

# Датчик тока SC6P - 100A

Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной ток с гальванической развязкой между первичной (силовой) и вторичной (измерительной) цепями.

# Электрические параметры

| I <sub>PN</sub>                      | Номинальный входной ток, эфф.знач.                       | 100                |                              | Α  |
|--------------------------------------|----------------------------------------------------------|--------------------|------------------------------|----|
| I <sub>P</sub>                       | Диапазон преобразования                                  | 0 ± 200            | )                            | Α  |
| $\mathbf{R}_{\scriptscriptstyle{M}}$ | Величина нагрузочного резистора при $T_A = 70^{\circ} C$ |                    |                              |    |
|                                      |                                                          | $R_{\text{M min}}$ | $\mathbf{R}_{\mathrm{Mmax}}$ |    |
|                                      | питание ± 12 В при ± 100 А <sub>мах</sub>                | 10                 | 80                           | Ом |
|                                      | питание $\pm$ 15 В при $\pm$ 100 А <sub>мах</sub>        | 50                 | 100                          | Ом |
| I <sub>SN</sub>                      | Номинальный аналоговый выходной ток                      | 100                |                              | мА |
| $\mathbf{K}_{_{\mathrm{N}}}$         | Коэффициент преобразования                               | 1:1000             |                              |    |
| <b>V</b> <sub>C</sub>                | Напряжение питания (± 5 %)                               | ± 12 1             | 5                            | В  |
| I <sub>C</sub>                       | Ток потребления                                          | 10 (@ ±15          | B)+ <b>I</b> s               | мА |
| $\mathbf{V}_{d}$                     | Электрическая прочность изоляции, 50 Гц, 1 мин           | 3.0                |                              | κВ |

#### Точностно-динамические характеристики

| $\mathbf{x}$ $\mathbf{\epsilon}_{\scriptscriptstyle L}$ | Точность преобразования при $ {f I}_{PN}  ,  {f T}_{A} = 25 ^{\circ} {f C} $ Нелинейность | ± 0.5 < 0.15       | %<br>% |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------|--------|
|                                                         |                                                                                           | Средн Мак          | С      |
| $I_{o}$                                                 | Начальный выходной ток при $I_p = 0$ , $T_A = 25$ °C                                      | ± 0.2              | 0 мА   |
| $\mathbf{I}_{OT}$                                       | Температурный дрейф I <sub>o</sub> - 40°C+85°C                                            | $\pm 0.20 \pm 0.6$ | 0 мА   |
| $\mathbf{t}_{\mathrm{r}}$                               | Время задержки при 90 % от <b>I</b> <sub>Р мах</sub>                                      | < 1                | МКС    |
| di/dt                                                   | Скорость нарастания входного тока                                                         | > 100              | А/мкс  |
| f                                                       | Частотный диапазон (-1дБ)                                                                 | 0 100              | кГц    |
|                                                         |                                                                                           |                    |        |

#### Справочные данные

| $\mathbf{T}_{_{\mathrm{A}}}$ | Рабочая температура        |                     | - 40 + 85          | °C |  |
|------------------------------|----------------------------|---------------------|--------------------|----|--|
| $\mathbf{T}_{\mathrm{s}}$    | Температура хранения       |                     | - 40 + 90          | °C |  |
| $\mathbf{R}_{\mathrm{s}}$    | Выходное сопротивление при | $T_A = 70^{\circ}C$ | 30                 | Ом |  |
| m                            | Bec                        |                     | 20                 | Г  |  |
|                              | Стандарты                  | ļ                   | ДТСА.420600.004 ТУ |    |  |
|                              |                            |                     |                    |    |  |

# $I_{PN} = 100 A$

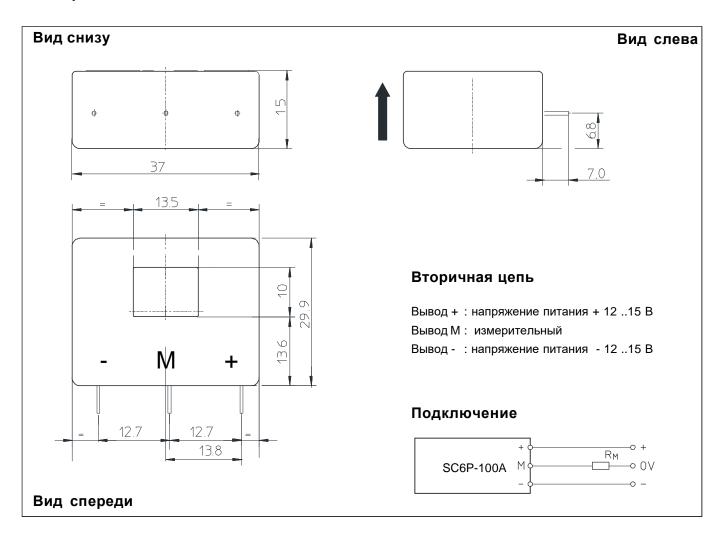


#### Отличительные особенности

- Компенсационный датчик на эффекте Холла
- Изолирующий пластиковый негорючий корпус

#### Преимущества

- Отличная точность
- Хорошая линейность
- Очень низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.


# Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания
- Источники питания для сварочных агрегатов.

250624/2

Internet: www.ldtn.ru

# Размеры SC6P - 100A (в мм)



# Механические характеристики

• Общий допуск

± 0.2 MM

• Подключение первичной цепи через отверстие

13.5 x 10 мм 3 вывода 0.8 x 0.8 мм

• Подключение вторичной цепи

# Примечания

- ${f I}_{_{\rm S}}$  положителен, когда  ${f I}_{_{\rm P}}$  протекает в направлении, обозначенном стрелкой на корпусе.
- Температура первичной шины не должна превышать 90°C.
- Наилучшие динамические характеристики (di/dt и время задержки) достигаются при полном заполнении неизолированной первичной шиной входного отверстия датчика.
- Для получения наилучшей магнитной связи дополнительные первичные витки следует прокладывать через верхнюю сторону датчика.