectivity)

 $V_{DD}\text{=}2.5V; \text{ }I_{LED}\text{=}200\text{mA}; \text{ }\overline{T_{rep}}\text{=}100\text{ms}; \text{ }A_{Reflector}\text{=}10\text{x}13\text{cm}^2$


PS sensitivity f(I_{LED})

V_{DD}=2.5V; T_{rep}=100ms; R=90%; A_{Reflector}=10x13cm²


Typical crosstalk free range

 V_{DD} =2.5V; I_{LED} =200mA; T_{rep} =100ms; glass without ink and one single IR transmissive opening

Typical crosstalk free range

 V_{DD} =2.5V; I_{LED} =200mA; T_{rep} =100ms; glass without ink and a two separate IR transmissive openings for emitter and detector

Note for crosstalk free range: The displayed crosstalk free ranges for a single or two hole IR transmissive opening are measured with a clear cover. Depending on the used ink the crosstalk level can differ and needs to be measured. OSRAM OS provides costumer related application support and measurements – please contact your OSRAM OS marketing or sales partner, if support is required.

As the measurement results show the typical performance of the sensor OSRAM OS recommends to design inn a additional safety guard in the distance of the cover bottom surface to the top of the sensor of 200µm. e.g.: for a 0.5mm thick cover window with two holes and an acceptable crosstalk level of 0 counts the distance of the cover window bottom surface to the top of the sensor should not exceed 0.6mm (typ. it would be 0.8mm)

SYSTEM_CONTROL register (0x40h)

The SYSTEM_CONTROL register is used to control the software (SW) reset and the interrupt function (INT). Manufacturer ID and Part ID can be read.

R/W-Register 0x40

Bit	7	6	5 4 3	2 1 0
			Manufacturer ID (Read	Part ID (Read
	SW reset	INT reset	only)	only)
default	Initial reset is not started	0 INT pin status is not initialized	001	001
	Initial reset is not started	0 INT pin status is not initialized		
	1 Initial reset started	1 INT pin become inactive (high impedance)		

MODE_CONTROL register (0x41h)

CONTROL of PS and ALS operating modes and time settings.

Repetition time is the time between two separate measurements. Integration time is the duration for one measurement. ALS high sensitivity modes are 1010 and 1011 with an increased integration time of 400ms. In PS operating mode: "normal mode" only one PS measurement is performed during one PS repetition time. In PS operating mode: "twice mode" two independent PS measurement are performed within one PS repetition time. Both measurements are independent and can trigger the interrupt. This feature can be used to decrease the interrupt update time if the persistence function (register 0x43h) is used.

R/W-Reg	ister (0x41								
Bit	7	6	5	4	3	2	1	0	Repetition / Integration time	Repetition time
	Res	erved		PS operating mode					ALS	PS
default				0 normal mode		00	00		standby	standby
	1			0 normal mode		00	00		standby	standby
	1			1 twice mode		00	01		standby	10ms
	1					00	10		standby	40ms
	1					00	11		standby	100ms
	1					0100 standby		standby	400ms	
	1					0101			100ms / 100ms	standby
	1					0110			100ms / 100ms	100ms
	1					0111			100ms / 100ms	400ms
				1		10	00		400ms / 100ms	standby
	1					10	01		400ms / 100ms	100ms
	1					10	10		400ms / 400ms	standby
	1					10	11		400ms / 400ms	400ms
	1					11	00		50ms / 50ms	50ms
	1				Res	forbi	dden		I	1

ALS_PS_CONTROL register (0x42h)

ALS and PS Control of set the PS output mode, the ALS gain and the LED current. In the "Infrared DC level output" PS mode (bit <6> = 1) the sensor measures the infrared DC ambient level. The proximity value of the reflected signal is not available in this mode.

R/W-Register 0x42

Bit	7	6	5 4 3 2			1 0
	Reserved (read only)	PS output	ALS Gain for	ALS VIS ar	nd ALS IR	LED current
default	write 0	0 proximity output	0000	X1	X1	11 200mA
		0 proximity output	0000	X1	X1	00 25 mA
		1 Infrared DC level output	0100	X2	X1	01 50 mA
			0101	X2	X2	10 100 mA
			1010	X64	X64	11 200 mA
			1110	X128	X64	
			1111	X128	X128	
			rest forbidden			

PERSISTENCE Register (0x43h)

Setting of persistence interrupt function. Persistence function is only valid for the PS interrupt.

R/W-Register 0x43

Bit	7	6	5	4	3	2	1	0		
	Res	erved (r	read on	ly)		Pers	istence			
default	0000				0001 Interrupt statu	us is updated after ea	ach measurement			
					(The mode indicate be read via the reg and threshold setting	Interrupt becomes active after each measurement mode indicates that a PS or ALS measurement has been finished and c ad via the register. It is independent of the ALS & PS measurement valunceshold settings)				
		0001 Interrupt status is updated after each measurement (The interrupt status is updated independently after each mea or Inactive status of the interrupt is depending on the values o measurement in combination with the interrupt settings: "inter (register 0x4Ah) and "thresholds" register 0x4Ch and following								
					same (The interrupt statu measurement resu	s only changes if the lts are the same and	e interrupt judgement of different to the curren	of 2 consecutive t interrupt status		
					over consecutive so (This is the same p consecutive thresh setting) to change to	et times (315) procedure like in the (d if threshold judgeme 0010 persistence mod- are needed (3 to 15 de	e, but instead of		
					e.g.: 1010: 10 measurer update the interrup		need to fulfill the inter	rupt judgement t		

PS_DATA_LSBs Register (0x44h)

LSB of the PS output.

R-Register 0x44

Bit	7	6	5	4	3	2	1	0
	27	26	2 ⁵	24	2 ³	2 ²	21	20
default	0	0	0	0	0	0	0	0

PS_DATA_MSBs Register (0x45h)

MSB of the PS output.

R-Register 0x45

Bit	7	6	5	4	3	2	1	0
	not used	not used	not used	not used	211	210	29	28
default	0	0	0	0	0	0	0	0

ALS_VIS_DATA_LSBs Register (0x46h)

LSB of the ALS VIS output.

R-Register 0x46

Bit	7	6	5	4	3	2	1	0
	27	26	2 ⁵	24	2 ³	2 ²	21	20
default	0	0	0	0	0	0	0	0

ALS_VIS_DATA_MSBs Register (0x47h)

MSB of the ALS VIS output.

R-Register 0x47

Bit	7	6	5	4	3	2	1	0
	2 ¹⁵	214	2 ¹³	212	211	210	29	28
default	0	0	0	0	0	0	0	0

ALS_IR_DATA_LSBs Register (0x48h)

LSB of the ALS IR output.

R-Register 0x48

Bit	7	6	5	4	3	2	1	0
	27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20
default	0	0	0	0	0	0	0	0

ALS_IR_DATA_MSBs Register (0x49h)

MSB of the ALS IR output.

R-Register 0x49

Bit	7	6	5	4	3	2	1	0
	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
default	0	0	0	0	0	0	0	0

INTERRUPT_CONTROL register (0x4Ah)

Setting of the interrupt functions.

R/W-Register 0x4A

Bit	7	6	5	4	3	2	1	0
	PS INT status (read only)	ALS INT status (read only)	PS INT mode		INT assert	INT latch	INT tr	igger
default	0 inactive	0 inactive	00 PS_TH is	only active	0 INT "L" is stable	0 INT is latched	00 ina	ctive
	0 inactive	0 inactive	00 PS_TH (F threshold 0x- is only active	4B & 0x4C)	0 INT "L" is stable if newer measurement results is also interrupt active	0 INT is latched until INT registers is read or initialize	00 INT is inac	
	1 active	1 active	01 PS_TH & (PS high & lo threshold) ar hysteresis	ow _	1 INT "L" is de-assert and re- assert if newer measurement results is also interrupt active	1 INT is updated after each measurement	01 is trigger PS onl	
			10 PS_TH & (PS high & lothershold) are outside determined to the d	ow re active as ction			10 trigg by ALS 11 trigg by PS ALS	S only gered

PS INT and ALS INT status (bit <7;6>): Directly after reading the register the interrupt status for PS and ALS and the INT Pin of the sensor is automatically set back to inactive status independent on the measurement results.

PS INT mode (bit <5;4>): The INT modes are only valid for the PS interrupt function. For description please see extra chapter "PS INT Modes" (at the end of the register chapter).

INT assert (bit <3>): Is used to adjust the sensor behavior to the used micro controller trigger settings. In case a repeated trigger in low state is needed the INT assert can be set to 1.

INT trigger (bit <2>): defines the source / sources for the interrupt.

INT latched (bit <1>): In latched mode the interrupt status stays active after the first activation. It is only released by reading the status are performing an interrupt reset.

PS_TH_LSBs register (0x4Bh)

LSB for the PS threshold "HIGH".

R/W-Register 0x4B

Bit	7	6	5	4	3	2	1	0
	27	26	2 ⁵	24	2 ³	2 ²	21	20
default	1	1	1	1	1	1	1	1

PS_TH_MSBs register (0x4Ch)

MSB for the PS threshold "HIGH".

R/W-Register 0x4C

Bit	7	6	5	4	3	2	1	0
					211	210	2 ⁹	28
default	0	0	0	0	1	1	1	1

PS_TL_LSBs register (0x4Dh)

LSB for the PS threshold "LOW".

R/W-Register 0x4D

Bit	7	6	5	4	3	2	1	0
	27	2 ⁶	2 ⁵	24	2 ³	22	21	20
default	0	0	0	0	0	0	0	0

PS_TL_MSBs register (0x4Eh)

MSB for the PS threshold "LOW".

R/W-Register 0x4E

Bit	7	6	5	4	3	2	1	0
					211	210	2 ⁹	28
default	0	0	0	0	0	0	0	0

ALS_VIS_TH_LSBs register (0x4Fh)

LSB for the ALS VIS threshold "HIGH".

R/W-Register 0x4F

Bit	7	6	5	4	3	2	1	0
	27	26	25	24	23	2 ²	21	20
default	1	1	1	1	1	1	1	1

ALS_VIS_TH_MSBs register (0x50h)

MSB for the ALS VIS threshold "HIGH".

R/W-Register 0x50

Bit	7	6	5	4	3	2	1	0
	2 ¹⁵	214	2 ¹³	212	211	210	2 ⁹	28
default	1	1	1	1	1	1	1	1

ALS_VIS_TL_LSBs register (0x51h)

LSB for the ALS VIS threshold "LOW".

R/W-Register 0x51

Bit	7	6	5	4	3	2	1	0
	27	26	2 ⁵	24	2 ³	2 ²	21	20
default	0	0	0	0	0	0	0	0

ALS_VIS_TL_MSBs register (0x52h)

MSB for the ALS VIS threshold "LOW".

R/W-Register 0x52

Bit	7	6	5	4	3	2	1	0
	2 ¹⁵	214	2 ¹³	212	211	210	2 ⁹	28
default	0	0	0	0	0	0	0	0

INT modes

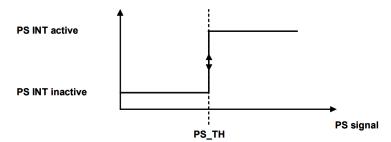
The Interrupt function compares ALS and PS measurement values with the current interrupt threshold level. PS and ALS VIS Interrupt status is readable via register 0x4Ah or at the INT pin of the sensor.

The Interrupt persistence function is only valid for PS measurements and is defined in register (0x43h). The INT pin of the SFH 7779 is open drain output and should be pulled up to VI/O by an external resistor. When VDD is supplied the INT pin is high impedance (inactive). The INT status becomes inactive by writing INT reset command, reading the INT status register or performing a software reset. The INT status stays in its last state when the sensor is set to the standby mode. In the INT active state "low" the sensor consumes ~25µA extra current. Therefore OSRAM recommends to set the INT state to high impedance before setting the sensor in standby mode.

Following ALS and PS INT modes are described for the unlatched mode. In latched mode the switching back to the "inactive" INT state is depending on a interrupt reset or the read of the INT status register.

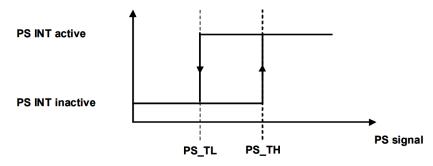
ALS INT mode:

The ALS VIS threshold levels high (register 0x4Fh & 0x50h) and low (register 0x4Fh & 0x50h) are only valid for the ALS VIS measurement values. The ALS VIS INT mode is fixed and can not be adapted via register. The thresholds define a window with following functionality:

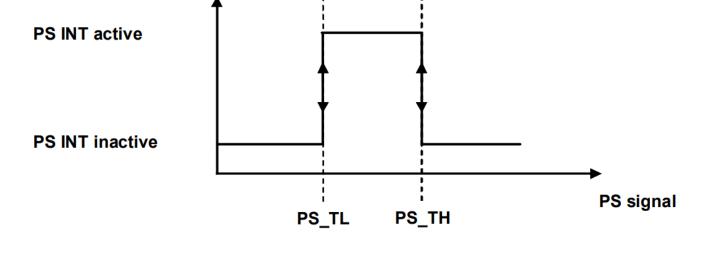

ALS INT is active, if the ALS VIS measurement values are outside the window.

ALS INT is inactive, if the ALS VIS measurement results are inside the window.

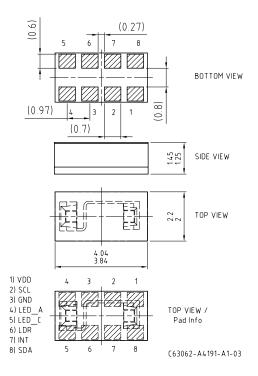
PS INT Modes: Bit <5;4> of INTERRUPT_CONTROL register (0x4Ah)


00 PS TH is only active:

The INT state is active it the PS measurement result is equal or higher than the set PS TH high threshold. The INT state is inactive, if the PS measurement result is lower than the set PS TH high threshold.

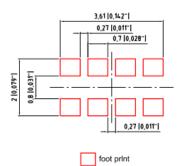

01 PS TH & PS TL (PS high & low threshold) are active as hysteresis:

PS TH and PS TL are working as a hysteresis. If the PS measurement signal is higher than the PS high threshold (PS TH) the INT state is switched to active. If the PS measurement signal is lower than the PS low threshold (PS TL) the INT state is inactive. If once interrupt signal becomes active, INT status is kept active until measurement result becomes less than PS TL register value.

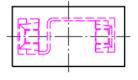

10 PS_TH & PS_TL (PS high & low threshold) are active as outside detection:

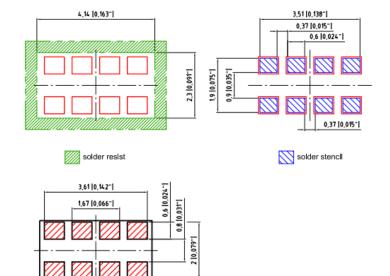
In case of "PS outside detection" mode interrupt signal inactive means that measurement result is within registered threshold level and interrupt signal active means measurement result is out of registered threshold level.

Dimensional Drawing 3)



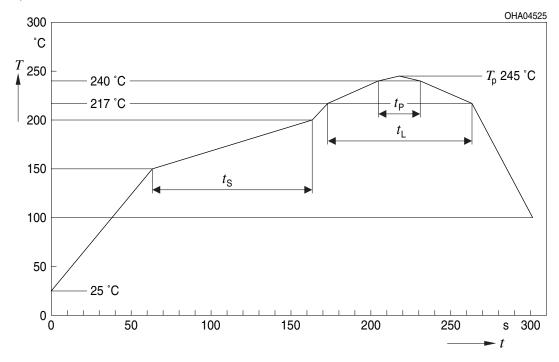
Further Information:


Approximate Weight: 15.0 mg



Recommended Solder Pad 3)

Component Location on Pad

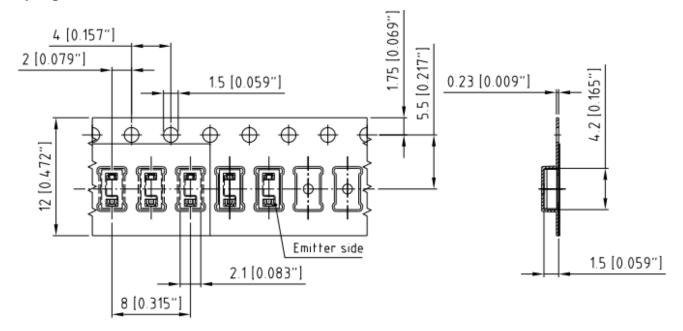

0,27 [0,011"]

2,21[0,087"]

E062.3010.147-01

Reflow Soldering Profile

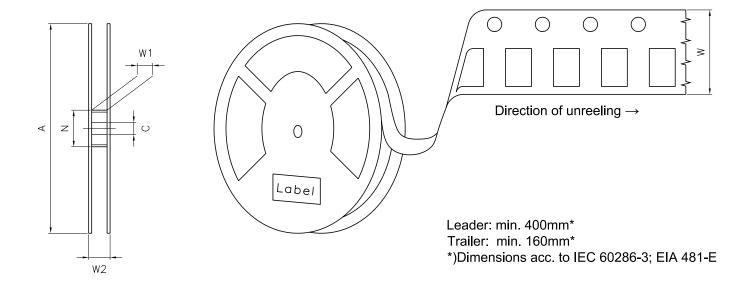
Product complies to MSL Level 3 acc. to JEDEC J-STD-020E



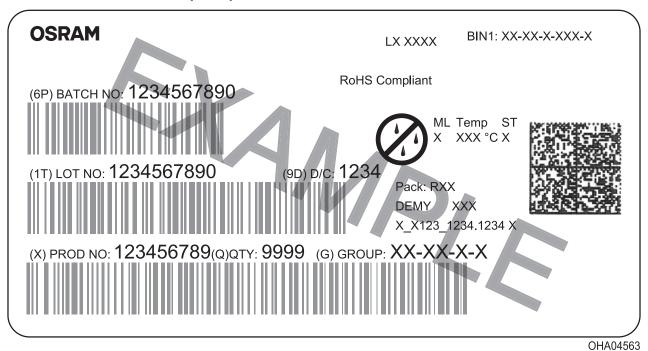
Profile Feature	Symbol	Pb-Free (SnAgCu) Assembly			Unit
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat*) 25 °C to 150 °C			2	3	K/s
Time t_s T_{smin} to T_{smax}	t _s	60	100	120	S
Ramp-up rate to peak ^{*)} T _{Smax} to T _P			2	3	K/s
Liquidus temperature	T_{L}		217		°C
Time above liquidus temperature	$t_{\scriptscriptstyle L}$		80	100	S
Peak temperature	T _P		245	260	°C
Time within 5 °C of the specified peak temperature T _P - 5 K	t _P	10	20	30	S
Ramp-down rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S

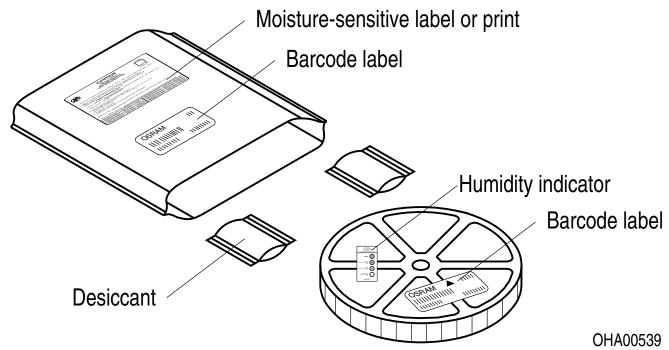
All temperatures refer to the center of the package, measured on the top of the component

 $^{^{\}star}$ slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range


Taping 3)

C63062-A4191-B6 -01


Tape and Reel 4)


Reel Dimensions

Α	W	N_{\min}	W_1	$W_{2\text{max}}$	Pieces per PU
180 mm	12 + 0.3 / - 0.1 mm	60 mm	12.4 + 2 mm	18.4 mm	2000

Barcode-Product-Label (BPL)

Dry Packing Process and Materials 3)

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

Our products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

- Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- 2) **Testing temperature:** TA = 25°C (unless otherwise specified)
- 3) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- 4) Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

≓	
tinue	
ţ	
\sqsubseteq	
=	
0	
Ö	
<u>ഗ</u>	

Revision	Revision History					
Version	Date	Change				
1.4	2021-10-11	New Layout				
1.5	2022-03-22	New Layout				
1.6	2022-09-29	Applications Not for new design				
1.7	2023-05-24	Discontinued				

Discontinued

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。

Published by ams-OSRAM AG

Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

